电迁移现象及其失效机理
电迁移原理

电迁移原理
电迁移现象是在表面化学反应的基础上产生的一种特殊的化学反应现象,它与一般化学反应不同的地方是它发生在固体表面,而不是液体表面。
电迁移现象发生在固体表面上,例如某些金属氧化物在中性溶液中不发生迁移,而在某些金属氧化物存在时则会发生迁移。
这种迁移现象在许多方面都有应用,如:
1.用来产生和测定气体或液体的浓度和流速。
2.用于检测液体中某种成分的含量或密度。
3.用于测量气体或液体在垂直于流体流动方向上的流速。
4.用于测量固体物质表面上某一点与某一条直线之间的距离。
5.用于测量固体物质在真空中的温度、压力和体积。
6.还可用于研究气体或液体在一定条件下是否会发生蒸发或汽化。
7.用于测定某些溶液的pH值,如各种金属、盐类以及某些有机物等,也可用于测定液体或气体中某些成分的浓度,如用来测定某些药物或有毒物质在水中的溶解度。
—— 1 —1 —。
电迁移现象

电迁移现象
电迁移现象是物理学界备受关注的一个热门课题。
它是指物体或物质在一定条件下,由于应力而迁移的现象。
这种现象的发生会造成物体储存的电荷的变化,因此它也被称为“静电迁移”、“电荷迁移”或“静电变换”。
电迁移现象在日常生活中被广泛应用,包括自动门的原理、摄像头定位以及触摸屏的运作原理等。
也被广泛应用在工业中,如电子开关、无接触电机、变压器、液位传感器等。
科学家们已经发现,电迁移现象在生物体内也发生,它在调节非常重要的生理机制中扮演重要角色,如膜电位调节、血管内皮细胞平衡调节等。
电迁移现象的本质是一种内建张力,它受到材料的结构特性和电荷分布的影响,而且能够穿越复杂的电子结构。
电迁移现象的发生是由于物体表面的表面电荷分布的重新排列所导致的,称为“电荷效应”。
这种电荷效应是通过连接金属电子结构上的连接点来实现的,可以通过特定的物质结构来促进或增强这种电迁移现象的发生。
此外,电迁移现象也可以受到电场和磁场的双重影响,这种电磁效应也可以在电迁移现象中发挥功效。
由于磁场可以影响物质结构的重组,因此,当遇到电磁场时,电迁移现象的发生可能是由于磁位的变化引起的。
电迁移现象的研究内容已经有很多,研究人员们也对它做了不同方面的研究,但仍然存在诸多未解决的问题。
未来研究工作将继续深入探讨电迁移现象及其在工业应用中的发展情况,以期发展出更有效、
更安全的技术和设备。
电迁移现象是一种物理现象,它涉及到电荷、电场、磁场等物理现象,对于科学家们来说是一个不可缺少的研究课题。
随着科学技术的不断进步,电迁移现象的研究将受到更多的关注和深入的研究,以提高科学和工业技术的发展水平,实现可持续发展。
电迁移现象及其失效机理

电迁移现象及其失效机理 Revised by Liu Jing on January 12, 2021集成电路中的电迁移现象电迁移现象简介随着芯片特征尺寸越来越小,集成度越来越高,对芯片可靠性的研究也变得越来越重要,而其中电迁移现象是影响互连引线的主要可靠性问题。
在微电子器件中,金属互连线大多采用铝膜,这是因为铝膜具有电阻率低、价格低廉、与硅制造工艺相兼容、与SiO层等介质膜具有良好的粘附性、便于加工等一系列优2点。
但使用中也存在着如性软、机械强度低、容易划伤;化性活泼、易受腐蚀;抗电迁移能力差等一系列问题。
集成电路芯片内部采用金属薄膜互连线来传导工作电流,这种传导电流的金属在较高的电流密度作用下,沿电场反方向运动的电子将会与金属离子进行动量交换,结果使金属离子与电子流一样朝正极方向移动,相应所产生的金属离子空位向负极方向移动,这样就造成了互连线内金属净的质量传输,这种现象就是电迁移。
电迁移失效机理电迁移现象是指集成电路工作时金属线内部有电流通过,在电流的作用下金属离子产生物质运输的现象。
进而导致金属线的某些部位出现空洞从而发生断路,而另外一些部位由于有晶须生长或出现小丘造成电路短路。
当芯片集的成度越来越高后,其中金属互连线变的更细、更窄、更薄,电迁移现象也就越来越严重。
图为典型的电迁移失效结果。
(a)电迁移引发短路(b)电迁移引发断路在块状金属中,电流密度较低(<104A/cm2),其电迁移现象只在接近材料熔点的高温时才发生。
薄膜的材料则不然,淀积在硅衬底上的铝条,截面积很小和很好的散热条件,电流密度可高达107A/cm2,所以在较低的温度下就能发生电迁移。
在一定温度下,金属薄膜中存在一定的空位浓度,金属离子通过空位而运动,但自扩散只是随机的引起原子的重新排列,只有在受到外力时才可产生定向运动。
通电导体中作用在金属离子上的力有两种:一种是电场力Fq,另一种是导电载流子和金属离子间相互碰撞发生动量交换而使离子产生运动的力,这种力叫摩擦力Fe ,对于铝膜,载流子为电子,这时电场力Fq很小,摩擦力起主要作用,粒子流与载流子运动方向相同。
电化学迁移现象介绍

如何控制電遷移
1、选用anti-CAF板料,(选择开纤布) 2、不能选用7628等粗纤维材料 3、选用anti-CAF制程: (1)改善钻孔品质,比如:选用全新钻咀, 降低落速 (2)控制孔粗在10-15um (3)改善除胶渣的条件和方法;
電遷移等级
▪ 通常PCB厂应根据自身制程能力及风险承
受能力制定CAF等级标准
電遷移产生原因
▪ 二、流程工艺问题 ▪ 1、孔粗---钻孔太过粗糙,造成玻纤束
被拉松或分离而出现间隙;
▪ 2、除胶渣---PCB制程之PTH中的除胶
渣(Desmearing)过度,或沉铜浸入玻纤 束发生灯芯效应(Wicking) ,过度的灯芯加 上孔与孔相距太近时,可能会使得其间板 材的绝缘品质变差 加速产生CAF效应;
電化學遷移实例图片
電化學遷移实例图片
電遷移形成过程
▪ 1、常规FR4 P片是由玻璃丝编辑成玻璃布,
然后涂环氧ห้องสมุดไป่ตู้脂半固化后制成;
▪ 2、树脂与玻纤之间的附著力不足,或含浸
时亲胶性不良,两者之间容易出现间隙;
▪ 3、钻孔等机械加工过程中,由于切向拉力
及纵向冲击力的作用对树脂的粘合力进一 步破坏;
▪ 4、距离较近的两孔若电势不同,则正极部
1、什么是電化學遷移
Conductive Anodic Filament 导电性细丝物=阳极性玻纤丝之漏电现象
基板材料的玻璃束中,当扳子处于 高温高湿及长久外加电压下,在两金属 导体与玻璃束跨接之间,会出现绝缘失 效的缓慢漏电情形,称为“电迁移”, 又称为漏电或渗电。
電化學遷移模型
電化學遷移实例图片
如何应对客户无CAF要求,但是客 户设计处于风险区域范围?
电迁移失效判定电路

电迁移失效判定电路设计进展报告1.电迁移失效机理和失效模式电迁移(Electromigation)是在一定温度下,当半导体器件的金属互连线上流过足够大的电流密度时,被激发的金属离子受电场的作用形成离子流朝向阴极方向移动,另外在电场作用下的电子通过对金属离子的碰撞传给离子的动量形成朝着金属膜阳极方向运动的离子流,造成了金属离子向阳极端的净移动,最终在金属膜中留下金属离子的局部堆积而出现小丘、晶须(引起短路)或引起金属离子的局部亏损而出现空隙(引起开路),最终导致突变失效,影响集成电路的寿命。
根据电路在不同位置发生电迁移、以及发生电迁移的形式的不同,电迁移的失效模式主要有下面几种:1.1短路1.1a.电迁移使晶体管发射极末端积累铝离子,使EB结短路,这对套刻间距小的微波功率管容易发生;1.1b.电迁移产生的晶须使相邻的两个铝条间短路,这对相邻铝条间距小的超高频器件、大规模集成电路容易发生;1.1c.集成电路中铝条经电迁移后与有源区短接,多层布线上下层铝条经电迁移后形成晶须而短接;1.1d.晶须与器件内引线短接。
1.2 断路1.2a.正常工作温度下,铝条承受电流过大,特别是铝条划伤后,电流密度更大,使铝条断开。
尤其是大功率管,在正常结温(150℃)时,往往工作几百小时后因电迁移而失效;1.2b.压焊点处,因接触面积小,电流密度过大而失效;1.2c.氧化层台阶处,因电迁移而断条。
通过氧化层阶梯的铝条在薄氧化层上散热好,温度低,而在厚氧化层上散热差,温度高。
所以当电子流沿着铝条温度增加的方向流动时,就会出现铝原子的亏空,而形成宏观的空隙。
1.3 参数退化电迁移将影响器件性能稳定。
例如,晶体管EB结的退化。
2.失效判定电路检测参数的选择当电路发生电迁移之后,电路中互连线的电阻会发生很大的变化,严重的甚至发生互连线的断路和短路。
为了判定电路是否发生电迁移,最直接的方法就是测量互连线的电阻。
然而,在芯片的引脚上无法直接测量内部互连线的电阻,在芯片引脚上只能测量端口电压和电流,在这里,选择引脚电压作为检测参数。
电转移原理

电转移原理
电转移原理,是一种通过电流作用实现化学反应的原理。
它利用电场或电流的作用,将溶剂中的离子或中性物质迁移到电极上,从而加速反应速率或实现分离纯化。
具体而言,电转移原理可分为电解析、电析和电渗析三种不同类型。
在电解析中,溶液中的化学物质通过电解作用被分解为离子,并被迁移到电极上。
这种方法常用于水中离子的分析,其原理是利用电解池中的电解质将水分解为氢离子和氢氧根离子,然后通过电极将它们聚集起来进行检测。
电析则是通过电流作用将离子物质迁移到电极上,从而使它们凝结或沉积成固体。
这种方法常用于稀有金属的分离和提纯,如电镀过程中,利用电解质将原料中的稀有金属离子迁移到电极上,然后形成金属沉积层。
而电渗析是一种通过电场作用和电流驱动实现离子分离的方法。
通过施加电势差,使得带电离子在溶液中产生电动力,从而迁移到电极上或通过电解质膜进行选择性分离。
电渗析常用于海水淡化和废水处理等领域,通过将溶液通过离子选择性膜,使得特定离子被迁移到电极上,从而实现水的分离或去除有害离子。
总的来说,电转移原理通过电流的作用实现化学反应,可应用于多种领域,如分析、分离和纯化等。
不同类型的电转移原理,根据其具体作用机制和应用领域,在实际应用中具有各自的优势和适用性。
电迁移介绍

1.电迁移及模型简要介绍1.1电迁移现象电迁移现象是指集成电路工作时金属线内部有电流通过,在电流的作用下金属离子产生物质运输的现象。
进而导致金属线的某些部位出现空洞从而发生断路,而另外一些部位由于有晶须生长或出现小丘造成电路短路。
当芯片集的成度越来越高后,其中金属互连线变得更细、更窄、更薄,其电迁移现象越来越严重。
图1 电迁移示意图1.2电迁移理论(原子扩散模型)当金属导体中通过大电流密度时,静电电场将驱动电子从阴极向阳极运动。
高速运动的电子将与金属原子发生碰撞,原子受到猛烈的电子冲击,这就形成了电迁移理论中的电子风力wd F 。
此外,金属原子还到受静电场力ei F 的作用,如图2所示。
图2 电迁移理论模型图两者的合力即电迁移驱动力可表示em wd ei e j F F F Z ρ*=+= (1)Z eiZZ=* (2) wd+式中,F为电子风力;ei F为场力;Z*为有效电荷;ρ为电阻率;wdj为电流密度;Z为电子风力有效电荷常数;ei Z为静电场力有效电wd荷常数。
当互连引线中的电流密度较高时,向阳极运动的大量电子碰撞原子,使得所产生的电子风力F大于静电场力ei F。
因此,金属原子受wd到电子风力的驱动,产生了从阴极向阳极的受迫的定向扩散,即发生了金属原子的电迁移。
如图3所示。
图3电迁移产生图原子的扩散主要有三种形式:晶格扩散、界面扩散和表面扩散。
由于电迁移使金属原子从一个晶格自由扩散到另一个晶格的空位上,所以,通常描述原子电迁移的数学模型采用的是空位流(J )方程:total Dc J F kT=- (3) 式(3)中,D 为扩散系数;c 为空位浓度;T 为绝对温度:k 为玻耳兹曼常数;total F 为电迁移驱动力的合力。
电迁移使得引线内部产生空洞和原子聚集。
在空洞聚集处是拉应力区;在原子聚集处是压应力区,因此,应力梯度方向由阳极指向阴极。
图4 电迁移产生应力梯度图为了松弛应力,重新回到平衡态,原子在压应力的作用下,沿应力梯度方向形成回流。
电迁移的影响因素及预防

电迁移的影响因素1布线形状及结构的影响连引线的几何尺寸和形状,互连引线内部的晶粒结构、晶粒取向等对电迁移有重要的影响。
从统计观点看,金属条是由许多含有结构缺陷的体积元串联而成的,则薄膜的寿命将由结构缺陷最严重的体积元决定。
(1)若单位长度的缺陷数目是常数,随着膜长的增加,总缺陷数也增加,所以膜的长度越长,寿命越短。
(2)当线宽比材料晶粒尺寸大时,线宽越大,引起横向断条的空洞所需的时间越长,寿命越长;当线宽降到与金属粒径相近或更小时,断面为一个单个晶粒,金属离子沿晶粒界面扩散减少,寿命也会延长。
(3)在台阶处,由于布线形成过程中台阶覆盖性不好,厚度降低,电流密度在此处增加,容易产生断条。
2热效应金属膜的稳定及温度梯度对电迁移寿命的影响极大,温度通过影响互连引线中的原子扩散而对电迁移过程产生影响。
互连引线中原子的扩散系数 D 与温度呈指数关系,当温度升高时,原子的扩散速度加快,导致电迁移现象按指数变化规律向着失效方向发展。
如果互连引线上存在温度梯度,温度梯度使得互连引线上存在扩散系数 D 的差异。
温度高的区域,原子扩散快;温度低的区域,原子扩散慢。
因此,温度梯度的存在也会产生原子迁移。
3晶粒大小互连引线中,铝布线为一多晶结构,因为多晶结构的晶界多,晶界的缺陷也多,激活能小,多以主要通过晶界扩散儿发生电迁移。
在一些晶粒的交界处,由于金属离子的散度不为零,会出现净的质量的亏损和堆积。
在图4.1(a)中的A 点,进来的金属离子多于出去的,所以称为小丘堆积,在B点,因为出去的金属离子多于进来的金属离子,所以称为空洞。
同样,在小晶粒和大晶粒的交界处也会出现这种情况,晶粒由小变大处形成小丘,反之,则出现空洞,特别在整个晶粒占据整个条宽时,更容易出现断条,如图4.1(b)所示,所以膜中晶粒尺寸宜均匀。
图4.14介质膜互连线上覆盖介质膜(钝化层)后,不仅可以防止铝条的意外划伤,防止腐蚀及离子玷污,也可提高其抗电迁移及浪涌的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集成电路中的电迁移现象
电迁移现象简介
随着芯片特征尺寸越来越小,集成度越来越高,对芯片可靠性的研究也变得越来越重要,而其中电迁移现象是影响互连引线的主要可靠性问题。
在微电子器件中,金属互连线大多采用铝膜,这是因为铝膜具有电阻率低、价格低廉、与硅制造工艺相兼容、与SiO2层等介质膜具有良好的粘附性、便于加工等一系列优点。
但使用中也存在着如性软、机械强度低、容易划伤;化性活泼、易受腐蚀;抗电迁移能力差等一系列问题。
集成电路芯片内部采用金属薄膜互连线来传导工作电流,这种传导电流的金属在较高的电流密度作用下,沿电场反方向运动的电子将会与金属离子进行动量交换,结果使金属离子与电子流一样朝正极方向移动,相应所产生的金属离子空位向负极方向移动,这样就造成了互连线内金属净的质量传输,这种现象就是电迁移。
电迁移失效机理
电迁移现象是指集成电路工作时金属线内部有电流通过,在电流的作用下金属离子产生物质运输的现象。
进而导致金属线的某些部位出现空洞从而发生断路,而另外一些部位由于有晶须生长或出现小丘造成电路短路。
当芯片集的成度越来越高后,其中金属互连线变的更细、更窄、更薄,电迁移现象也就越来越严重。
图2.1为典型的电迁移失效结果。
(a)电迁移引发短路(b)电迁移引发断路在块状金属中,电流密度较低(<104A/cm2),其电迁移现象只在接近材料熔点的高温时才发生。
薄膜的材料则不然,淀积在硅衬底上的铝条,截面积很小和很好的散热条件,电流密度可高达107A/cm2,所以在较低的温度下就能发生电迁移。
在一定温度下,金属薄膜中存在一定的空位浓度,金属离子通过空位而运动,
但自扩散只是随机的引起原子的重新排列,只有在受到外力时才可产生定向运动。
通电导体中作用在金属离子上的力有两种:一种是电场力F
q
,另一种是导电载流子和金属离子间相互碰撞发生动量交换而使离子产生运动的力,这种力叫摩
擦力F
e ,对于铝膜,载流子为电子,这时电场力F
q
很小,摩擦力起主要作用,
粒子流与载流子运动方向相同。
这一摩擦力又称为电子风。
经过理论分析有:
F=F
q +F
e
=Z*qE
式中Z*成为有效原子价数,E为电场强度,q为电子电荷。
Z*的绝对值越小,抗电迁移能力就越大。
电迁移引起的失效模式
1 短路
(1)电迁移使晶体管发射极末端积累铝离子,使EB结短路,这对套刻间距小的微波功率管容易发生;
(2)电迁移产生的晶须使相邻的两个铝条间短路, 这对相邻铝条间距小的超高频器件、大规模集成电路容易发生;
(3)集成电路中铝条经电迁移后与有源区短接, 多层布线上下层铝条经电迁移后形成晶须而短接;
(4)晶须与器件内引线短接"触的数目。
2 断路
(1)正常工作温度下, 铝条承受电流过大, 特别是铝条划伤后, 电流密度更大,使铝条断开"尤其是大功率管, 在正常结温(150℃)时, 往往工作几百小时后因电迁移而失效;
(2)压焊点处, 因接触面积小, 电流密度过大而失效;
(3)氧化层台阶处, 因电迁移而断条"通过氧化层阶梯的铝条在薄氧化层上散热好, 温度低, 而在厚氧化层上散热差, 温度高"所以当电子流沿着铝条温度增加的方向流动时, 就会出现铝原子的亏空, 而形成宏观的空隙。
3 参数退化
电迁移将影响器件的性能稳定,如引起晶体管EB结击穿特性退化,电流放大倍数h FE变化等。