2020-2021上海进才中学北校初三数学上期中试题附答案
2020-2021学年第一学期九年级数学期中测试参考答案

2020-2021学年第一学期九年级期中测试-数学试题卷参考答案及评分建议一、选择题:本题共10小题,每小题4分,共40分.二、填空题:本题共6小题,每小题4分,共24分.11.-3 12.x 1=0,x 2=-113.2 14.>15.30°16.17a ≤且a ≠0 三、解答题:本题共9小题,共86分.17.(本小题满分8分)解:∵2x 2+4x -3=0, ∴23202x x +-=, ∴2321102x x ++--=, ∴25(1)2x +=, ···················································································· 4分∴1x += ·················································································· 6分∴11x =-+21x =-. ··························································· 8分18.(本小题满分8分)解:∵22992642(3)442y x x x x =-++=--+++23172()22x =--+, ····················· 4分 ∴该函数图象的开口向下,对称轴是直线32x =,顶点坐标是(32,172). ········· 8分19.(本小题满分8分)证明:∆=[-(2k -1)]2-4×1×(-2k )=4k 2+4k+1=(2k +1)2. ······································· 5分∵(2k+1)2≥0,即∆≥0,∴不论k 取何值,这个方程都有两个实数根. ·········································· 8分20.(本小题满分8分)解:(1)(10-2x )dm (6-2x )dm·································································· 4分 (2)根据题意,得(10-2x )(6-2x )=32,解得x 1=1,x 2=7(不符合题意,舍去).答:剪去的正方形边长为1 dm . ······················································· 8分21.(本小题满分8分)解:(1)如图,△A 1B 1C 1为所求作的三角形. ·················································· 2分(2)如图,△A 2B 2O 为所求作的三角形. ·················································· 4分 (3)点P 的坐标是(165,0). ·································································· 8分22.(本小题满分10分)解:(1)设该型号自行车的进价为x 元,则标价为1.5x 元. ······························· 1分根据题意,得1.5x ×0.9×8-8x =(1.5x -100)×7-7x , ······························· 3分 解得x =1 000. ·············································································· 4分1.5×1 000=1 500(元).答:该型号自行车的进价为1 000元,标价为1 500元. ························ 5分(2)设该型号自行车降价a 元时,月利润为w 元. 根据题意,得(513)(15001000)20a w a =+⨯-- ···································· 7分 23(80)2646020a =--+. ·········································· 9分 ∵3020-<, ∴当a =80时,w 有最大值,最大值为26 460.答:该型号自行车降价80元时,每月获利最大,最大月利润是26 460元.10分23.(本小题满分10分)(1)证明:如图,连接BC .∵AB ⊥CD ,E 是OB 的中点,∴CB =CO ,12BCD BCO =∠∠. ··················································· 1分∵OC =OB ,∴OB =OC =BC ,∴△OCB 是等边三角形,∴∠BOC =∠BCO =60°, ······························································· 2分∴∠AOF =∠BOC =60°,∠BCD =∠BAD =30°, ··································· 4分∴∠AFO =180°-(60°+30°)=90°, ···················································· 5分∴CF ⊥AD . ·············································································· 6分(2)解:∵AB =12,∴OB =6.∵E 是OB 的中点, ∴132OE OB ==. ········································································· 8分 在Rt △OCE中,CE =.∵AB ⊥CD ,∴2CD CE == ··································································· 10分24.(本小题满分12分)解:(1)BE =BF . ······················································································ 1分证明如下:∵AB =BC ,∴∠A =∠C .由旋转,知∠A =∠C =∠C 1,BA =BC =BC 1,∠ABE =∠C 1BF , ··· 2分在△ABE 和△C 1BF 中,111A C BA BC ABE C BF =⎧⎪=⎨⎪=⎩∠∠∠∠, ∴△ABE ≌△C 1BF (ASA),∴BE =BF . ···································································· 4分(2)四边形BC 1DA 是菱形. ··································································· 5分证明如下:∵α=30°,∠ABC =120°,∴∠ABC 1=∠ABC +α=120°+30°=150°.∵∠ABC =120°,AB =BC , ∴1(180120)302A C ==⨯︒-︒=︒∠∠, ∴∠ABC 1+∠C 1=150°+30°=180°,∠ABC 1+∠A =150°+30°=180°,∴AB ∥C 1D ,AD ∥BC 1,∴四边形BC 1DA 是平行四边形. ······································· 7分又∵AB =BC 1,∴四边形BC 1DA 是菱形. ················································· 8分(3)如图,过点E 作EG ⊥AB 于点G .由(2)可知:∠A =30°,∵α=∠ABA 1=30°,∴∠A =∠ABA 1=30°, ∴12AG BG AB ==. ∵AB =4,∴AG =2. ····················································································· 9分 在Rt △AEG 中,AE =2EG , ∴222()22AE AE -=,解得AE =. ········································································· 10分 由(2)可知:四边形BC 1DA 是菱形,∴AD =AB =4,∴4DE AD AE =-=. ························································ 12分25.(本小题满分14分)解:(1)二次函数图象的对称轴是直线122a x a -=-=. ······································· 1分 ∵AB =5,∴A (-2,0),B (3,0).将(-2,0)代入y =ax 2-ax -3, 解得12a =, 故二次函数的解析式为211322y x x =--. ··········································· 3分 (2)∵b =-5,∴OP =5. ∵254OPQ S =△, ∴125524OQ ⨯⨯=, ∴52OQ =, ∴Q (52,0), ················································································ 4分 ∴5502b k b =-⎧⎪⎨+=⎪⎩.解得k =2.∴直线MN 的解析式为y =2x -5. ······················································ 5分 将抛物线与直线对应的解析式联立,整理得x 2-5x +4=0,解得x 1=1,x 2=4,∴M 的横坐标是4,N 的横坐标是1, ················································ 6分 ∵C (0,-3), ∴12(41)32CMN MCP NCP S S S =-=⨯⨯-=△△△. ······································ 8分 (3)当b =-3k 时,直线y =kx +b =kx -3k ,将抛物线与上述直线的解析式联立,整理得x 2-(2k +1)x +6k -6=0, ·········· 9分 ∆=4k 2-20k +25=(2k -5)2>0,∴x 1=3,x 2=2k -2.当2k -2>3时,x N =3,∴N (3,0).∴H (0,0).∵P (0,-3k ),C (0,-3),∴CP =3k -3,CH =3, ∴1CP k CH =-,即32CP CH >; ·························································· 11分 当2k -2<3时,x N =2k -2,∴N (2k -2,2k 2-5k ),则AN 所在直线的解析式为25252k y x k -=+-, ∴H (0,2k -5).∵C (0,-3),P (0,-3k ),∴|33|CP k =-,|22|CH k =-, ∴32CP CH =, ··············································································· 13分 综上可知32CP CH ≥. ······································································ 14分。
2020-2021初三数学上期中试卷附答案(1)

2020-2021初三数学上期中试卷附答案(1)一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个2.若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程25x bx +=的解为( ). A .10x =,24x = B .11x =,25x = C .11x =,25x =- D .11x =-,25x =3.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°4.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若∠ACD=25°,则∠BOD 的度数为( )A .100°B .120°C .130°D .150°5.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论: ①c >0;②若点B (32-,1y )、C (52-,2y )为函数图象上的两点,则12y y <; ③2a ﹣b=0;④244ac b a-<0,其中,正确结论的个数是( )A .1B .2C .3D .46.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( ) A .(1,-5) B .(3,-13)C .(2,-8)D .(4,-20)7.若α,β是一元二次方程x 2﹣x ﹣2018=0的两个实数根,则α2﹣3α﹣2β+3的值为( ) A .2020 B .2019C .2018D .20178.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A .m =3,n =2 B .m =﹣3,n =2 C .m =2,n =3 D .m =﹣2,n =﹣3 9.设a b ,是方程220190x x +-=的两个实数根,则22a a b ++的值为( ) A .2017B .2018C .2019D .202010.如图,图案由三个叶片组成,且其绕点O 旋转120°后可以和自身重合,若三个叶片的总面积为12平方厘米,∠AOB=120°,则图中阴影部分的面积之和为()平方厘米.A .2B .4C .6D .811.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .212.四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A .AB=CDB .AB=BCC .AC ⊥BDD .AC=BD二、填空题13.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________14.如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C=_______度.15.请你写出一个二次函数,其图象满足条件:①开口向下;②与y 轴的交点坐标为(0,3).此二次函数的解析式可以是______________16.某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是 ;17.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.18.如图,四边形ABCD 是O e 内接四边形,若3080BAC CBD ∠︒∠︒=,=,则BCD ∠的度数为______.19.如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A'B′C',其中点B 的运动路径为¼BB',则图中阴影部分的面积为_____.20.已知圆锥的母线长为5cm ,高为4cm ,则该圆锥的侧面积为_____ cm ²(结果保留π).三、解答题21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D 组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.在2017年“KFC”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)23.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD,(1)求证:CD是⊙O的切线;(2)若BC=6,tan∠CDA=23,求CD的长.24.社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?25.如图,点B 、C 、D 都在⊙O 上,过点C 作AC ∥BD 交OB 延长线于点A ,连接CD ,且∠CDB=∠OBD=30°,DB=63cm . (1)求证:AC 是⊙O 的切线;(2)求由弦CD 、BD 与弧BC 所围成的阴影部分的面积.(结果保留π)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:A 选项既是轴对称图形,也是中心对称图形; B 选项中该图形是轴对称图形不是中心对称图形; C 选项中既是中心对称图形又是轴对称图形; D 选项中是中心对称图形又是轴对称图形. 故选B .考点: 1.轴对称图形;2.中心对称图形.2.D解析:D 【解析】 【详解】∵二次函数y=x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线, ∴抛物线的对称轴为直线x=2, 则−2b a =−2b=2,解得:b=−4,∴x2+bx=5即为x2−4x−5=0,则(x−5)(x+1)=0,解得:x1=5,x2=−1.故选D.【点睛】本题考查了抛物线与x轴的交点:把二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与x轴的交点坐标问题转化为关于x的一元二次方程的问题.3.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理4.C解析:C【解析】【分析】根据圆周角定理求出∠AOD即可解决问题.【详解】解:∵∠AOD=2∠ACD,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C.【点睛】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,5.B解析:B【解析】【分析】【详解】∵抛物线与y轴交于正半轴,∴c>0,①正确;∵对称轴为直线x=﹣1,∴x<﹣1时,y随x的增大而增大,∴y1>y2②错误;∵对称轴为直线x=﹣1,∴﹣2ba=﹣1, 则2a ﹣b=0,③正确; ∵抛物线的顶点在x 轴的上方, ∴244ac b a->0,④错误;故选B.6.C解析:C 【解析】 【分析】 【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C . 【点睛】本题考查二次函数的性质.7.B解析:B 【解析】 【分析】根据方程的解的定义及韦达定理得出α+β=1、α2-α=2018,据此代入原式=α2-α-2(α+β)+3计算可得. 【详解】解:∵α,β是一元二次方程x 2﹣x ﹣2018=0的两个实数根, ∴α+β=1、α2﹣α=2018, 则原式=α2﹣α﹣2(α+β)+3 =2018﹣2+3 =2019, 故选:B . 【点睛】考查根与系数的关系,解题的关键是掌握韦达定理及方程的解的定义和整体代入思想的运用.8.B解析:B 【解析】 【分析】根据“关于y 轴对称的点,横坐标互为相反数,纵坐标相同”解答. 【详解】∵点A (m ,2)与点B (3,n )关于y 轴对称, ∴m =﹣3,n =2. 故选:B . 【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数; (2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数; (3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.B解析:B 【解析】 【分析】根据题意,把x a =代入方程,得22019a a +=,再由根与系数的关系,得到1a b +=-,即可得到答案. 【详解】解:∵设a b ,是方程220190x x +-=的两个实数根, ∴把x a =代入方程,得:22019a a +=, 由根与系数的关系,得:1a b +=-,∴222()201912018a a b a a a b ++=+++=-=; 故选:B . 【点睛】本题考查了一元二次方程的解,以及根与系数的关系,解题的关键是熟练掌握根与系数的关系,正确求出代数式的值.10.B解析:B 【解析】 【分析】根据旋转的性质和图形的特点解答. 【详解】∵图案绕点O 旋转120°后可以和自身重合,∠AOB 为120° ∴图形中阴影部分的面积是图形的面积的13, ∵图形的面积是12cm 2,∴图中阴影部分的面积之和为4cm 2; 故答案为B . 【点睛】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.11.C解析:C 【解析】 【分析】由抛物线开口方向得a >0,由抛物线的对称轴为直线12bx a=-=-得2b a =>0,由抛物线与y 轴的交点位置得c <0,则abc <0;由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2;抛物线的对称轴为直线1x =-,且c <-1,2x =-时,421a b c -+<-;抛物线开口向上,对称轴为直线1x =-,当1x =-时,y a b c =-+最小值,当x m =得:2y am bm c =++,且1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +;对称轴为直线12bx a =-=-得2b a =,由于1x =时,0y >,则a b c ++>0,所以2a a c ++>0,解得13a c >-,然后利用1c <-得到13a >-. 【详解】∵抛物线开口向上,∴a>0, ∵抛物线的对称轴为直线12bx a=-=-,∴b=2a>0, ∵抛物线与y 轴的交点在x 轴下方,∴c<0,∴abc<0, 所以①错误;∵抛物线2y ax bx c =++与x 轴一个交点在点(0,0)与点(1,0)之间,而对称轴为1x =-,由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2,所以②正确;∵抛物线的对称轴为直线1x =-,且c <-1,∴当2x =-时,421a b c -+<-, 所以③正确;∵抛物线开口向上,对称轴为直线1x =-,∴当1x =-时,y a b c =-+最小值, 当x m =代入2y ax bx c =++得:2y am bm c =++,∵1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +,所以④错误; ∵对称轴为直线12bx a=-=-,∴2b a =, ∵由于1x =时,0y >,∴a b c ++>0,所以2a a c ++>0,解得13a c >-,根据图象得1c <-,∴13a >-,所以⑤正确. 所以②③⑤正确, 故选:C . 【点睛】本题考查了二次函数的图象与系数的关系,以及抛物线与x 轴、y 轴的交点,二次函数y=ax 2+bx+c (a≠0),a 决定抛物线开口方向;c 的符号由抛物线与y 轴的交点的位置确定;b 的符号由a 及对称轴的位置确定;当x =1时,y =a b c ++;当1x =-时,y a b c =-+.12.D解析:D 【解析】 【分析】四边形ABCD 的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等. 【详解】 添加AC=BD ,∵四边形ABCD 的对角线互相平分, ∴四边形ABCD 是平行四边形,∵AC=BD ,根据矩形判定定理对角线相等的平行四边形是矩形, ∴四边形ABCD 是矩形, 故选D . 【点睛】考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.二、填空题13.<a<-2【解析】【分析】【详解】解:∵关于x 的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a >−设f (x )=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2 【解析】 【分析】 【详解】解:∵关于x 的一元二次方程ax 2-3x-1=0的两个不相等的实数根 ∴△=(-3)2-4×a×(-1)>0, 解得:a >−94设f (x )=ax 2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a -<0, ∴a <−32, 且有f (-1)<0,f (0)<0,即f (-1)=a×(-1)2-3×(-1)-1<0,f (0)=-1<0,解得:a <-2,∴−94<a <-2, 故答案为−94<a <-2. 14.【解析】试题分析:解:连接OD ∵CD 是⊙O 切线∴OD ⊥CD ∵四边形ABCD 是平行四边形∴AB ∥CD ∴AB ⊥OD ∴∠AOD=90°∵OA=OD ∴∠A=∠ADO=45°∴∠C=∠A=45°故答案为45考解析:【解析】试题分析:解:连接OD .∵CD 是⊙O 切线,∴OD ⊥CD ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴AB ⊥OD ,∴∠AOD=90°,∵OA=OD ,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.考点:1.切线的性质;2.平行四边形的性质.15.【解析】【分析】根据二次函数图像和性质得a0c=3即可设出解析式【详解】解:根据题意可知a0c=3故二次函数解析式可以是【点睛】本题考查了二次函数的性质属于简单题熟悉概念是解题关键解析:223,y x =-+【解析】【分析】根据二次函数图像和性质得a <0,c=3,即可设出解析式.【详解】解:根据题意可知a <0,c=3,故二次函数解析式可以是2y 2x 3,=-+【点睛】本题考查了二次函数的性质,属于简单题,熟悉概念是解题关键. 16.20%【解析】【分析】此题可设每次降价的百分率为x 第一次降价后价格变为100(1-x )元第二次在第一次降价后的基础上再降变为100(1-x )(1-x )即100(1-x )2元从而列出方程求出答案【详解解析:20%【解析】【分析】此题可设每次降价的百分率为x ,第一次降价后价格变为100(1-x )元,第二次在第一次降价后的基础上再降,变为100(1-x )(1-x ),即100(1-x )2元,从而列出方程,求出答案.【详解】设每次降价的百分率为x ,第二次降价后价格变为100(1-x )2元.根据题意,得100(1-x )2=64,即(1-x )2=0.64,解得x 1=1.8,x 2=0.2.因为x=1.8不合题意,故舍去,所以x=0.2.即每次降价的百分率为0.2,即20%.故答案为20%.17.【解析】【分析】根据题意使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目根据概率的计算方法计算可得答案【详解】根据题意从有4根细木棒中任取3根有234;345;23 解析:34【解析】【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=3 4 .故其概率为:34.【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.18.70°【解析】【分析】先根据圆周角定理求出的度数再由圆内接四边形的性质即可得出结论【详解】∵四边形ABCD是内接四边形故答案为:70°【点睛】本题考查的是圆内接四边形的性质熟知圆内接四边形的对角互补解析:70°【解析】【分析】先根据圆周角定理求出BAD∠的度数,再由圆内接四边形的性质即可得出结论.【详解】80CBD∠︒Q=,80CAD CBD∴∠∠︒==..30BAC∠︒Q=3080110BAD∴∠︒+︒︒==.∵四边形ABCD是Oe内接四边形,180********BCD BAD∴∠︒∠︒︒︒=﹣=﹣=.故答案为:70°.【点睛】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.19.【解析】分析:连接DBDB′先利用勾股定理求出DB′=A′B′=再根据S阴=S扇形BDB′-S△DBC-S△DB′C计算即可详解:△ABC绕AC的中点D逆时针旋转90°得到△AB′C此时点A′在斜边解析:3 2π【解析】分析:连接DB、DB′,先利用勾股定理求出,,再根据S阴=S扇形BDB′-S△DBC-S△DB′C,计算即可.详解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,连接DB、DB′,则2212=5+,2222=22+∴S阴=905253 1222222=36042()ππ⨯-⨯÷-÷-.故答案为53 42π-.点睛:本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.15π【解析】【分析】【详解】解:由图可知圆锥的高是4cm母线长5cm 根据勾股定理得圆锥的底面半径为3cm所以圆锥的侧面积=π×3×5=15πcm²故答案为:15π【点睛】本题考查圆锥的计算解析:15π.【解析】【分析】【详解】解:由图可知,圆锥的高是4cm,母线长5cm,根据勾股定理得圆锥的底面半径为3cm,所以圆锥的侧面积=π×3×5=15πcm².故答案为:15π.【点睛】本题考查圆锥的计算.三、解答题21.(1)40;画图见解析;(2)108°,15%;(3)23.【解析】【分析】(1)用A组人数除以A组所占百分比得到参加初赛的选手总人数,用总人数乘以B组所占百分比得到B组人数,从而补全频数分布直方图;(2)用360度乘以C组所占百分比得到C组对应的圆心角度数,用E组人数除以总人数得到E组人数占参赛选手的百分比;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到一男生和一女生的情况,再利用概率公式即可求得答案.【详解】解:(1)参加初赛的选手共有:8÷20%=40(人),B 组有:40×25%=10(人). 频数分布直方图补充如下:故答案为40;(2)C 组对应的圆心角度数是:360°×1240=108°,E 组人数占参赛选手的百分比是:640×100%=15%; (3)画树状图得:∵共有12种等可能的结果,抽取的两人恰好是一男生和一女生的有8种结果,∴抽取的两人恰好是一男生和一女生的概率为812=23. 22.14【解析】【分析】根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.【详解】根据题意画出树状图如下:一共有4种情况,确保两局胜的有1种,所以,P =14. 考点:列表法与树状图法.23.(1)证明见解析;(2)4.【解析】分析:(1)连接OD,如图,先证明∠CDA=∠ODB,再根据圆周角定理得∠ADO+∠ODB=90°,则∠ADO+∠CDA=90°,即∠CDO=90°,于是根据切线的判定定理即可得到结论;(2)由于∠CDA=∠ODB,则tan∠CDA=tan∠ABD=23,根据正切的定义得到tan∠ABD=23ADBD=,接着证明△CAD∽△CDB,由相似的性质得23CD ADBC BD==,然后根据比例的性质可计算出CD的长.详(1)证明:连接OD,如图,∵OB=OD,∴∠OBD=∠BDO,∵∠CDA=∠CBD,∴∠CDA=∠ODB,∵AB是⊙O的直径,∴∠ADB=90°,即∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD⊥CD,∴CD是⊙O的切线;(2)∵∠CDA=∠ODB,∴tan∠CDA=tan∠ABD=23,在Rt△ABD中,tan∠ABD=23 ADBD=,∵∠DAC=∠BDC,∠CDA=∠CBD,∴△CAD∽△CDB,∴23 CD ADBC BD==,∴CD=23×6=4.点睛:本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了相似三角形的判定与性质.24.(1)6;(2)40或400【解析】【分析】(1)设通道的宽x 米,由图中所示可得通道面积为2×28x+2(52-2x)x ,根据铺花砖的面积+通道面积=总面积列方程即可得答案;(2)设每个车位的月租金上涨a 元,则少租出10a 个车位,根据月租金收入为14400元列方程求出a 值即可.【详解】(1)设通道的宽x 米,根据题意得:2×28x+2(52-2x)x+640=52×28, 整理得:x 2-40x+204=0,解得:x 1=6,x 2=34(不符合题意,舍去).答:通道的宽是6米.(2)设每个车位的月租金上涨a 元,则少租出10a 个车位, 根据题意得:(200+a)(64-10a )=14400, 整理得:a 2-440a+16000=0,解得:a 1=40,a 2=400.答:每个车位的月租金上涨40元或400元时,停车场的月租金收入为14400元.【点睛】本题考查一元二次方程的实际应用,读懂题意,找出题中的等量关系列出方程是解题关键.25.(1)证明见解析;(2)6πcm 2.【解析】【分析】连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)求出∠COB 的度数,求出∠A 的度数,根据三角形的内角和定理求出∠OCA 的度数,根据切线的判定推出即可; (2)证明△CDM ≌△OBM ,从而得到S 阴影=S 扇形BOC .【详解】如图,连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC ∥BD ,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC ⊥AC ,∵OC 为半径,∴AC 是⊙O 的切线;(2)由(1)知,AC 为⊙O 的切线,∴OC ⊥AC .∵AC ∥BD ,∴OC ⊥BD .由垂径定理可知,MD=MB=1 2BD=33.在Rt△OBM中,∠COB=60°,OB=33cos303MB︒==6.在△CDM与△OBM中3090CDM OBMMD MBCMD OMB︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩,∴△CDM≌△OBM(ASA),∴S△CDM=S△OBM∴阴影部分的面积S阴影=S扇形BOC=2606360π⋅=6π(cm2).考点:1.切线的判定;2.扇形面积的计算.。
2020-2021初三数学上期中试题(含答案)(3)

2020-2021初三数学上期中试题(含答案)(3)一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个2.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=︒,那么A ∠的度数为( )A .35°B .40°C .60°D .70° 3.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°4.如图,已知⊙O 的半径为5,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,AB=8,则tan ∠CBD 的值等于( )A .43B .45C .35D .345.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°6.如图,抛物线y =ax 2+bx +c 经过点(-1,0),对称轴为直线l.则下列结论:①abc >0;②a -b +c =0;③2a +c <0;④a +b <0.其中所有正确的结论是( )A .①③B .②③C .②④D .②③④ 7.如果关于x 的方程240x x m -+=有两个不相等的实数根,那么在下列数值中,m 可以取的是( )A .3B .5C .6D .88.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =14x ﹣42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( )A .252元/间B .256元/间C .258元/间D .260元/间9.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中涂色部分构成中心对称图形.该小正方形的序号是( )A .①B .②C .③D .④10.在一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机地从袋子中摸出4个球,下列事件是必然事件的是( ).A .摸出的4个球中至少有一个球是白球B .摸出的4个球中至少有一个球是黑球C .摸出的4个球中至少有两个球是黑球D .摸出的4个球中至少有两个球是白球 11.四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( )A .AB=CDB .AB=BC C .AC ⊥BD D .AC=BD 12.如图,在⊙O 中,AB 是⊙O 的直径,AB =10,»»»AC CDDB ==,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,下列结论:①∠BOE =60°;②∠CED =12∠DOB ;③DM ⊥CE ;④CM +DM 的最小值是10,上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题13.新园小区计划在一块长为20米,宽12米的矩形场地上修建三条互相垂直的长方形甬路(一条橫向、两条纵向,且横向、纵向的宽度比为3:2),其余部分种花草.若要使种花草的面积达到144米2.则横向的甬路宽为_____米.14.若关于x 的一元二次方程()22 26k x kx k --+=有实数根,则k 的最小整数值为__________.15.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.16.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.17.如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.18.已知圆锥的底面半径是2cm ,母线长是3cm ,则圆锥侧面积是_________.19.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60o ,则该直尺的宽度为____________cm .20.二次函数2y ax bx c =++的部分对应值如下表:利用二次函数的图象可知,当函数值y >0时,x 的取值范围是____________三、解答题21.2021年我省开始实施“ 3+1+2”高考新方案,其中语文、数学、外语三门为统考科目( 必考), 物理和历史两个科目中任选 1门,另外在思想政治、地理、化学、生物四门科目中任选 2门,共计6门科目,总分750 分, 假设小丽在选择科目时不考虑主观性. (1)小丽选到物理的概率为 ;(2)请用“画树状图”或“列表”的方法分析小丽在思想政治、 地理、 化学、生物四门科目中任选 2门选到化学、生物的概率.22.如图,已知抛物线y=2x -+mx+3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0),(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA+PC 的值最小时,求点P 的坐标.23.为响应市政府关于“垃圾不落地⋅市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为“A:非常了解;B :比较了解;C :了解较少;D :不了解.”四种,并将调查结果绘制成以下两幅不完整的统计图.请根据图中提供的信息,解答下列问题;()1求m =______,并补全条形统计图;()2若我校学生人数为1000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有______名;()3已知“非常了解”的是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.24.(1)解方程:x2﹣2x﹣8=0;(2)解不等式组3(2)1 112x xx--<⎧⎪⎨-<⎪⎩25.已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点: 1.轴对称图形;2.中心对称图形.2.D解析:D【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠DCE=20°,再由直角三角形两锐角互余求解即可,【详解】解:连接CD,如图,∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∵∠DOE=40°,∴∠DCE=20°,∴∠A=90°−∠DCE=70°,故选:D.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.3.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理4.D解析:D【解析】过B作⊙O的直径BM,连接AM,则有:∠MAB=∠CDB=90°,∠M=∠C,∴∠MBA=∠CBD,过O作OE⊥AB于E,Rt△OEB中,BE=12AB=4,OB=5,由勾股定理,得:OE=3,∴tan∠MBA=OEBE=34,因此tan ∠CBD=tan ∠MBA=34, 故选D .5.D解析:D【解析】试题解析:∵四边形ABCD 为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D .6.D解析:D【解析】【分析】【详解】试题分析:①∵二次函数图象的开口向下,∴a <0,∵二次函数图象的对称轴在y 轴右侧,∴﹣2b a>0, ∴b >0,∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴c >0,∴abc<0,故①错误;②∵抛物线y=ax2+bx+c经过点(﹣1,0),∴a﹣b+c=0,故②正确;③∵a﹣b+c=0,∴b=a+c.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2(a+c)+c<0,∴6a+3c<0,∴2a+c<0,故③正确;④∵a﹣b+c=0,∴c=b﹣a.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2b+b﹣a<0,∴3a+3b<0,∴a+b<0,故④正确.故选D.考点:二次函数图象与系数的关系.7.A解析:A【解析】【分析】根据根的判别式的意义得到16﹣4m>0,然后解不等式得到m<4,然后对各选项进行判断.【详解】根据题意得:△=16﹣4m>0,解得:m<4,所以m可以取3,不能取5、6、8.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.8.B解析:B【解析】【分析】根据:总利润=每个房间的利润×入住房间的数量-每日的运营成本,列出函数关系式,配方成顶点式后依据二次函数性质可得最值情况.【详解】设每天的利润为W 元,根据题意,得:W=(x-28)(80-y )-5000()128804245000x x ⎛⎫=--- ⎪⎝⎡⎤-⎢⎥⎣⎦⎭ 2112984164x x =-+- ()2125882254x =--+, ∵当x=258时,12584222.54y =⨯-=,不是整数, ∴x=258舍去,∴当x=256或x=260时,函数取得最大值,最大值为8224元,又∵想让客人得到实惠,∴x=260(舍去)∴宾馆应将房间定价确定为256元时,才能获得最大利润,最大利润为8224元. 故选:B .【点睛】本题考查二次函数的实际应用,利用数学知识解决实际问题,解题的关键是建立函数模型,利用配方法求最值.9.D解析:D【解析】【分析】根据中心对称图形的概念,如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形.将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图.【详解】解:将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图.故选:D.【点睛】本题考查的是利用旋转设计图案,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.B解析:B【解析】【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【详解】解:A、是随机事件,故A选项错误;B、是必然事件,故B选项正确;C、是随机事件,故C选项错误;D、是随机事件,故D选项错误.故选B.【点睛】本题考查随机事件.11.D解析:D【解析】【分析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.【详解】添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选D.【点睛】考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.12.C解析:C【解析】【分析】【详解】解:∵弧AC=弧CD=弧DB,∴∠DOB=∠COD=∠BOE=60°,故①正确;∵AB为直径,且点E是点D关于AB的对称点∴∠E=∠ODE,AB⊥DE∴∠CED =30°=12∠DOB,故②正确;∵M和A重合时,∠MDE=60°,∴∠MDE+∠E=90°∴DM⊥CE故③不正确;根据轴对称的性质,可知D与E对称,连接CE,根据两点之间线段最短,可知这时的CM+DM最短,∵∠DOB=∠COD=∠BOE=60°∴CE为直径,即CE=10,故④正确.故选C.【点睛】本题考查了圆周角定理,圆中的有关计算问题和图形的轴对称的应用,关键是熟练地运用定理进行推理和计算,题型较好,综合性比较强,但难度不大.二、填空题13.3【解析】【分析】设横向的甬路宽为3x米则纵向的甬路宽为2x米由剩余部分的面积为144米2即可得出关于x的一元二次方程解之取其较小值即可得出结论【详解】设横向的甬路宽为3x米则纵向的甬路宽为2x米根解析:3【解析】【分析】设横向的甬路宽为3x米,则纵向的甬路宽为2x米,由剩余部分的面积为144米2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】设横向的甬路宽为3x米,则纵向的甬路宽为2x米,根据题意得:(20﹣2×2x)(12﹣3x)=144整理得:x2﹣9x+8=0,解得:x1=1,x2=8.∵当x=8时,12﹣3x=﹣12,∴x=8不合题意,舍去,∴x=1,∴3x=3.故答案为3.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.3【解析】【分析】根据二次项系数非零结合根的判别式△≥0即可得出关于k的一元一次不等式组解之即可得出k的取值范围【详解】(k-2)x2-2kx+k-6=0∵关于x的一元二次方程(k-2)x2-2kx解析:3【解析】【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围.【详解】(k-2)x2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,∴220(2)4(2)(6)0k k k k -≠⎧⎨----≥⎩V= , 解得:k≥32且k≠2. ∴k 的最小整数值为3.故答案为:3.【点睛】此题考查一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键.15.40°【解析】:在△QOC 中OC=OQ∴∠OQC=∠OCQ 在△OPQ 中QP=QO∴∠QOP=∠QPO 又∵∠QPO=∠OCQ+∠AOC∠AOC=30°∠QOP+∠QPO+∠OQC=180°∴3∠OCP 解析:40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°16.【解析】【分析】根据题意使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目根据概率的计算方法计算可得答案【详解】根据题意从有4根细木棒中任取3根有234;345;23 解析:34【解析】【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=34. 故其概率为:34. 【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.17.4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形设A′D=x 根据题意阴影部分的面积为(12−x)×x 即x(12−x)当x(12−x)=32时解得:x=4或x=8所以AA′=8或AA′=4【解析:4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形,设A ′D=x ,根据题意阴影部分的面积为(12−x)×x ,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA ′=8或AA ′=4.【详解】设AA ′=x,AC 与A ′B ′相交于点E ,∵△ACD 是正方形ABCD 剪开得到的,∴△ACD 是等腰直角三角形,∴∠A=45∘,∴△AA ′E 是等腰直角三角形,∴A ′E=AA ′=x ,A ′D=AD−AA ′=12−x ,∵两个三角形重叠部分的面积为32,∴x(12−x)=32,整理得,x 2−12x+32=0,解得x 1=4,x 2=8,即移动的距离AA ′等4或8.【点睛】本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·. 18.【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=【详解】根据圆锥的侧面积公式:底面半径是2cm 母线长是3cm 的圆锥侧面积为故答案是:【点睛】本题考查圆锥的侧面积解题的关键是记住圆锥是侧面积公式解析:26cm π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=RL π.【详解】根据圆锥的侧面积公式:RL π底面半径是2cm ,母线长是3cm 的圆锥侧面积为 236ππ⨯⨯=故答案是:26cm π【点睛】本题考查圆锥的侧面积,解题的关键是记住圆锥是侧面积公式.19.【解析】【分析】连接OCODOC 与AD 交于点E 根据圆周角定理有根据垂径定理有:解直角即可【详解】连接OCODOC 与AD 交于点E 直尺的宽度:故答案为【点睛】考查垂径定理熟记垂径定理是解题的关键 解析:533【解析】【分析】连接OC ,OD ,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【详解】连接OC ,OD ,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒ 10 3.cos303AE OA ==︒ 5tan 303,3OE AE =⋅︒=直尺的宽度:105533 3.333CE OC OE =-== 533【点睛】 考查垂径定理,熟记垂径定理是解题的关键.20.x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可【详解】由题意得二次函数的对称轴为故当时y 随x 的增大而增大当时y 随x 的增大而减小∵∴当函数值y >0时x 的取值范围是x <-1或x >3故答案为解析:x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可.【详解】由题意得,二次函数的对称轴为1x =故当1x >时,y 随x 的增大而增大,当1x <时,y 随x 的增大而减小,∵()()1,0,3,0-∴当函数值y >0时,x 的取值范围是x <-1或x >3故答案为:x <-1或x >3.【点睛】本题考查了二次函数的问题,掌握二次函数的增减性是解题的关键.三、解答题21.(1)12;(2)16 【解析】【分析】(1)由题意可知小丽只有两种可选择:物理或历史,即可求解; (2)从所有等可能结果中找到同时包含生物和化学的结果数,再根据概率公式计算可得. 【详解】(1)因为小丽只有两种可选择:物理或历史,所以小丽选到物理的概率为12(2)设思想政治为 A , 地理为 B , 化学为 C , 生物为 D ,画出树状图如下:共有 12 种等可能情况, 选中化学、生物的有2 种,∴P (选中化学、生物)=212=16. 【点睛】本题考查列表法与树状图法,解答本题的关键是明确题意,写出所有的可能性,求出相应的概率.22.(1)m=2,顶点为(1,4);(2)(1,2).【解析】【分析】(1)首先把点B 的坐标为(3,0)代入抛物线y=2x -+mx+3,利用待定系数法即可求得m 的值,继而求得抛物线的顶点坐标;(2)首先连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【详解】解:(1)把点B 的坐标为(3,0)代入抛物线y=2x -+mx+3得:0=23-+3m+3, 解得:m=2,∴y=2x -+2x+3=()214x --+,∴顶点坐标为:(1,4).(2)连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,设直线BC 的解析式为:y=kx+b ,∵点C (0,3),点B (3,0),∴033k b b =+⎧⎨=⎩,解得:13k b =-⎧⎨=⎩, ∴直线BC 的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC 的值最小时,点P 的坐标为:(1,2).考点:二次函数的性质.23.(1)20(2)500(3)12【解析】【分析】 ()1先利用A 选项的人数和它所占百分比计算出调查的总人数为50,再计算出B 选项所占的百分比为42%,从而得到m%20%=,即m 20=,然后计算出C 、D 选项的人数,最后补全条形统计图;()2用1000乘以()8%42%+可估计该校“非常了解”与“比较了解”的学生数;()3画树状图展示所有12种等可能的结果数,找出抽到1男1女的结果数,然后根据概率公式求解.【详解】()1调查的总人数为48%50÷=,B 选项所占的百分比为21100%42%50⨯=, 所以m%18%42%30%20%=---=,即m 20=,C 选项的人数为30%5015(⨯=人),D 选项的人数为20%5010(⨯=人),条形统计图为:故答案为20;()()210008%42%500⨯+=,所以估计该校“非常了解”与“比较了解”的学生共有500名;故答案为500;()3画树状图为:共有12种等可能的结果数,其中抽到1男1女的结果数为6,所以恰好抽到1男1女的概率61 122 ==【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.24.(1)x=﹣2或x=4;(2)52<x<3【解析】【分析】(1)用因式分解法求解;(2)分别求不等式,再确定公共解集.【详解】解:(1)∵(x+2)(x﹣4)=0,∴x+2=0或x﹣4=0,解得:x=﹣2或x=4;(2)解不等式x﹣3(x﹣2)<1,得:x>52,解不等式12x-<1,得:x<3,∴不等式组的解集为52<x <3. 【点睛】 考核知识点:解一元二次方程方程,解不等式组.掌握解不等式组和一元二次方程的基本方法是关键.25.(1)()04A ,、()31C ,(2)见解析(3)322【解析】 试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A 所经过的路程是以点C 为圆心,AC 长为半径的扇形的弧长.试题解析:(1)A (0,4)C (3,1)(2)如图所示:(3)根据勾股定理可得:2,则9032321801802n r l ππ⨯===. 考点:图形的旋转、扇形的弧长计算公式.。
2020-2021初三数学上期中试卷带答案(4)

2020-2021初三数学上期中试卷带答案(4)一、选择题1.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=︒,那么A ∠的度数为( )A .35°B .40°C .60°D .70°2.﹣3的绝对值是( )A .﹣3B .3C .-13D .13 3.方程2(2)9x -=的解是( )A .1251x x ==-,B .1251x x =-=,C .12117x x ==-, D .12117x x =-=, 4.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)5.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按逆时针方向转动一个角度到△A 1BC 1的位置,使得点A 1、B 、C 在同一条直线上,那么旋转角等于( )A .30°B .60°C .90°D .120°7.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4 B .k≤4 C .k<4且k≠3 D .k≤4且k≠38.如图,从一张腰长为90cm ,顶角为120︒的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为( )A .15cmB .12cmC .10cmD .20cm9.如图,是两条互相垂直的街道,且A 到B ,C 的距离都是7 km ,现甲从B 地走向A 地,乙从A 地走向C 地,若两人同时出发且速度都是4km /h ,则两人之间的距离为5km 时,是甲出发后( )A .1hB .0.75hC .1.2h 或0.75hD .1h 或0.75h10.如图所示,⊙O 是正方形ABCD 的外接圆,P 是⊙O 上不与A 、B 重合的任意一点,则∠APB 等于( )A .45°B .60°C .45° 或135°D .60° 或120°11.如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B =135°,P′A ∶P′C =1∶3,则P′A ∶PB =( )A .12B .1∶2C 32D .1312.有两个一元二次方程2:0M ax bx c ++=,2:0N cx bx a ++=,其中,0ac ≠,a c ≠,下列四个结论中错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数B .如果4是方程M 的一个根,那么14是方程N 的另一个根 C .如果方程M 有两根符号相同,那么方程N 的两符号也相同D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.14.已知方程x2﹣3x+k=0有两个相等的实数根,则k=_____.15.写出一个二次函数的解析式,且它的图像开口向下,顶点在y轴上______________ 16.如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为__.17.如图,将正六边形ABCDEF放置在直角坐标系内,A(﹣2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2020次翻转之后,点C的坐标是_____.18.小明同学测量一个光盘的直径,他只有一把直尺和一块三角尺,他将直尺、光盘和三角尺按图所示方法放置于桌面上,并量出AB=3 cm,则此光盘的直径是________cm.19.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分A B C D四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同,,,一个组的概率是_______.20.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.三、解答题21.如图,已知抛物线y=﹣x 2+bx +c 与x 轴交于点A (﹣1,0)和点B (3,0),与y 轴交于点C ,连接BC 交抛物线的对称轴于点E ,D 是抛物线的顶点.(1)求此抛物线的解析式;(2)求点C 和点D 的坐标;(3)若点P 在第一象限内的抛物线上,且S △ABP =4S △COE ,求P 点坐标.22.如图,在等腰ABC ∆中,AB AC =,以AC 为直径作O e 交BC 于点D ,过点D 作DE AB ⊥,垂足为E .(1)求证:DE 是O e 的切线.(2)若3DE =30C ∠=︒,求»AD 的长.23.某公司委托旅行社组织一批员工去某风景区旅游,旅行社收费标准为:如果人数不超过30人,人均旅游费用为800元;如果人数多于30人,那么每增加一人,人均旅游费降低10元;但人均旅游费不低于550元,公司支付给旅行社30000元,求该公司参加旅游的员工人数.24.三辆汽车经过某收费站下高速时,在2个收费通道A ,B 中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A 通道通过的概率是 ;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B 通道通过的概率.25.已知,关于x 的一元二次方程2210x x m -+-=有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为非负整数,且该方程的根都是整数,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠DCE=20°,再由直角三角形两锐角互余求解即可,【详解】解:连接CD,如图,∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∵∠DOE=40°,∴∠DCE=20°,∴∠A=90°−∠DCE=70°,故选:D.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.2.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 3.A解析:A【解析】【分析】此方程已经配方,根据解一元二次方程的步骤解方程即可.【详解】()229x -=,故x -2=3或x -2=-3,解得:x 1=5,x 2=-1,故答案选A.【点睛】本题主要考查了解一元二次方程的基本解法,这是很简单的解方程,难度不大.4.C解析:C【解析】【分析】【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .【点睛】本题考查二次函数的性质. 5.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、不是轴对称图形,是中心对称图形,故此选项错误;B 、是轴对称图形,也是中心对称图形,故此选项正确;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、是轴对称图形,不是中心对称图形,故此选项错误;故选B .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.D解析:D【解析】根据题意旋转角为∠ABA 1,由∠ABC=60°,∠C=90°,A 、B 、C 1在同一条直线上,得到∠ABA 1=180°-∠A 1BC 1=180°-60°=120°解:旋转角为∠ABA 1,∵∠ABC=60°,∠C=90°,∴∠ABA 1=180°-∠A 1BC 1=180°-60°=120°;故答案为D点评:本题考查了弧长的计算公式:l=n R 180π,其中l 表示弧长,n 表示弧所对的圆心角的度数. 7.B解析:B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x 轴交点的特点. 8.A解析:A【解析】【分析】根据等腰三角形的性质得到OE 的长,再利用弧长公式计算出弧CD 的长,设圆锥的底面圆半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得到r .【详解】过O 作OE AB ⊥于E ,90120OA OB cm AOB ︒∠Q ==,=,30A B ︒∴∠∠==,1452OE OA cm ∴==, ∴弧CD 的长1204530180ππ⨯==, 设圆锥的底面圆的半径为r ,则230r ππ=,解得15r =.故选:A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.D解析:D【解析】【分析】据题画出图形如图,设走了x 小时,则BF =AG =4x ,AF =7-4x ,根据勾股定理列出方程,解方程即得答案.【详解】解:如图,设走了x 小时,根据题意可知:BF =AG =4x ,则AF =7-4x ,根据勾股定理,得()()2274425x x -+=,即24730x x -+=.解得:11x =,234x =.故选D.【点睛】本题考查了勾股定理的应用和一元二次方程的解法,弄清题意,根据勾股定理列出方程是解题的关键.10.C解析:C【解析】【分析】首先连接OA ,OB ,由⊙O 是正方形ABCD 的外接圆,即可求得∠AOB 的度数,又由圆周角定理,即可求得∠APB 的度数.【详解】连接OA ,OB ,∵⊙O 是正方形ABCD 的外接圆,∴∠AOB=90°,若点P 在优弧ADB 上,则∠APB=12∠AOB=45°; 若点P 在劣弧AB 上, 则∠APB=180°-45°=135°.∴∠APB=45°或135°.故选C .11.B解析:B【解析】【分析】【详解】解:如图,连接AP ,∵BP 绕点B 顺时针旋转90°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=90°,又∵△ABC 是等腰直角三角形,∴AB =BC ,∠CBP ′+∠ABP ′=90°,∴∠ABP =∠CBP ′,在△ABP 和△CBP ′中,∵BP =BP ′,∠ABP =∠CBP ′,AB =BC ,∴△ABP ≌△CBP ′(SAS ),∴AP =P ′C ,∵P ′A :P ′C =1:3,∴AP =3P ′A ,连接PP ′,则△PBP ′是等腰直角三角形,∴∠BP ′P =45°,PP ′=2PB , ∵∠AP ′B =135°,∴∠AP ′P =135°﹣45°=90°,∴△APP ′是直角三角形,设P ′A =x ,则AP =3x ,根据勾股定理,PP ′=22'AP P A -=22(3)x x -=22x , ∴PP ′=2PB =22x ,解得PB =2x ,∴P ′A :PB =x :2x =1:2.故选B .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P ′A 、P ′C 以及P ′B 2倍转化到同一个直角三角形中是解题的关键.12.D解析:D【解析】【分析】分别根据判别式的意义、方程根的意义、根与系数的关系进行分析判断即可.【详解】解:A 、∵方程M 有两个不相等的实数根,∴△=b 2−4ac >0,∵方程N 的△=b 2−4ac >0,∴方程N 也有两个不相等的实数根,故不符合题意;B 、把x =4代入ax 2+bx +c =0得:16a +4b +c =0,∴110164c b a ++=, ∴即14是方程N 的一个根,故不符合题意; C 、∵方程M 有两根符号相同,∴两根之积ca>0,∴ac>0,即方程N的两根之积>0,∴方程N的两根符号也相同,故本选项不符合题意;D、如果方程M和方程N有一个相同的根,那么这个根也可以是x=-1,故本选项符合题意;故选:D.【点睛】本题考查了根的判别式、根与系数的关系以及一元二次方程的解,逐一分析四个选项的正误是解题的关键.二、填空题13.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A. B. C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.14.【解析】∵x2﹣3x+k=0有两个相等的实数根∴△=∴9﹣4k=0∴k=故答案为解析:94【解析】 ∵x 2﹣3x +k=0有两个相等的实数根,∴△=2(3)410k --⨯⨯=,∴9﹣4k=0,∴k=94. 故答案为94. 15.【解析】【分析】由题意可知:写出的函数解析式满足由此举例得出答案即可【详解】解:设所求二次函数解析式为:∵图象开口向下∴∴可取∵顶点在轴上∴对称轴为∴∵顶点的纵坐标可取任意实数∴取任意实数∴可取∴二 解析:2y x =-【解析】【分析】由题意可知:写出的函数解析式满足0a <、02b a -=,由此举例得出答案即可. 【详解】解:设所求二次函数解析式为:2y ax bx c =++∵图象开口向下∴0a <∴可取1a =-∵顶点在y 轴上 ∴对称轴为02b x a =-= ∴0b =∵顶点的纵坐标可取任意实数∴c 取任意实数∴c 可取0∴二次函数解析式可以为:2y x =-.故答案是:2y x =-【点睛】本题考查了二次函数图象的性质,涉及到的知识点有:二次函数2y ax bx c =++的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭;对称轴为2b x a =-;当0a >时,抛物线开口向上、当0a <时,抛物线开口向下;二次函数的图象与y 轴交于()0,c .16.135°【解析】分析:如图连接EC 首先证明∠AEC=135°再证明△EAC≌△EAB 即可解决问题详解:如图连接EC∵E 是△ADC 的内心∴∠AEC=90°+∠ADC=135°在△AEC 和△AEB 中∴△解析:135°.【解析】分析:如图,连接EC .首先证明∠AEC=135°,再证明△EAC ≌△EAB 即可解决问题. 详解:如图,连接EC .∵E 是△ADC 的内心,∴∠AEC=90°+12∠ADC=135°, 在△AEC 和△AEB 中, AE AE EAC EAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△EAC ≌△EAB ,∴∠AEB=∠AEC=135°,故答案为135°.点睛:本题考查三角形的内心、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.17.(40382)【解析】【分析】先求出开始时点C 的横坐标为OC =1根据正六边形的特点每6次翻转为一个循环组循环用2020除以6根据商和余数的情况确定出点C 的位置然后求出翻转B 前进的距离连接CE 过点D 作解析:(4038,3【解析】【分析】先求出开始时点C 的横坐标为12OC =1,根据正六边形的特点,每6次翻转为一个循环组循环,用2020除以6,根据商和余数的情况确定出点C 的位置,然后求出翻转B 前进的距离,连接CE ,过点D 作DH ⊥CE 于H ,则CE ⊥EF ,∠CDH =∠EDH =60°,CH =EH ,求出CE =2CH =2×CDsin60°=3C 的坐标.【详解】∵六边形ABCDEF为正六边形,∴∠AOC=120°,∴∠DOC=120°﹣90°=30°,∴开始时点C的横坐标为:12OC=12×2=1,∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组循环,∵2020÷6=336…4,∴为第336循环组的第4次翻转,点C在开始时点E的位置,如图所示:∵A(﹣2,0),∴AB=2,∴翻转B前进的距离=2×2020=4040,∴翻转后点C的横坐标为:4040﹣2=4038,连接CE,过点D作DH⊥CE于H,则CE⊥EF,∠CDH=∠EDH=60°,CH=EH,∴CE=2CH=2×CDsin60°=2×2×32=3,∴点C的坐标为(4038,3),故答案为:(4038,3【点睛】本题考查了正六边形的性质、坐标与图形、翻转的性质、含30°角直角三角形的性质、三角函数等知识;根据每6次翻转为一个循环组,确定出翻转最后点C所在的位置是解题的关键.18.【解析】【分析】先画图根据题意求出∠OAB=60°再根据直角三角形的性质和勾股定理即可求得结果【详解】解:∵∠CAD=60°∴∠CAB=120°∵AB和AC与⊙O相切∴∠OAB=∠OAC=∠CAB=3【解析】【分析】先画图,根据题意求出∠OAB=60°,再根据直角三角形的性质和勾股定理即可求得结果.【详解】解:∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC=∠12CAB=60°,∴∠AOB=30°,∵AB=3cm,∴OA=6cm,∴2233cmOB OA AB=-=所以直径为2OB=63cm故答案为:63.【点睛】本题考查了切线长定理,勾股定理,解答本题的关键是熟练掌握切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.19.【解析】【分析】根据题意可以画出相应的树状图从而可以求得甲乙两人恰好分在同一组的概率【详解】如下图所示小亮和大刚两人恰好分在同一组的情况有4种共有16种等可能的结果∴小亮和大刚两人恰好分在同一组的概解析:1 4【解析】【分析】根据题意可以画出相应的树状图,从而可以求得甲、乙两人恰好分在同一组的概率.【详解】如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果,∴小亮和大刚两人恰好分在同一组的概率是41 164=,故答案为:14.【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答20.【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k 由已知条件可得h=2k=9再由条件:它在x 轴上截得的线段长为6求出a 的值即可【详解】解:由题意设此抛物线的解析式为:y=a (x-2)2+9解析:2(2)9y x =--+【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k ,由已知条件可得h=2,k=9,再由条件:它在x 轴上截得的线段长为6,求出a 的值即可.【详解】解:由题意,设此抛物线的解析式为: y=a (x-2)2+9,∵且它在x 轴上截得的线段长为6,令y=0得,方程0=a (x-2)2+9,即:ax 2-4ax+4a+9=0,∵抛物线ya (x-2)2+9在x 轴上的交点的横坐标为方程的根,设为x 1,x 2,∴x 1+x 2=4,x 1•x 2=49a a+ ,∴|x 1-x 26=即16-4×49a a+=36 解得:a=-1,y=-(x-2)2+9, 故答案为:y=-(x-2)2+9.【点睛】此题主要考查了用顶点式求二次函数的解析式和一元二次方程与二次函数的关系,函数与x 轴的交点的横坐标就是方程的根.三、解答题21.(1)y=﹣x 2+2x +3;(2)C (0,3),D (1,4);(3)P (2,3).【解析】【分析】(1)将A 、B 的坐标代入抛物线的解析式中,即可求出待定系数b 、c 的值,进而可得到抛物线的对称轴方程;(2)令x=0,可得C 点坐标,将函数解析式配方即得抛物线的顶点C 的坐标;(3)设P (x ,y )(x >0,y >0),根据题意列出方程即可求得y ,即得D 点坐标.【详解】(1)由点A (﹣1,0)和点B (3,0)得10930b c b c --+=⎧⎨-++=⎩, 解得:23b c =⎧⎨=⎩, ∴抛物线的解析式为y=﹣x 2+2x +3;(2)令x=0,则y=3,∴C (0,3)∵y=﹣x 2+2x +3=﹣(x ﹣1)2+4,∴D (1,4);(3)设P (x ,y )(x >0,y >0),S △COE =12×1×3=32,S △ABP =12×4y=2y , ∵S △ABP =4S △COE ,∴2y=4×32,∴y=3,∴﹣x 2+2x +3=3, 解得:x 1=0(不合题意,舍去),x 2=2,∴P (2,3).【点睛】 本题考查了二次函数解析式的确定、抛物线的顶点坐标求法,图形面积的求法等知识,根据S △ABP =4S △COE 列出方程是解决问题的关键.22.(1)见解析;(2)»AD 23π=【解析】【分析】(1)连结OD ,根据等腰三角形性质和等量代换得1B ∠=∠,由垂直定义和三角形内角和定理得290B ∠+∠=︒,等量代换得2190∠+∠=︒,由平角定义得90DOE ∠=︒,从而可得证.(2)连结AD ,由圆周角定理得90ADC ∠=︒,根据等腰三角形性质和三角形外角性质可得60AOD ∠=︒,在Rt DEB ∆中,由直角三角形性质得23BD CD ==,在Rt ADC ∆中,由直角三角形性质得2OA OC ==,再由弧长公式计算即可求得答案.【详解】(1)证明:如图,连结OD .∵OC OD =,AB AC =,∴1C ∠=∠,C B ∠=∠,∴1B ∠=∠,∴DE AB ⊥,∴290B ∠+∠=︒,∴2190∠+∠=︒,∴90ODE ∠=︒,∴DE 为O e 的切线.(2)解:连结AD ,∵AC 为O e 的直径.∴90ADC ∠=︒.∵AB AC =,∴30B C ∠=∠=︒,BD CD =,∴60AOD ∠=︒.∵DE =∴BD CD ==∴2OC =, ∴60221803AD ππ=⨯= 【点睛】 本题考查切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.23.该公司有50人参加旅游.【解析】【分析】设该公司有x 人参加旅游,由308002400030000⨯=<,可得出x 30>,分30x 55<≤及x 55>两种情况考虑,由总价=单价⨯数量,可得出关于x 的一元二次方程(一元一次方程),解之即可得出结论.【详解】设该公司有x 人参加旅游.308002400030000⨯=<Q ,x 30∴>.()308005501055(+-÷=人).根据题意得:当30x 55<≤时,有()x 80010x 3030000⎡⎤--=⎣⎦,化简得:2x 110x 30000-+=,解得:1x 50=,2x 60(=舍去);当x 55>时,有550x 30000=, 解得:600x (11=舍去). 答:该公司有50人参加旅游.【点睛】本题考查了一元二次方程的应用以及一元一次方程的应用,分30x 55<≤及x 55>两种情况,列出关于x 的方程是解题的关键.24.(1)18;(2)12【解析】【分析】(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A 通道通过的情况数占总情况数的多少即可;(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B 通道通过的情况数占总情况数的多少即可.【详解】解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A 通道通过的情况数有1种,所以都选择A 通道通过的概率为18, 故答案为:18; (2)∵共有8种等可能的情况,其中至少有两辆汽车选择B 通道通过的有4种情况, ∴至少有两辆汽车选择B 通道通过的概率为4182=. 【点睛】考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.25.(1) 2m <;(2) m 的值是1.【解析】【分析】(1)根据方程有两个不相等的实数根知△>0,据此列出关于m 的不等式,解之可得; (2)由(1)中m 的范围且m 为非负整数得出m 的值,代入方程,解之可得.【详解】解:(1)根据题意得:()()22410m --->,解得:2m <.故m 的取值范围为2m <;(2)由(1)得:2m <m Q 为非负整数, 0m ∴=或1,把0m =代入原方程得:2210x x --=,解得:11x =21x =,0m =不合题意舍去;把1m =代入原方程得:220x x -=,解得:10x =,22x =.故m 的值是1.【点睛】此题考查根的判别式及一元二次方程的解,熟练掌握根的判别式及一元二次方程的解的定义是解题关键.。
2020-2021上海北郊学校九年级数学上期中第一次模拟试卷(附答案)

2020-2021上海北郊学校九年级数学上期中第一次模拟试卷(附答案)一、选择题1.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,那么下列说法正确的是( )A .a >0,b >0,c >0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c >0 2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .3.用配方法解方程2680x x --=时,配方结果正确的是( ) A .2(3)17x -= B .2(3)14-=x C .2(6)44x -=D .2(3)1x -=4.下列事件中,属于必然事件的是( ) A .三角形的外心到三边的距离相等 B .某射击运动员射击一次,命中靶心 C .任意画一个三角形,其内角和是 180° D .抛一枚硬币,落地后正面朝上5.已知实数0a <,则下列事件是随机事件的是( ) A .0a ≥ B .10a +>C .10a -<D .210a +<6.已知()222226x y y x +-=+,则22xy +的值是( )A .-2B .3C .-2或3D .-2且37.若关于x 的方程240kx x -+=有实数根,则k 的取值范围是( ) A .k 16≤B .1k 16≤C .k 16≤且k 0≠D .1k 16≤且k 0≠ 8.如图,直线y=kx+c 与抛物线y=ax 2+bx+c 的图象都经过y 轴上的D 点,抛物线与x 轴交于A 、B 两点,其对称轴为直线x=1,且OA=OD .直线y=kx+c 与x 轴交于点C (点C 在点B的右侧).则下列命题中正确命题的是( )①abc>0; ②3a+b>0; ③﹣1<k <0; ④4a+2b+c<0; ⑤a+b<k .A .①②③B .②③⑤C .②④⑤D .②③④⑤9.如图,△ABC 绕点A 旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是( )A .DE=3B .AE=4C .∠ACB 是旋转角D .∠CAE 是旋转角10.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是( )A .B .C .D .11.如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( )A .30πcm 2B .48πcm 2C .60πcm 2D .80πcm 212.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( ) A .2y x =B .2(12)y x =-C .(12)y x x =-D .2(12)y x =-二、填空题13.二次函数y =ax 2+bx +c 的图象如图11所示,且P =|2a +b|+|3b -2c|,Q =|2a -b|-|3b +2c|,则P ,Q 的大小关系是______.14.如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C=_______度.15.关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 应满足的条件是_____. 16.某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是 ;17.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.18.若关于 x 的一元二次方程2x 2-x+m=0 有两个相等的实数根,则 m 的值为__________. 19.两个全等的三角尺重叠放在△ACB 的位置,将其中一个三角尺绕着点C 按逆时针方向旋转至△DCE 的位置,使点A 恰好落在边DE 上,AB 与CE 相交于点F .已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm ,则CF=______cm .20.如图,O e 是ABC V 的外接圆,30C ∠=o ,2AB cm =,则O e 的半径为________cm .三、解答题21.已知关于的方程.(1)若该方程有两个不相等的实数根,求实数的取值范围; (2)若该方程的一个根为1,求的值及该方程的另一根.22.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场每件衬衫降价4元,则商场每天可盈利多少元? (2)若商场平均每天要盈利1200元,每件衬衫应降价多少元? (3)要使商场平均每天盈利1600元,可能吗?请说明理由. 23.如图,在平面直角坐标系中,二次函数21262y x x =-++的图象交x 轴于点A ,B (点A 在点B 的左侧).(1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围;(2)把点B 向上平移m 个单位得点B 1.若点B 1向左平移n 个单位,将与该二次函数图象上的点B 2重合;若点B 1向左平移(n +6)个单位,将与该二次函数图象上的点B 3重合.已知m >0,n >0,求m ,n 的值. 24.如图,在中,,是的外接圆,点P 在直径BD 的延长线上,且.求证:PA 是的切线;若,求图中阴影部分的面积结果保留和根号25.已知抛物线y=-x 2-2x+c 与x 轴的一个交点是(1,0). (1)C 的值为_______;(2)选取适当的数据补填下表,并在平面直角坐标系内描点画出该抛物线的图像;x••• 1- 1••• y••••••(3)根据所画图像,写出y>0时x 的取值范围是_____.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】利用抛物线开口方向确定a 的符号,利用对称轴方程可确定b 的符号,利用抛物线与y 轴的交点位置可确定c 的符号. 【详解】∵抛物线开口向下, ∴a <0,∵抛物线的对称轴在y 轴的右侧,∴x =﹣2ba>0, ∴b >0,∵抛物线与y 轴的交点在x 轴上方, ∴c >0, 故选:B . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.2.B解析:B 【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形. 故选B.3.A解析:A 【解析】 【分析】利用配方法把方程2680x x --=变形即可. 【详解】用配方法解方程x 2﹣6x ﹣8=0时,配方结果为(x ﹣3)2=17, 故选A . 【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.4.C解析:C 【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A 、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C 、三角形的内角和是180°,是必然事件,故本选项符合题意;D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意; 故选C .点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.B解析:B 【解析】 【分析】根据事件发生的可能性大小判断相应事件的类型即可. 【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意; B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意; 故选:B . 【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.B解析:B 【解析】试题分析:根据题意,先移项得()2222260x y y x +---=,即()2222260x y x y ()+-+-=,然后根据“十字相乘法”可得2222(2)(3)0x y x y +++-= ,由此解得22x y +=-2(舍去)或223x y +=.故选B.点睛:此题主要考查了高次方程的解法,解题的关键是把其中的一部分看做一个整体,构造出简单的一元二次方程求解即可.7.B解析:B 【解析】 【分析】当0k =时,代入方程验证即可,当0k ≠时,根据方程的判别式△≥0可得关于k 的不等式,解不等式即得k 的取值范围,问题即得解决. 【详解】解:当0k =时,40x -+=,此时4x =,有实数根;当0k ≠时,∵方程240kx x -+=有实数根,∴△2(1)440k =--⨯⨯…,解得:116k …,此时116k …且0k ≠; 综上,116k ….故选B. 【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程的根的判别式与根的关系是解题的关键.8.B解析:B【解析】试题解析:∵抛物线开口向上,∴a>0.∵抛物线对称轴是x=1,∴b<0且b=-2a.∵抛物线与y轴交于正半轴,∴c>0.∴①abc>0错误;∵b=-2a,∴3a+b=3a-2a=a>0,∴②3a+b>0正确;∵b=-2a,∴4a+2b+c=4a-4a+c=c>0,∴④4a+2b+c<0错误;∵直线y=kx+c经过一、二、四象限,∴k<0.∵OA=OD,∴点A的坐标为(c,0).直线y=kx+c当x=c时,y>0,∴kc+c>0可得k>-1.∴③-1<k<0正确;∵直线y=kx+c与抛物线y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=kx+c,得x1=0,x2=k b a -由图象知x2>1,∴k ba->1∴k>a+b,∴⑤a+b<k正确,即正确命题的是②③⑤.故选B.9.D解析:D【解析】【分析】根据旋转的定义和三角形的性质即可求解.∵△ABC绕点A旋转一定角度得到△ADE,BC=4,AC=3.∴DE=BC=4;AE=AC=3;∠CAE是旋转角.故答案选D.【点睛】本题考查的知识点是旋转的性质,解题的关键是熟练的掌握旋转的性质.10.B解析:B【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.C解析:C【解析】【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【详解】∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l10,圆锥侧面展开图的面积为:S侧=12×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.【点睛】本题主要考查圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.12.C解析:C【解析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数. 【详解】∵长方形的周长为24cm ,其中一边长为()x cm , ∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =- 故选C 【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.二、填空题13.P >Q 【解析】∵抛物线的开口向下∴a <0∵∴b >0∴2a-b <0∵∴b+2a=0x=-1时y=a-b+c <0∴∴3b-2c >0∵抛物线与y 轴的正半轴相交∴c >0∴3b+2c >0∴P=3b-2cQ=b解析:P >Q 【解析】∵抛物线的开口向下, ∴a <0,∵02ba -> ∴b >0, ∴2a-b <0,∵02ba -= ∴b+2a=0,x=-1时,y=a-b+c <0.∴102b bc --+< ∴3b-2c >0,∵抛物线与y 轴的正半轴相交, ∴c >0, ∴3b+2c >0, ∴P=3b-2c ,Q=b-2a-3b-2c=-2a-2b-2c ,∴Q-P=-2a-2b-2c-3b+2c=-2a-5b=-4b <0 ∴P >Q , 故答案是:P >Q .【点睛】本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二次函数的性质是解题的关键.14.【解析】试题分析:解:连接OD∵CD是⊙O切线∴OD⊥CD∵四边形ABCD 是平行四边形∴AB∥CD∴AB⊥OD∴∠AOD=90°∵OA=OD∴∠A=∠ADO=45°∴∠C=∠A=45°故答案为45考解析:【解析】试题分析:解:连接OD.∵CD是⊙O切线,∴OD⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥OD,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.考点:1.切线的性质;2.平行四边形的性质.15.k≤且k≠0;【解析】【分析】利用一元二次方程根的判别式及一元二次方程的定义解答即可【详解】∵关于x的一元二次方程kx2﹣4x+3=0有实数根∴△=(-4)2-4k×3≥0且k≠0解得k≤且k≠0故解析:k≤43且k≠0;【解析】【分析】利用一元二次方程根的判别式及一元二次方程的定义解答即可.【详解】∵关于x的一元二次方程kx2﹣4x+3=0有实数根,∴△=(-4)2-4k×3≥0且k≠0,解得k≤43且k≠0,故答案为:k≤43且k≠0【点睛】本题考查了一元二次方程的定义及判别式,一元二次方程的一般形式为ax2+bx+c=0(a≠0),当判别式△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;解题时,要注意a≠0这个隐含的条件.16.20%【解析】【分析】此题可设每次降价的百分率为x第一次降价后价格变为100(1-x)元第二次在第一次降价后的基础上再降变为100(1-x)(1-x)即100(1-x)2元从而列出方程求出答案【详解解析:20%【解析】【分析】此题可设每次降价的百分率为x,第一次降价后价格变为100(1-x)元,第二次在第一次降价后的基础上再降,变为100(1-x)(1-x),即100(1-x)2元,从而列出方程,求出答案.【详解】设每次降价的百分率为x,第二次降价后价格变为100(1-x)2元.根据题意,得100(1-x)2=64,即(1-x)2=0.64,解得x1=1.8,x2=0.2.因为x=1.8不合题意,故舍去,所以x=0.2.即每次降价的百分率为0.2,即20%.故答案为20%.17.40°【解析】:在△QOC中OC=OQ∴∠OQC=∠OCQ在△OPQ中QP=QO∴∠QOP=∠QPO又∵∠QPO=∠OCQ+∠AOC∠AOC=30°∠QOP+∠QPO+∠OQC=180°∴3∠OCP解析:40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°18.【解析】【分析】根据关于x的一元二次方程2x2-x+m=0有两个相等的实数根结合根的判别式公式得到关于m的一元一次方程解之即可【详解】根据题意得:△=1-4×2m=0整理得:1-8m=0解得:m=故解析:1 8【解析】【分析】根据“关于x的一元二次方程2x2-x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【详解】根据题意得:△=1-4×2m=0,整理得:1-8m=0,解得:m=18,故答案为:18.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.19.【解析】试题解析∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE 的位置使点A恰好落在边DE上∴DC=AC∠D=∠CAB∴∠D=∠DAC∵∠ACB=∠DCE=90°∠B=30°∴∠D=∠CAB=6解析:【解析】试题解析∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,∴DC=AC,∠D=∠CAB,∴∠D=∠DAC,∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°,∵AB=8cm,∴AC=4cm,∴FC=4cos30°.【点睛】此题主要考查了旋转的性质以及直角三角形的性质,正确得出∠AFC的度数是解题关键.20.2【解析】【分析】作直径AD连接BD得∠ABD=90°∠D=∠C=30°则AD=4即圆的半径是2(或连接OAOB发现等边△AOB)【详解】作直径AD连接BD得:∠AB D=90°∠D=∠C=30°∴A解析:2【解析】【分析】作直径AD,连接BD,得∠ABD=90°,∠D=∠C=30°,则AD=4.即圆的半径是2.(或连接OA,OB,发现等边△AOB.)【详解】作直径AD,连接BD,得:∠ABD=90°,∠D=∠C=30°,∴AD=4,即圆的半径是2.【点睛】本题考查了圆周角定理.能够根据圆周角定理发现等边三角形或直角三角形是解题的关键.三、解答题21.(1);(2)的值是,该方程的另一根为.【解析】试题分析:(1)利用根的判别式列出不等式求解即可;(2)利用根与系数的关系列出有关的方程(组)求解即可.试题解析:(1)∵b 2﹣4ac=22﹣4×1×(a ﹣2)=12﹣4a >0, 解得:a <3,∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得: 111x 21x 2a +=-⎧⎨⋅=-⎩,解得:11x 3a =-⎧⎨=-⎩, 则a 的值是﹣1,该方程的另一根为﹣3.22.(1)商场每件衬衫降价4元,则商场每天可盈利1008元;(2)每件衬衫应降价20元;(3)不可能.理由见解析.【解析】【分析】(1)根据题意得到每天的销售量,然后由销售量×每件盈利进行解答;(2)利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可;(3)同样列出方程,若方程有实数根则可以,否则不可以.【详解】 (1)410205⎛⎫⨯+ ⎪⎝⎭×(40-4)=1008(元). 答:商场每件衬衫降价4元,则商场每天可盈利1008元.(2)设每件衬衫应降价x 元,根据题意,得(40-x)(20+2x)=1200,整理,得x 2-30x+200=0,解得x 1=10,x 2=20,∵要尽量减少库存,∴x=20.答:每件衬衫应降价20元.(3)不可能.理由如下:令(40-x)(20+2x)=1600,整理得x 2-30x+400=0,∵Δ=900-4×400<0, ∴商场平均每天不可能盈利1600元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.23.(1)()()2060A B -,,,,26x -剟;(2)m n ,的值分别为72,1. 【解析】【分析】 (1)把y =0代入二次函数的解析式中,求得一元二次方程的解便可得A 、B 两点的坐标,再根据函数图象不在x 轴下方的x 的取值范围得y≥0时x 的取值范围;(2)根据题意写出B 2,B 3的坐标,再由对称轴方程列出n 的方程,求得n ,进而求得m 的值.【详解】解:(1)令0y =,则212602x x -++=, ∴1226x x =-=,, ∴()()2060A B -,,,. 由函数图象得,当0y …时,26x -剟. (2)由题意得()()236B n m B n m --,,,, 函数图象的对称轴为直线2622x -+==. ∵点23B B ,在二次函数图象上且纵坐标相同,∴()622n n -+-=,∴1n =, ∴()()217121622m =-⨯-+⨯-+=, ∴m n ,的值分别为712,. 【点睛】本题主要考查了二次函数的图象与性质,求函数与坐标轴的交点坐标,由函数图象求出不等式的解集以及平移的性质,难度不大,关键是正确运用函数的性质解题.24.(1)证明见解析(2)【解析】【分析】 (1)如图,连接OA ;证明∠OAP=90°,即可解决问题.(2)如图,作辅助线;求出OM=1,OA=2;求出△AOB 、扇形AOB 的面积,即可解决问题.【详解】如图,连接OA ;, ;而, ;而,;,, 是的切线.如图,过点O 作,则, ,, ,; ,, 图中阴影部分的面积.【点睛】本题考查了切线的判定与扇形面积的计算,解题的关键是熟练的掌握切线的判定与扇形面积公式.25.(1)3;(2)见解析;(3)-3<x< 1.【解析】【分析】(1)直接把(1,0)代入抛物线22y x x c =--+即可得出c 的值;(2)先根据(1)抛物线的解析式得出其顶点坐标,再在顶点两边分别取两点,画出函数图象即可;(3)根据函数图象可直接得出结论.【详解】解:(1)∵抛物线22y x x c =--+与x 轴的一个交点是(1,0),∴2120,c --+= 解得c=3,∴抛物线的解析式为22 3.y x x =--+故答案为:3.(2)∵抛物线的解析式为22 3.y x x =--+即2(1)4,y x =-++∴其顶点坐标为(-1,4),∴当x=-2时,y=3;当x=0时,y=3; 当x=-3时,y=0;当x=1时,y=0.如下表: x •••3- 2- 1- 0 1 ••• y ••• 0 3 4 30 •••(3)由函数图象可知,当y >0时,-3<x <1.故答案为:-3<x <1.【点睛】本题考查的是抛物线与x 轴的交点,能利用描点法画出函数图象,根据数形结合求解是解答此题的关键.。
2020-2021学年九年级数学上学期期中考试含答案

一、选择题(每小题3分,共21分) 每小题有四个答案,其中有且只有一个答案是正确的.请在答题卡上相应题目的答题区域内作答,答对的得4分,答错、不答或答案超过一个的一律得0分. 1.9的平方根是( ) A.3± B. 3 C. ±3 D. 32. 下列计算正确的是( )A .234265+= B .3412= C .2733÷=D .24±=3.下列方程是一元二次方程的是( ) A .322=-+y x x B .31232=-x x C .03)13(22=--x D .x x 382=- 4.下列三角形一定相似的是( )A .两个等边三角形B .两个直角三角形C .有一个角为30°的两个等腰三角形D .两个等腰三角形 5.在梯形ABCD 中,AD ∥BC.AC,BD 相交于O ,如果AD :BC=1:3,那么下列结论正确的是( )A .S △COD =9S △AODB .S △ABC =9S △ACD C .S △BOC =9S △AOD D .S △DBC =9S △AOD6.如果关于x 的一元二次方程01)12(22=++-x k x k 有两个不相等的实数根,那么k 的取值范围是( ) A .41->k B .041≠->k k 且 C .41-<kD .041≠-≥k k 且 7.实数a 、b 在数轴上的位置如图所示.化简222()a b a b -+-的结果是( )A BCD OA. a 2-B. b 2-C. b a 22--D. b a 22-+二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答8.一元二次方程05322=--x x 的二次项是 ,一次项系数是 . 9.若最简二次根式2+a 与5是同类二次根式,则a = .10.若0234x y z ==≠,则23x y z+= . 11.两个相似三角形对应高之比为1:2,那么它们对应中线之比为 .12.一元二次方程062=-+kx x 的一个根是2,则另一个根是_ ,k= .13. 如果1x =-1、2x =3是一元二次方程的两个根,那么这个一元二次方程可以是 .14.某经济开发区今年一月份工业产值达50亿元,第一季度总产值达175亿元,问二、三月份平均每月的增长率是多少?设平均每月增长的百分率为x ,根据题意得方程为 . 15.如图,点C 、D 在线段AB 上,△PCD 是等边三角形.当△ACP ∽△PDB 时,∠APB= °. 16.若411+-+-=x x y ,则=+y x .17. 在△ABC 中,P 是AB 上的动点(P 异于A 、B ),过点P 的直线截△ABC ,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC 的相似线,简记为P(x l ),(x 为自然数).第15题(1).如图①,∠A=90°,∠B=∠C ,当BP=2PA 时,P (1l )、P (2l )都是过点P 的△ABC 的相似线(其中1l ⊥BC ,2l ∥AC ),此外还有 条. (2).如图②,∠C=90°,∠B=30°,当=BABP时,P(x l )截得的三角形面积为△ABC 面积的41.三、解答题(共89分)在答题卡上相应题目的答题区域内作答 18.(9分)计算:19.(9分)计算:10537148⨯-÷+20.(9分)解方程: 2630x x -+=21.(9分)如图,在△ABC 中,DE ∥BC ,分别交BA 、CA 的延长线于点D 、E.求证:△ABC ∽△ADE.EDCBA()1242832-⨯+÷--+-π22. (9分)将进货价为40元的商品按50元售出时,能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个. 若设这种商品每个涨价x元,(1)用含x的代数式表示:①每个商品的实际利润是元,②实际的销售量是个;(2)为了获得8000元的利润,售价应定为多少?23.(9分)如图13,四边形ABCD、CDEF、EFGH都是边长为2的正方形.(1)⊿ACF与⊿ACG相似吗?说说你的理由.(2)求∠1+∠2的度数.24.(9分)已知关于x的方程22-++++=.x k x k k(23)320(1)判断方程的实数根的情况;(2)当Rt△ABC的斜边长5 a,且两条直角边b和c恰好是这个方程的两个根时,求:k的值及△ABC的周长.25.(12分)如图,在△ABC中,∠C=900,BC = 7cm,AC = 24cm,P 点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,设经过了x秒,请解答下面的问题,并写出探索的主要过程:(1)PC= cm,QC= cm(用含x的代数式表示);(2)经过多少时间,△PCQ的面积为15cm2(3)经过多少时间,△PCQ的面积最大,最大面积是多少?26.(14分)如图,平面直角坐标系中, 直线AB 解析式为:y=33-x+3.直线与x 轴,y 轴分别交 于A 、B 两点.(1)写出线段OA 、OB 的长度,OA= ,OB= . (2)若点C 是AB 的中点,过点C 作CD ⊥x 轴于点D ,E,F 分别为BC ,OD 的中点,求点E 的坐标;(3)在第一象限内是否存在点P ,使得以P ,O,B 为顶点的三角形与△OBA 相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.四、附加题(共10分)在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过90分;如果你全卷总分已经达到或超过90分,则本题的得分不计入全卷总分.填空:1.(5分)计算:=-3233.2.(5分)如图,在△ABC中,BC=2,则中位线DE= .以下作为草稿纸三、解答题(共89分)18.(本小题9分)解:原式=2+1-2+2 ……………………………………………(8分)=3 ………………………………………………………………(9分)19.(本小题9分)解:原式=22-+……………………………………………(7分)2152=212- ………………………………………………………(9分)20.(本小题9分)解:6962=+-x x6)3(2=-x ………………………………………………… (3分)63±=-x ………………………………………………(6分)631+=x ,632-=x ………………………………(9分)21.(本小题9分) (1)证明:∵DE ∥BC∴B D ∠=∠,A E ∠=∠…………(6分) ∴ADE ∆∽ABC ∆…………………………(9分)22.(本小题9分)解:(1)①每个商品的实际利润是 (10+x )元,②实际的销售量是 (500-10x) 个;…(2分)(2)依题意得:8000)10500)(10(=-+x x ………………………(4分)0300402=+-x x ………………………(5分)解得:101=x ,302=x ………………………(7分)经检验,:101=x 、302=x 都符合题意∴601050=+元或803050=+元………………………(8分)答:为了获得8000元的利润,售价应定为60元或80元. ……………………(9分)EDCBA8124912422---++=k k k k1=∴0>∆∴方程的有两个不相等的实数根. ………………………………(3分)(2)依题意得⎩⎨⎧++=+=+23322k k bc k c b ……………………………(4分)∵在ABC Rt ∆中 222a c b =+∴()2522=-+bc c b ……………………………(5分) ∴()()252323222=++-+k k k ∴01032=-+k k解得:5-=k 或2=k …………………………………………(7分) 经检验,5-=k 时,7-=+c b 不合题意,舍去;2=k ,7=+c b ,符合题意E F∴ABC Rt ∆的周长为12=++c b a …………………………(9分)25.(本小题12分)解:(1)(1)PC=)(x 2-7cm ,QC=x 5cm …………(2分) (2)依题意得:1552-721=•x x )(…………(3分)整理得:06722=+-x x解得:231=x ,22=x …………(5分)经检验,231=x ,22=x 符合题意答:经过23秒或2秒,△PCQ 的面积为15cm2 …………(7分) (3)设△PCQ 的面积为S则x x S 52-721•=)( 16245475-2+-=)(x ……………………………………(10分) ∵270<≤x ……………………………………(11分)∴当47=x 时,△PCQ 的面积最大,最大面积是16245………………(12分)26.(本小题14分)解:(1)OA= 3 , OB=3 …………(2分)(2)证得:△ACD ∽△ABO …………(4分)CD=21BO=321,AD=OD=21AO=23…………(6分)∵E,F 分别为BC ,OD 的中点,CD//BO∴EF=21(BO+CO )=21(3+321)=43…(7分)OF=21OD=43 ∴E(43,43) …………(8分)(3)当∠OBP =90°时,如图①若△BOP ∽△OBA ,则OB BO OA BP =, ∵OB=3,OA=3 ∴BP=3∴1P (3,3). …………………(10分) ②若△BPO ∽△OBA ,则OA BOOB BP =,∵OB=3,OA=3 ∴BP=1∴2P (1,3). …………………(12分) 当∠OPB =90°时, 如图当∠OPB =90°时,点P 在x 轴上,不符合题意.综上所述,符合条件的点有四个,分别是: 1P (3,3),2P (1,3),3P (43,433),4P (43,43).四、附加题(共10分,每小题5分)1. 3;2. 1.。
2020-2021学年九年级数学上学期期中测试卷01(沪教版)(含解析)

2020-2021学年九年级数学上学期期中测试卷01本试卷由选择题、填空题和解答题三大题组成,共25题,满分150分。
考试时间120分钟。
注意事项:1.答题前,考生务必将自己的学校、班级、姓名、考试号、考场号、座位号,用0.5毫米黑色墨水签字笔填写在答题卷相对应的位置上,并认真核对;2.答题必须用0.5毫米黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卷上,保持卷面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。
一、选择题(本大题共6小题,每小题4分,共24分。
每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上)1.已知、和都是非零向量,在下列选项中,不能判定∥的是()A.||=||B .∥,∥C .+=0D .+=2,﹣=32.如图,A,B,C是3×1的正方形网格中的三个格点,则tan B的值为()A.B.C.D.3.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:AB=2:5,则DF:BF等于()A.2:5B.2:3C.3:5D.3:24.将抛物线y=﹣2(x+3)2+2以原点为中心旋转180°得到的抛物线解析式为()A.y=﹣2(x﹣3)2+2B.y=﹣2(x+3)2﹣2C.y=2(x﹣3)2﹣2D.y=2(x﹣3)2+25.如图,点A、B、E在同一直线上,∠FEB=∠ACB=90°,AC=BC,EB=EF,连AF,CE交于点H,AF、CB交于点D,若tan∠CAD =,则=()1。
2020-2021学年度九年级(上)期中数学试卷 (附答案)

2020-2021学年度九年级(上)数学期中试卷(附答案)一、选择题(每小题只有一个正确选项,每小题3分,共18分)1.(3分)如下图所示,下列四组图形中,左边图形与右边图形成中心对称的是()A.B.C.D.2.(3分)如图,A、B、C三点在圆O上,∠B=36°,则∠AOC的度数为()A.36°B.54°C.72°D.90°3.(3分)在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)4.(3分)如图,⊙O的直径为10,弦AB的长为8,点P在AP上运动,则OP的最小值是()A.2B.3C.4D.55.(3分)已知函数y=x2+bx+c的图象与x轴只有一个交点,(x1,2017)、(x2,2017)是该函数图象上的两个点,则当x=x1+x22时,函数值y=()A.﹣2017B.c C.0D.c﹣20176.(3分)下表中所列x,y的数值是某二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x1<x2<x3<x4<x5<x6<x7,根据表中所提供的信息,以下判断正确的是()①a >0;②9<m<16;③k≤9;④b2≤4a(c﹣k)x…x1x2x3x4x5x6x7…y…16m9k9m16…A.①②B.③④C.①②④D.①③④二、填空题(共6小题,每小题3分,共18分)7.(3分)函数y=√3−x中,自变量x的取值范围是.8.(3分)如图,将正三角形绕其对称中心O旋转后,恰好能与原来的正三角形重合,那么旋转的角度至少是度.9.(3分)已知一元二次方程x2﹣4x+2=0的两根分别是x1,x2,那么(1+x1)(1+x2)的值是.10.(3分)如图,将△ABC绕点A逆时针方向旋转到△ADE的位置,点B落在AC边上的点D处,设旋转角为α(0°<α<90°).若∠B=125°,∠E=30°,则∠α=°.11.(3分)已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围为.12.(3分)如图所示的是二次函数y=ax2+bx+c的图象,有下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0或x≤﹣2.其中正确结论的序号是.(把所有正确结论的序号都填在横线上)三、本大题共6小题,每小题6分,共30分)13.x 2﹣2x ﹣15=0.14.(6分)如图,在⊙O 中,AB̂=AC ̂,∠A =40°,求∠D 的度数.15.(6分)如图,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度相等的道路,已知道路的宽为正方形边长的14.若道路与观赏亭的面积之和是矩形水池面积的16,求道路的宽.16.(6分)如图,将△ABC 绕点A 逆时针旋转得到△AB ′C ′.若点B ′落到BC 边上,∠B =50°.求∠CB ′C ′的度数.17.(6分)已知二次函数y=ax2﹣4x+c的图象经过点A(﹣1,﹣1)和B(3,﹣9).(1)求该二次函数的解析式;(2)填空:该抛物线的对称轴是;顶点坐标是;当x=时,y随x的增大而减小.18.(6分)如图,△ABC是⊙O的内接三角形,∠BAD是它的个外角,OP⊥BC交⊙O于点P,仅用无刻度的直尺分别按下列要求画图.(1)在图1中,画出△ABC的角平分线AF;(2)在图2中,画出△ABC的外角∠BAD的角平分线AG.四、(本大题共3小题,每小题8分,共24分)19.(8分)已知关于x的一元二次方程ax2﹣(a+2)x+2=0.(1)不解方程,判别方程的根的情况;(2)方程有两个不相等的正整数根时,求整数a的值.20.(8分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC 交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.21.(8分)如图,△OBD中,OD=BD,△OBD绕点O逆时针旋转一定角度后得到△OAC,此时B,D,C三点正好在一条直线上,且点D是BC的中点.(1)求∠COD度数;(2)求证:四边形ODAC是菱形.五、(本大题共2小题,每小题9分,共18分).22.(9分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)(x>50)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23.(9分)如图,在平面直角坐标系xOy中,直线y=12x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=−32且经过A、C两点,与x轴的另一交点为点B.(1)直接写出点B的坐标;(2)求抛物线解析式.(3)若点P为直线AC上方的抛物线上的一点,连接P A,PC.求△P AC的面积的最大值,并求出此时点P的坐标.六、(本题12分)24.(12分)已知△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点.(1)如图1,试证CD=BE时,△AMN是等边三角形;(2)当把△ADE绕点A旋转到图2的位置时CD=BE吗?若相等,请证明;若不相等,请说明理由;(3)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是,请证明;若不是,请说明理由(可用第(1)问结论).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.35°B.40°C.60°D.70°
4.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点是(1,n),且与x的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )
24.关于x的一元二次方程 有两个不相等的实数根.
(1)求k的取值范围;
(2)当k为正整数时,求此时方程的根.
25.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.
考点:二次函数图象上点的坐标特征;二次函数的最值.
6.D
解析:D
【解析】
【分析】
六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.
【详解】
解:设道路的宽为xm,根据题意得:(32-2x)(20-x)=570,
故选D.
【点睛】
本题考查的知识点是由实际问题抽象出一元二次方程,解题关键是利用平移把不规则的图形变为规则图形,进而即可列出方程.
【详解】
添加AC=BD,
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,
∴四边形ABCD是矩形,
故选D.
【点睛】
考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.
∴△=b2−4ac>0,
∵方程N的△=b2−4ac>0,
∴方程N也有两个不相等的实数根,故不符合题意;
B、把x=4代入ax2+bx+c=0得:16a+4b+c=0,
∴ ,
∴即 是方程N的一个根,故不符合题意;
C、∵方程M有两根符号相同,
∴两根之积 >0,
∴ >0,即方程N的两根之积>0,
∴方程N的两根符号也相同,故本选项不符合题意;
7.B
解析:B
【解析】
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、∵任何数的绝对值都是非负数,∴ 是必然事件,不符合题意;
B、∵ ,∴ 的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;
C、∵ ,∴a-1<-1<0是必然事件,故C不符合题意;
D、∵ >0,∴ 是不可能事件,故D不符合题意;
A.1B.2C.3D.4
5.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是( )
A.y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4
6.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m2,道路的宽为xm,则可列方程为( )
A. B. C. D.
9.有两个一元二次方程 , ,其中, , ,下列四个结论中错误的是()
A.如果方程 有两个不相等的实数根,那么方程 也有两个不相等的实数
B.如果4是方程 的一个根,那么 是方程 的另一个根
C.如果方程 有两根符号相同,那么方程 的两符号也相同
D.如果方程 和方程 有一个相同的根,那么这个根必是
∵抛物线的顶点坐标为(1,n),
∴ =n,
∴b2=4ac-4an=4a(c-n),所以③正确;
∵抛物线与直线y=n有一个公共点,
∴抛物线与直线y=n-1有2个公共点,
∴一元二次方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.
故选C.
【点睛】
本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.
故选:B.
【点睛】
本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8.D
解析:D
【解析】
【分析】
Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.
二、填空题
13.如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5 ,则BC的长为_____.
14.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为__________.
15.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是______.
22.如图,在等腰 中, ,以 为直径作 交 于点 ,过点 作 ,垂足为 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
23.列方程解应用题:
某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?
19.如图, 的半径为2,切线 的长为2 ,点 是 上的动点,则 的长的取值范围是_________.
20.若3是关于x的方程x2-x+c=0的一个根,则方程的另一个根等于____.
三、解答题
21.若关于x的一元二次方程x2﹣3x+a﹣2=0有实数根.
(1)求a的取值范围;
(2)当a为符合条件的最大整数,求此时方程的解.
【详解】
解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,
∴∠AOB=∠A=45°,
∵CD⊥OB,
∴CD∥AB,
∴∠OCD=∠A,
∴∠AOD=∠OCD=45°,
∴OD=CD=t,
∴S△OCD= ×OD×CD= t2(0≤t≤3),即S= t2(0≤t≤3).
故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;
A.32×20﹣2x2=570B.32×20﹣3x2=570
C.(32﹣x)(20﹣2x)=570D.(32﹣2x)(20﹣x)=570
7.已知实数 ,则下列事件是随机事件的是()
A. B. C. D.
8.如图, 中, ,且 ,设直线 截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的
【详解】
∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间.
∴当x=-1时,y>0,
即a-b+c>0,所以①正确;
∵抛物线的对称轴为直线x=- =1,即b=-2a,
∴3a+b=3a-2a=a,所以②错误;
=2×0+3×(-1)+8×5+2
=39.
故选:C.
【点睛】
本题主要考查一元二次方程的解的定义及一元二次方程根与系数的关系,若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1、x2,则x1+x2= ,x1·x2= ;熟练掌握韦达定理是解题关键.
10.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()
A.AB=CDB.AB=BCC.AC⊥BDD.AC=BD
11.若a,b为方程 的两个实数根,则2 的值为()
A.-41B.-35C.39D.45
12.如图,弦AB的长等于⊙O的半径,点C在弧AMB上,则∠C的度数是()
A.30ºB.35ºC.25ºD.60º
11.C
解析:C
【解析】
【分析】
根据一元二次方程的解的定义及一元二次方程根与系数的关系可得a2-5a-1=0,a+b=5,ab=-1,把2 变形为2(a2-5a-1)+3ab+8(a+b)+2,即可得答案.
【详解】
∵a,b为方程 的两个实数根,
∴a2-5a-1=0,a+b=5,ab=-1,
∴2
=2(a2-5a-1)+3ab+8(a+b)+2
故选D.
【点睛】
本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.
9.D
解析:D
【解析】
【分析】
分别根据判别式的意义、方程根的意义、根与系数的关系进行分析判断即可.
【详解】
解:A、∵方程M有两个不相等的实数根,
2.D
解析:D
【解析】
【详解】
∵二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,
∴抛物线的对称轴为直线x=2,
则− =− =2,
解得:b=−4,