高等数学第十一章无穷级数习题课
《高等数学B》第十一章 无穷级数 第4节 泰勒级数与幂级数

当 x 1 时 , 发散 ;
收敛域
( 1 , 1 ) ; 发散域
( , 1 ] [1 , ) ;
定理 1 (Abel定理)
如果级数 a n x n 在 x x 0 ( x 0 0 ) 处收敛 , 则它在
n0
满足不等式
x x0
的一切 x 处绝对收敛 ;
n
;
n
(3)
n1
n!
n1
( 1)
n
2
(x n
1 2
) .
n
解
(1 )
lim
a n1 an
n
lim
n
n n1
n
1
R 1,
当 x 1时 , 当 x 1 时 ,
级数为
n1
( 1) n
,
,
该级数收敛 该级数发散
级数为
n1
1 n
( 1)
n1
n1
x
ln( 1 x )
( 1 x 1)
n
n
f ( x)
a n ( x x0 )
n 0
存在幂级数在其收敛域内 以 f (x) 为和函数
问题 :
1. 如果能展开 , a n 是什么? 2. 展开式是否唯一? 3. 在什么条件下才能展开成幂级数?
n
x R , R
(其中 c n a 0 b n a 1 b n 1 a n b 0 )
1 a 0 b0
a 1b0
a 2 b0 a 3 b0
高等数学第11章 无穷级数

un
=
lim
n→∞
1 n
=
0.
∞
推论3 若 un →/ 0, 则级数 ∑ un必发散 .
n=1
小结:
un → 0
un →/ 0
∞
∑ u n 收敛
n=1 ∞
∑ u n 发散
n=1
二、典型例题
例1
判别级数
∞
∑
ln
n
+
1
的敛散性.
n=1 n
解 部分和
Sn
= ln 2 1
+ ln 3 2
+ ln 4 3
第十一章 无穷级数
本章基本要求
1. 理解无穷级数收敛、发散以及和的概念,了 解无穷级数的基本性质和收敛的必要条件。
2.了解正项级数的比较审敛法以及几何级数与 p—级数的敛散性,掌握正项级数的比值审敛法。
3.了解交错级数的莱布尼茨定理,会估计交错 级数的截断误差。了解绝对收敛与条件收敛的概 念及二者的关系。
设收敛级数
S=
∞
∑ un,σ =
∞
∑ vn,则
n=1
n=1
∞
∑(un ±vn) 也收敛, 其和为 S ± σ .
n=1
注 1º 收敛级数可逐项相加(减) .
2o
∞
∑ ( un ± vn ) 的敛散性规律:
n=1
收收为收,收发为发,发发不一定发.
例如, 取 un = (−1)2n , vn = (−1)2n+1, 而 un + vn = 0
+
L
+
ln
n
+ n
1
拆项相消
无穷级数习题课含解答

无穷级数习题课1.判别级数的敛散性:(1)(2)(3)(4)(5)()211ln1nn n¥=+å()41tan1nn p¥=+å363663666-+-++×××+-++×××++×××21sinlnnnnp¥=æö+ç÷èøå()211lnnnn n¥=--å解:(1)为正项级数,当时, ,根据比较审敛准则,与有相同敛散性,根据积分审敛准则,与反常积分有相同敛散性, 而发散,故发散.()211ln 1n n n ¥=+ån ®¥()2111~2ln ln 1n u n n n n =+()211ln 1n n n ¥=+å21ln n n n ¥=å21ln n n n¥=å21ln dx x x +¥ò21ln dx x x +¥ò()211ln 1n n n ¥=+å(2)为正项级数,当时,,而收敛,根据比较审敛准则,收敛.()41tan 1n n p¥=+ån ®¥()422421tan1tan~21n u n n n n npp p =+-=++211n n ¥=å()41tan1n n p¥=+å(3)为正项级数, 令,其中,易证单调递增且,故收敛;令,由,两边取极限得,,(舍去);,,根据达朗贝尔比值审敛法,该级数收敛.363663666-+-++×××+-++×××++×××3n n u a =-666n a =++×××+{}n a 3n a <{}n a lim n n a a ®¥=16n n a a -=+6a a =+Þ260a a --=3a =2a =-111113311333n n n n n n n a a u u a a a +++++-+=×=-++1111lim lim 136n n n nn u u a +®¥®¥+==<+(4)看成交错级数,单调递减趋于0,根据Leibniz 定理,该级数收敛; 其绝对值级数发散(这是因为当时,,而且),故级数条件收敛. ()2211sin 1sin ln ln n n n n n n p ¥¥==æö+=-ç÷èøåå1sin ln n ìüíýîþ21sin ln n n ¥=ån ®¥11sin ~ln ln n n 1lim ln n n n®¥×=+¥(5)为交错级数,其绝对值级数为,当时,, 所以,该级数绝对收敛.()211ln nn n n¥=--å211ln n n n ¥=-ån ®¥2211~ln n n n-2. 设,且,证明级数条件收敛. ()01,2,n u n ¹= lim 1n nn u ®¥=()111111n n n n u u ¥-=+æö-+ç÷èøå证明:设级数的部分和为,则 ,因为,所以,于是 ,即级数收敛;其绝对值级数为,因为, 所以级数发散,故原级数条件收敛.()111111n n n n u u ¥-=+æö-+ç÷èøån s ()()211223111111111111n n n n n n n s u u u u u u u u ---+æöæöæöæö=+-+++-++-+ç÷ç÷ç÷ç÷èøèøèøèø()111111n n u u -+=+-lim1n nn u ®¥=()()1111111lim 1lim 101n n n n n n n u u n --®¥®¥+++-=-×=+()1111111lim lim 1n n n n n s u u u -®¥®¥+éù=+-=êúëû()111111n n n n u u ¥-=+æö-+ç÷èøå1111n n n u u ¥=++å11111lim lim 21n n n n n n n n nn u u u u n ®¥®¥+++×+=+×=+1111n n n u u ¥=++å3. 填空(1) _____(2) 设幂级数在处收敛, 则级数__收敛__.(收敛还是发散)(3) 设幂级数在处条件收敛,则幂级数在处( 绝对收敛 ),在处( 发散 ); (4)设,, ,则________;________.11(1)2n n n -¥=-=å130(1)nn n a x ¥=-å12x =-0(1)n n n a ¥=-å1()nn x a n ¥=-å2x =-1()2nn n x a ¥=+åln 2x =-x p =11,02()1,12x f x x x ì£<ïï=íï ££ïî1()sin nn s x bn xp ¥==å102()sin n b f x n xdx p =ò3()2s =34-5()2s =344. 求幂级数的收敛域2112sin 22nn x n x ¥=+æöæöç÷ç÷-èøèøå 解:令,原级数变为变量t的幂级数.因为,所以收敛半径.又时级数发散,时级数收敛, 故收敛域为;再由,解得, 原函数项级数的收敛域为.122xt x +=-21sin 2n n t n ¥=æöç÷èøå ()11sin21limlim 11sin2n n n nn a a n+®¥®¥+==1R =1t=21sin 2n n ¥=å1t=-()211sin 2nn n ¥=-å21sin 2n n t n ¥=æöç÷èøå [)1,1-12112x x +-££-133x -£<2112sin 22nn x n x ¥=+æöæöç÷ç÷-èøèøå 13,3éö-÷êëø5.求下列级数的和函数(1) (2)221212n n n n x ¥-=-å()()()201123!nn n n x n ¥=-++å解:(1).令,,所以收敛半径. 当时,级数发散,所以幂级数的收敛域为.设级数的和函数为,对幂级数逐项积分得,, 对上式两边求导得, .221212n n n n x ¥-=-å212n n n a -=11lim 2n n n a a +®¥=1212R ==2x =±()2,2D =-()s x ()212200112122n xx n n n n n n x s x dx x dx -¥¥-==-==ååòò222212xx x x ==--()2,2x Î-()()2222222x x s x x x ¢+æö==ç÷-èø-()2,2x Î-(2). 易求该幂级数的收敛域为;设级数的和函数为,,, 两边取积分,逐项求积分得, ()()()201123!nnn n x n ¥=-++å(),-¥+¥()s x ()()()()201123!nn n n s x xn ¥=-+=+å()()()()2101123!nn n n xs x x n ¥+=-+=+å()()()()()()21220000111123!223!nnxx n n n n n xs x dx x dx x n n ¥¥++==-+-==++ååòò当时,,求导得 , 当时,由所给级数知.因此. 0x ¹()()()()230111sin 223!2nxn n xs x dx x x x x n x¥+=-==-+åò()2sin 1sin cos 22x x x x xxs x x x ¢--æö==ç÷èø()3sin cos 2x x x s x x -=0x =()106s =()3sin cos ,021,06x x xx xs x x -ì¹ïï=íï=ïî6.求级数的和.()22112n n n ¥=-å解:考虑幂级数,收敛区间,设和函数为, 则当且时,,. ()2211nn x n ¥=-å()1,1-()s x 11x -<<0x ¹()()222211121211nnnn n n x x s x x n n n ¥¥¥=====--+-ååå112212121n n n n x x x n x n -+¥¥===--+åå11220121212n n n n x x x x x n x n -+¥¥==æö=---ç÷-+èøåå()11ln 12224x x x x æö=--++ç÷èø()2211311153ln ln 2242288412nn s n ¥=æö==++=-ç÷-èøå()()211ln 1ln 1222x x x x x x éù=-------êúëû7.设,试将展开成的幂级数.()111ln arctan 412x f x x x x +=+--()f x x 解:,取0到x 的定积分,幂级数逐项求积分, .()241111111114141211f x x x x x¢=++-=-+-+-44011n n n n x x ¥¥===-=åå()11x -<<()()()4410111041xx nn n n f x f f x dx x dx x n ¥¥+==¢=+==+ååòò1x <8.设在上收敛,试证:当时,级数必定收敛. ()0nn n f x a x ¥==å[]0,1010a a ==11n f n ¥=æöç÷èøå证明: 由已知在上收敛,所以,从而有界. 即存在,使得 ,所以,;级数收敛,根据比较审敛准则,级数绝对收敛.()0n n n f x a x ¥==å[]0,1lim 0n n a ®¥={}n a 0M>n a M£()1,2,n = 0123232323111111f a a a a a a n n n n n n æö=++++=++ç÷èø()2231111111n M M M n n n n næö£++==ç÷-èø- ()2n ³()211n n n ¥=-å11n f n ¥=æöç÷èøå9.已知为周期是的周期函数,(1)展开为傅立叶级数; (2)证明;(3)求积分的值.[)2(),0,2f x x x p =Î2p ()f x ()1221112n n np -¥=-=å()10ln 1x dx x +ò解:(1)在处间断,其它点处都连续.所以由Dirichlet 收敛定理,时,级数收敛于,所以当时,有,亦即:.()f x ()20,1,2,x k k p ==±± ()()22220011183a f x dx f x dx x dx pppp pp pp-====òòò222022014cos ,14sin ,1,2,n n a x nxdx n b x nxdx n npp p p p ====-=òò ()()221414cos sin 20,1,2,3n f x nx nx x k k nn p p p ¥=æö=+-¹=±±ç÷èøå ()22214114cos sin ,0,23n x nx nx x nn p p p ¥=æö=+-Îç÷èøå()20,1,2,x k k p ==±± ()()2002022f f p p ++-=()20,1,2,x k k p ==±± 222141423n np p ¥=+=å22116n n p ¥==å(2)是连续点,所以即:;x p =()f x 2221414cos ,3n n np p p ¥==+å()221112nn n p¥=-=-å()1221112n n n p-¥=-Þ=å(3)积分是正常积分,不是瑕点, 对,令,.()10ln 1x dx x +ò0x=()1,1t "Î-()()()()111112000111ln 1111n n n tt tn n nn n n x dx x dx x dx tx n nn---¥¥¥--===+---===åååòòò1t -®()10ln 1x dx x +ò()01ln 1lim t t x dx x -®+=ò()12111lim n n t n t n --¥®=-=å()12111lim n n t n t n --¥®=-=å()1221112n n np -¥=-==å10.证明下列展开式在上成立:(1);(2).并证明. []0,p ()221cos 26n nxx x n pp ¥=-=-å()()()31sin 21821n n xx x n p p¥=--=-å()()133113221n n n p -¥=-=-å证明:将函数展开为余弦级数和正弦级数.(1) 对作偶延拓,再作周期延拓,得到的周期函数处处连续,根据Dirichlet 定理,时,的余弦级数处处收敛于.,()()f x x x p =-[]0,x p Î()f x []0,x p Î()f x ()f x ()()0022a f x dx x x dx ppp p p==-òò23202233x x pp p p æö=-=ç÷èø, ,所以在上,.()()022cos cos n a f x nxdx x x nxdx ppp p p==-òò()()()()200022sin 2sin 2cos x x nx x nxdx x d nx n n pppp p p ppéù=---=-êúëûòò()2211nn éù=--+ëû()()202112cos 11cos 26n n n n a f x a nx nx n p ¥¥==éù=+=--+ëûåå221cos 26n nxnp ¥==-å[]0,x p Î[]0,p ()221cos 26n nxx x n p p ¥=-=-å(2)对作奇延拓,再作周期延拓,得到的周期函数处处连续,根据Dirichlet 定理,时,的正弦级数处处收敛于. , ()f x []0,x p Î()f x ()f x ()()0022sin sin n b f x nxdx x x nxdx p pp p p ==-òò()()()()200022cos 2cos 2sin x x nx x nxdx x d nx n n p p p p p p p p éù=----=-êúëûòò()3411n n p éù=--ëû, 所以在上,. 令,有. ()()3114sin 11sin n n n n f x b nx nx n p ¥¥==éù==--ëûåå()()31sin 21821n n x n p ¥=-=-å[]0,x p Î[]0,p ()()()31sin 21821n n xx x n p p ¥=--=-å2x p =()()23181sin 214221n n n p p p ¥==--åÞ()()133113221n n n p -¥=-=-å。
辽宁工业大学高数习题课11-1

an ≥ 0
正项级数
二,判别常数项级数收敛的解题方法
的敛散性, 判别常数项级数∑an的敛散性,应先考察是否有
n=1
liman = 0 成立.若不成立,则可判定级数发散; 成立.若不成立,则可判定级数发散;
n→∞
若成立,则需作进一步的判别. 若成立,则需作进一步的判别.
此时可将常数项级数分为两大类,即正项级数与任意项级数. 此时可将常数项级数分为两大类,即正项级数与任意项级数. 对于正项级数,可优先考虑应用比值法或根值法. 对于正项级数,可优先考虑应用比值法或根值法.若此 二方法失效,则可利用比较法(或定义)作进一步判别; 二方法失效,则可利用比较法(或定义)作进一步判别; 对于任意项级数, 是否收敛. 对于任意项级数,一般应先考虑正项级数 ∑ an 是否收敛. 若收敛,则可判定原级数收敛,且为绝对收敛; 若收敛,则可判定原级数收敛,且为绝对收敛;
n=1
∞
问题是熟练掌握一批已知正项级数的敛散性(如几何级数, 问题是熟练掌握一批已知正项级数的敛散性(如几何级数,
p 级数等),然后根据 an 的特点,进行有针对性的放缩. 级数等), ),然后根据 的特点,进行有针对性的放缩.
a nn! 的收敛性. 【例6】判别级数 ∑ nn 的收敛性. 】 n =1
un+1 ∵ = un e >1 1 n (1 + ) n
∴ un+1 > un lim un ≠ 0
n →∞
所以,原级数发散. 所以,原级数发散. 的因子时, 注:在级数一般项 un 中,若含有形如 nk , an , n!, nn 的因子时, 适于使用比值审敛法. 适于使用比值审敛法.
1 的敛散性. 【例7】判断级数∑ [ln(n + 1)]n 的敛散性 】 n =1
大一高等数学第十一章无穷级数习题 ppt课件

n1
n1
(3) 当 l 时 , 若 v n 发散 ,则 un 发散;
n1
n1
( 3 ) 极 限 审 敛 法
设un为 正 项 级 数 ,
n1
如 果 n l i m nn ul0(或 n l i m nn u),
则 级 数 un发 散 ;
n1
如果有p1, 使得n l i mnpun存在,
则级数 un收敛.
二、典型例题
例1 判断级数敛散性 :
(1)
n1
nn
n1 (n 1)n;
nnn nn (n 1 )n
n
nn (1 1 )n ,
n2
ln i (m 1n 1 2)nln i [m 1 (n 1 2)n 2]n 1e0 1;
1
limnn
1
limxx
expli{m1lnx}
n
x
x x
n1
则 称 x0为 级 数un(x)的 收 敛 点 , 否则称为发散点.
n1
函 数 项 级 数 u n ( x ) 的 所 有 收 敛 点 的 全 体 称 为 收 敛 域 , n 1
所 有 发 散 点 的 全 体 称 为 发 散 域 .
(3) 和函数
在 收 敛 域 上 ,函 数 项 级 数 的 和 是 x的 函 数 s(x),
收敛级数的基本性质
性质1: 级数的每一项同乘一个不为零的常数, 敛散性不变. 性质2:收敛级数可以逐项相加与逐项相减.
性质3:在级数前面加上有限项不影响级数的敛 散性. 性质4:收敛级数加括弧后所成的级数仍然收敛 于原来的和.
级数收敛的必要条件: ln i mun 0.
常数项级数审敛法
一般项级数 正 项 级 数
高等数学下无穷级数习题课

(1, 5] .
例 2(2003A)设 x 2 = å an cos nx (-p £ x £ p) ,则 a2 =
¥ ¥
。= 1。 。
(-2, å an x n 的收敛半径为 3,则 å nan (x - 1)n +1 的收敛区间为
n =1 n =1
n =1
¥
2n -1
+ a2n ) 收敛 å an 收敛
n =1
¥
åa
n =1
¥
n
u (4) lim n = l ¹ 0 则 å un 和 å vn 有相同的敛散性 n ¥ v n
åa , åb
2
例 11(2006A)将函数 f (x ) = 例 10(2006C)求幂级数 å 收敛域为 [-1,1] 。
¥ ¥
x 展成 x 的幂级数。 2 + x - x2
n -1
1 ¥ æ 1ö n ç (-1)n +1 + n ÷ ÷ å ç ÷ x , x Î (-1,1) 。 è 3 n =0 2 ø
¥
例 5(2003C)求幂级数 1 + å (-1)n
n =1
x 2n ( x < 1 )的和函数 f (x ) 及其极值。 2n
1 f (x ) = 1 - ln(1 + x 2 ) , x < 1 , f (x ) 在 x = 0 处取得极大值,且极大值为 f (0) = 1 。 2
1+x 2 ì ¥ ï (-1)n ï x arctan x , x ¹ 0 试将 f (x ) 展开成 x 的幂级数,并求 å 的和。 例 4(2001A)设 f (x ) = í 2 ï 1, x =0 n =1 1 - 4n ï ï î
无穷级数习题课(1)

故由比较审敛法的极限形式,原级数收敛。
5
解法2:由比值审敛法
6n1
lim an1 a n
n
lim
n
7n1 5n1 6n
6(7n 5n )
lim
n
7n1
5n1
7n 5n
lim
n
6(1 ( 5)n ) 7
1 ( 5)n1
6 7
1
7
故由比值审敛法知原级数收敛。
6
1.什么是传统机械按键设计?
传统的机械按键设计是需要手动按压按键触动PCBA上的开关按键来实现功 能的一种设计方式。
e e x x
x x
e0
1
n
x
x
lim
n
an
1
0
由级数收敛的必要条件,原级数发散。
4
【例3】判别级数
n1
6n 7n 5n
的收敛性。
解法1:此级数为正项级数,
an
6n 7n 5n
6n
lim 7n 5n lim 1 1
n ( 6 )n
n 1 ( 5)n
7
7
而级数 ( 6 )n 为等比级数收敛, n1 7
n1
2
三、典型例题
【例1】判别级数 n1
2n 3n
1
的收敛性,并求级数的和。
解:
由于
an
2n 3n
1
3n 3n
n1 3n
n 3n1
n1 3n
,由定义
2 23 3 4
Sn
(1
) 3
( 3
32
)
( 32
33
)
n ( 3n1
n1 3n )
(完整版)无穷级数习题及答案.doc

第十一章 无穷级数(A)用定义判断下列级数的敛散性1. n 2n 1; .1;3. 11 。
2n 1 2n 2n2n 13 n5 nn 1判断下列正项级数的敛散性.n! ;5. n e; 6.n 1;7. 2n 3;8. n 4 ;n 1 e n1 2nn 1 n n 3 n 1 n! n 1 100 n nn nn1 n9.;10.3n n 12n。
n 11求下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛.1n 1n 1 ; 12.1n1; 13.1.1 1.01 1.001 1.0001;112 nln nn 1n 214.122 2 3 1 4 1 ;21 32 4 2求下列幂级数的收敛半径和收敛区间.3n x n;16.1 n x n ; 17.n! xn; .1 n;n n n 1 2n n n 1 n n 1n 119.1 2n 1; 20. n 2n;1 2 n 1xn 1 3 n xn求下列级数的和函数21. n 1 nxn 1; 22. n 1 21n 1 x2n 1;将下列函数展开成 x x 0 的幂的级数23. shx e xe x , x 00 ;24. cos 2 x , x 00 ;225. 1 x ln 1 x , x 00 ; 26. 1, x 0 3 ;x将下列函数在区间, 上展开为付里叶级数27. A xcos x,x。
28. f x 2t , x22x , 3x t 029.将函数 f x, 0 t 3 展开成付里叶级数。
xx, 0 xl2分别展开成正弦级数和余弦级数。
30.将函数 f xllx , x l2(B)用定义判断下列级数的敛散性1.1;2.1; 3.n 2 2 n 2n 03n 1 3n4n 1n n 1 n2n 1判断下列正项级数的敛散性2n n!2n2n3n na n. ; 5.;6. ,( a 0 );4n3n 12n nn 1nn1n 11nb7.,其中 a na ( n), a n , b , a 均为正数;n 1a n11x8.n,( a 0);9. n 42x ;1 n 1 0 1 x n 1 1判断下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛n 12 n 2n 1ln 2110.1;11.n 1;12.1n 1 nn!12 n 13n 2 3nn 1n 1nn 1求下列幂级数的收敛半径和收敛域.nx 2 n;14.x n ,( a 0 ,b 0 ); 1312n!n 1 anb nn 115.n12 n 1; 16. 3n2 nn;12 n4 n x 5x 1 n 1n 1n求下列级数的和函数17. nx 2n ;18.2n 1x 2 n ; 19. n 2 x n ;n 1n 1n ! n 120.求证: ln 21;n ;; 2将下列函数展开成 xx 0 的幂的级数21.f x21,x 0 0 ;22.f x12 ,x 01;23. x ,x 0 0 ; 2x3x 1x1 x 224.证明偶函数的付里叶级数数仅含余弦项;25.写出函数 f x1 x 2k , x2k 1 , 2k1 , k 0, 1, 2,的2付里叶级数,并讨论收敛情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ( x) 在 U( x0 )内能展开成幂级数
f ( x) 在 U( x0 )内能展开成幂级数 an( x x0 )n , 则其展
开式是唯一的 .
n0
函数展开成幂级数 , 可用直接方法 , 也可用间接方法 . 8
1 . 几何级数 a qn1 .
n1
q 1 , 收敛 ; q 1 , 发散 .
n1 n1
n1
n1
n1
2 设 k 0 , 则 k un 与un 同敛散 ,
n1
n1
而且 , 若 un收敛 , 则有 k un k un .
n1
n1
n1
3 un 与 un 同敛散 .
nk
n1
4 收敛级数加括号后仍收敛 ; 逆否命题正确 .
5
un
nk
收敛
lim
n
un
0;
逆否命题正确 .
2
正项级数审敛法:
2.
调和级数
1 n
n1
1
1 2
1 3
1 n
3.
1
n1 n p
1
1 2p
1 3p
1 np
p ( 0, 1] p (1, )
发散
收敛
发散
4.
(1)n1
n1
1 n
1
1 2
1 3
1 4
条件收敛
5.
(1)n1
n1
1 np
1
1 2p
1 3p
1 4p
( p 0)
收敛
9
1 e x xn 1 x x2 x3
(2)
lim
n
un
0
.
级数收敛性与前 k 项无关
则 (1)n1un 收敛 , 且其和 s u1 , 余项 rn un1 .
n1
任意项级数审敛法 : 绝对收敛与条件收敛
定理 绝对收敛级数 un 一定收敛 .
n1
比值审敛法 :
若 lim
n
un1 un
,则
根值审敛法 : 若 lim n
n
un
,则
4
幂级数 :
an( x x0 )n 或 an xn
n0
n0
幂级数 an xn 的收敛半径 :
n0
当 x R 时 , 幂级数绝对收敛 ;
当 x R 时 , 幂级数发散 ,
称 R 为幂级数的 收敛半径 .
当 x R 或 x R 时 , 幂级数可能收敛 , 也可能发散 .
R lim an , n an1
第十一章 无穷级数 习题课
un
正项级数 交错级数
n1 任意项级数
数项级数
级数 un 收敛
n1
固定 x x0
收敛域
un( x)
幂级数 Forier 级数
n1
其它
函数项级数
n
lim
n
k
uk
1
s
.
记 s un .
n1
1
级数的基本性质:
1 设 un , vn 都收敛 , 则 (un vn ) un vn .
f
(n)( x0 n!
)
(
x
x0 )n
f ( x) ~ f (0) f (0) x f (0) x2 f (n)(0) xn
2!
n!
f ( x) 在 U( x0 )内能展开成幂级数
在
U
(
x0
)
内
,
lim
n
Rn
(
x)
0
当 x U( x0 ) 时 , f (n)( x) M ( n k , k 1, k 2, )
eix cos x i sin x .
2
sin x eix eix .
2i
11
Forier 级数
( f ( x) 以 2 为周期 )
f ( x) ~
a0 2
( ancos nx bnsin nx)
n1
幂级数 an xn 在收敛区间 (R , R ) 上可逐项求导或积分 .
n0
s(
x
)
an
n0
x
n
n0
an xn
n an xn1
n1
x
0
s( x) d
x
x 0
an
n0பைடு நூலகம்
x
n
d
x
n0
x 0
an xn
d
x
an xn1 n0 n 1
7
函数展开成幂级数 f ( x) ~ f ( x0 ) f ( x0 )( x x0 )
4 ln(1 x) (1)n xn1 x x2 x3 x4
n0 n 1
2 3 4 x ( 1, 1 ]
5 arctan x (1)n x2n1 x x3 x5 x7
n02n 1
3 5 7 x [ 110, 1 ]
6 (1 x) 1 ( 1) ( n 1) xn
k 0
an
n0
x
n
bn
n0
xn
dn
n0
xn
bn xn 0
n0
dn 使下式成立 :
an xn
n0
dn
n0
x
n
bn
n0
xn
6
幂级数和函数的性质
幂级数 an xn 的和函数 s( x) 在收敛区间上连续 .
n0
(R , R) , [R , R) (R , R] 或 [R , R]
n0 n!
2! 3!
x (, )
2
sin x
(1)n x2n1 x x3 x5 x7
n0(2n 1)!
3! 5! 7! x (, )
3 cos x (1)n x2n 1 x2 x4 x6
n0 (2n)!
2! 4! 6!
x (, )
(sin x ~ 奇函数 , cos x ~ 偶函数 , (sin x) cos x )
un 收敛
n1
un 的部分和序列 { sn } 有上界 .
n1
比较审敛法 :
若 un vn ( n k 1 , k 2 , ) 则
如果
lim
n
un vn
( 0 )
则 un
与 vn 同敛散 .
极限审敛法 : ( un 0 的速度较快 , un 收敛 )
(
p
1) 若
lim
R lim
n
n
1 an
当 R 0 时 , 幂级数只在 x 0 点收敛 ;
当 R 时 , 幂级数在全实轴收敛 .
5
幂级数在公共收敛区间上可进行加减乘(除)四则运算 .
an xn bn xn (an bn )xn
n0
n0
n0
an
n0
x
n
bn
n0
x
n
cn
n0
xn
n
cn akbnk
n
n
pun
(0
) , 则 un
收敛 ;
若
lim
n
n
un
(0
)
,
则 un
发散
.
比值审敛法 :
若
lim
n
un1 un
,
则
根值审敛法 :
若
lim n
n
un
, 则
3
交错级数审敛法 :
Leibnitz 定理
对于交错级数
(1)n1
un
,
如果
n1
(1) un un1 , ( n 1 , 2 , 3 , )
n1
n!
1 x ( 1) x2 ( 1)( 2) x3
2!
3!
x ( 1, 1 )
1 1 1 x x2 x3 x4
1 x 1 1 x x2 x3 x4
1 x
x ( 1, 1 ) x ( 1, 1 )
欧拉 (Euler) 公式 :
cos x eix eix ,