平面直角坐标系知识点题型【最全面】总结
平面直角坐标系知识点、题型总结

平面直角坐标系知识点、题型总结平面直角坐标系知识点、题型总结一、本章的主要知识点1、坐标平面上的任意一点P 的坐标,都和惟一的一对有序实数对(b a ,)一一对应;其中,a 为横坐标,b 为纵坐标坐标;2、x 轴上的点,纵坐标等于0;y 轴上的点,横坐标等于0 坐标轴上的点不属于任何象限(一)有序数对:有顺序的两个数a 与b 组成的数对。
1、记作(a ,b );2、注意:a 、b 的先后顺序对位置的影响。
(二)平面直角坐标系1、在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系2、构成坐标系的各种名称;3、各种特殊点的坐标特点。
(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。
二、平行于坐标轴的直线的点的坐标特点:平行于x 轴(或横轴)的直线上的点的纵坐标相同;平行于y 轴(或纵轴)的直线上的点的横坐标相同。
三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。
四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数关于y 轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数五、特殊位置点的特殊坐标:六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
?七、用坐标表示平移:见下图坐标轴上点P (x ,y )连线平行于坐标轴的点点P (x ,y )在各象限的坐标特点象限角平分线上的点 X 轴 Y 轴原点平行X 轴平行Y 轴第一象限第二象限第三象限第四象限第一、三象限第二、四象限 (x,0)(0,y ) (0,0) 纵坐标相同横坐标不同横坐标相同纵坐标不同 x >0 y >0 x <0 y >0 x <0 y <0 x >0 y <0(m,m) (m,-m ) P (x ,y )P (x ,y -a ) P (x -a ,y ) P (x +a ,y )P (x ,y +a )向上平移a 个单位向下平移a 个单位向右平移a 个单位向左平移a 个单位二、经典例题知识一、坐标系的理解例1、平面内点的坐标是()A 一个点B 一个图形C 一个数D 一个有序数对学生自测1.在平面内要确定一个点的位置,一般需要________个数据;在空间内要确定一个点的位置,一般需要________个数据.2、在平面直角坐标系内,下列说法错误的是()A 原点O 不在任何象限内B 原点O 的坐标是0C 原点O 既在X 轴上也在Y 轴上D 原点O 在坐标平面内知识二、已知坐标系中特殊位置上的点,求点的坐标点在x 轴上,坐标为(x,0)在x 轴的负半轴上时,x<0, 在x 轴的正半轴上时,x>0点在y 轴上,坐标为(0,y )在y 轴的负半轴上时,y<0, 在y 轴的正半轴上时,y>0第一、三象限角平分线上的点的横纵坐标相同(即在y=x 直线上);坐标点(x ,y )xy>0 第二、四象限角平分线上的点的横纵坐标相反(即在y= -x 直线上);坐标点(x ,y )xy<0例1 点P 在x 轴上对应的实数是3 ,则点P 的坐标是,若点Q 在y 轴上对应的实数是31,则点Q 的坐标是,例2 点P (a-1,2a-9)在x 轴负半轴上,则P 点坐标是。
平面直角坐标系题型讲解

题型2.对称点的坐标特征: 1.若点P(m,2)与点Q(3,n)关于原点对称, 则的值分别是_______ 2. 点A(-3,2))关于Y轴对称点的坐标是______
3.若点A(x,y)在第三象限,则点B(-x,-y)关于 X轴的对称点在_______象限. 4.若点P(a-1, 5)与点Q(2,b-1)关于X轴对 称,(a+b)2003的值是_______
一点,则:
.O
P1(a,-b)
x 点P关于X轴的对称点
.
的坐标是_______.
P3(-a,-b)点P关于Y轴的对称点
的坐标是_______.
点P关于原点的对称点 的坐标是_______.
题型1:坐标平面内点的坐标特征:
1.已知点P(m,1)在第二象限内,则点 Q(-m,0)在_______.
2.在平面直角坐标系中, 点P(-1,m2+1)一 定在________. 3.已知点P(1-a,a+2)在第二象限内,则a 的取值范围是________.
10.在同一个直角坐标系中,对于函数(1)y=-x-1 (2)y=x+1 (3)y=-x+1 (1)y=-2(x+1)的图象,下列 说法正确的是( )
A.通过点(-1,0)上午是(1)和(2) B.交点在y轴上的是(2)和(4) C.相互平行的是(1)和(3) D.关于x对称的是(2)和(3)
11.如图是函数y=-1/2x+5的一部分图象,结 合图象回答:
5.已知点P(a+b限.
6.已知点P在第二象限,它的横坐标与纵坐 标的和为1,点P的坐标是_______(写出符 合条件的一个点即可) 7.点P在第二象限,若该点到X轴的距离为3, 到Y轴的距离为1,则点P的坐标为_____. 8.在直角坐标系中,射线OX绕原点逆时针旋 转330度到OA的位置,若OP=4,则点P的坐 标为_____
专题03 平面直角坐标系(专题详解)(解析版)

专题03 平面直角坐标系专题03 平面直角坐标系 (1)7.1 平面直角坐标系 (2)知识框架 (2)一、基础知识点 (2)知识点1 有序数对 (2)知识点2 平面直角坐标系 (2)知识点3 点的坐标特点 (3)二、典型题型 (6)题型1 有序数对 (6)题型2 平面直角坐标系的概念 (6)题型3 点的坐标的特征 (6)一、点的位置与坐标 (7)二、点的坐标与距离 (8)三、点的坐标与平行于坐标轴的直线(数形结合思想) (8)四、点的坐标与图形的面积 (9)(1)知坐标,求面积 (9)(2)知面积,求坐标(方程思想) (10)(3)分类讨论 (12)三、难点题型 (14)题型1 确定点所在的象限 (14)题型2 点到坐标轴的距离 (14)题型3 探究平面直角坐标系坐标的变化规律 (15)7.2 坐标系的简单运用 (17)知识框架 (17)一、基础知识点 (17)知识点1 用坐标表示地理位置 (17)知识点2 用坐标表示平移 (18)二、典型题型 (20)题型1 用坐标表示地理位置 (20)题型2 用坐标表示平移 (21)一、点的平移 (21)(1)已知点和平移方式,求对应点 (21)(2)已知点和对应点,求平移方式 (21)二、图形的平移 (22)三、难点题型 (23)题型1 动点问题 (23)7.1 平面直角坐标系知识框架{基础知识点{有序数对平面直角坐标系点的坐标的特点典型题型{ 有序数对平面直角坐标系的概念点的坐标的特征{ 点的位置与坐标点的坐标与距离点的坐标与平行于坐标轴的直线(数形结合思想)点的坐标与图形的面积{知坐标,求面积知面积,求坐标(方程思想)分类讨论难点题型{确定点所在的象限点到坐标轴的距离探究平面直角坐标系坐标的变化规律 一、基础知识点知识点1 有序数对1)我们把有顺序的两个数a 与b 组成的数对,用于表示平面中某一确定位置的,叫作有序数对,记作(a ,b )注:①(a ,b )与(b ,a )表达的含义不同,注意有序数对的顺序②在表达有序数对时,一般行在前,列在后。
(完整版)平面直角坐标系知识点题型【最全面】总结

平面直角坐标系知识点概括总结1、在平面内,两条相互垂直且有公共原点的数轴构成了平面直角坐标系;2、坐标平面上的随意一点P 的坐标,都和唯一的一对有序实数对(a, b)一一对应;此中, a 为横坐标,b为纵坐标坐标;Y3、x轴上的点,纵坐标等于0; y 轴上的点,横坐标等于0;b P(a,b)坐标轴上的点不属于任何象限;4 、四个象限的点的坐标拥有以下特点:-3-2 -1 0 1a x1象限横坐标 x纵坐标 y第一象限正正-1第二象限负正-2第三象限负负第四象限正负小结:( 1)点 P( x, y )所在的象限横、纵坐标x、y的取值的正负性;( 2)点 P( x, y )所在的数轴横、纵坐标x、y中必有一数为零;y5 、在平面直角坐标系中,已知点 P (a, b),则a(1 )点 P 到x轴的距离为 b ;b P(a,b)b(2 )( 2)点 P 到 y 轴的距离为 a ;O x (3 )点 P 到原点 O 的距离为 PO= a 2 b 2a6 、平行直线上的点的坐标特点:a)在与 x 轴平行的直线上,全部点的纵坐标相等;YA Bm点 A 、B 的纵坐标都等于m;Xb)在与 y 轴平行的直线上,全部点的横坐标相等;YC点 C、D 的横坐标都等于n;nXD7 、对称点的坐标特点:a)点P (m, n)对于 x 轴的对称点为1,即横坐标不变,纵坐标互为P (m, n)相反数;b)点 P (m, n)对于 y 轴的对称点为P2( m, n),即纵坐标不变,横坐标互为相反数;c) 点 P( m, n)对于原点的对称点为P3 ( m, n) ,即横、纵坐标都互为相反数;y y yPn P2n P n PO mX mmm XO m X OnP1nP3对于 x 轴对称对于y轴对称对于原点对称8 、两条坐标轴夹角均分线上的点的坐标的特点:a)若点 P( m, n )在第一、三象限的角均分线上,则m n,即横、纵坐标相等;b)若点 P( m, n )在第二、四象限的角均分线上,则m n,即横、纵坐标互为相反数;y yn P P nO m X m O X 在第一、三象限的角均分线上在第二、四象限的角均分线上习题考点概括考点一——平面直角坐标系中点的地点确实定已知坐标系中特别地点上的点,求点的坐标【例 1】以下各点中,在第二象限的点是()A.( 2,3)B.(2,-3)C.(-2,3)D.(-2,-3)【例 2】已知点 M(-2,b) 在第三象限,那么点N(b, 2 ) 在()A.第一象限B.第二象限C.第三象限D.第四象限【例 3】若点 P(x ,y )的坐标知足 xy=0(x ≠y) ,则点 P 在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上【例 4】点 P(x,y )位于 x 轴下方, y 轴左边,且x =2, y =4,点 P 的坐标是()A.( 4, 2)B.(-2,-4)C.(-4,-2)D .( 2, 4)【例 5】点(P0,-3),以 P为圆心,5 为半径画圆交 y 轴负半轴的坐标是()A.( 8,0)B.(0,-8)C.(0,8)D.(-8,0)【例 6】点 E(a,b )到 x 轴的距离是 4,到 y 轴距离是 3,则有()A.a=3, b=4B.a=±3,b=±4 C . a=4, b=3D.a=±4,b=±3【例 7】已知点 P(a,b ) , 且 ab> 0,a +b < 0, 则点 P 在()A.第一象限B.第二象限C.第三象限D.第四象限【例 8】假如点 M到 x 轴和 y 轴的距离相等,则点 M横、纵坐标的关系是()A.相等 B.互为相反数C.互为倒数D.相等或互为相反数【例 9】在座标系内,点P( 2,- 2)和点 Q( 2, 4)之间的距离等于个单位长度。
(完整版)平面直角坐标系知识点总结(可编辑修改word版)

温馨提示(a , b )与(b , a )顺序不同,含义就不同。
例如:用(3 , 5) 表示第 3 列的第 5 位同学,那么(5 , 3) 就表示第 5 列的第 3 位同学。
夯实基础平面直角坐标系平面直角坐标系的有关概念一.有序数对在日常生活中,可以用有序数对来描述物体的位置,这样可以用含有两个数的组合来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数 a 与b 组成的数对,叫做有序数对,记作(a , b )。
例 1:(1)在一层的电影院内如何找到电影票上所指的位置?(2)在电影票上, 如果把“5 排 8 号”简记为(5,8),那么“4 排 9 号”如何表示?(8,3)表示什么含义?二.平面直角坐标系相关概念具体内容平面直角坐标系定义在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系两轴水平的数轴叫做 x 轴或横轴,取向右为正方向;垂直的数轴叫做 y 轴或纵轴,取向上为正方向 原点 两轴的交点O 为平面直角坐标系的原点 坐标平面坐标系所在的平面叫做坐标平面三.象限x 轴和 y 轴把坐标平面分成四个部分,称为四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限,如图。
y第二象限第三象限第一象限Ox第四象限y b • Oax例 2:设M (a , b ) 为平面直角坐标系中的点。
(1) 当a > 0, b < 0 时,点M 位于第几象限?(2) 当ab > 0 时,点M 位于第几象限?四.点的坐标对于坐标平面内的任意一点 A ,过点 A 分别向 x 轴、 y 轴作垂线,垂足在 x 轴、 y 轴上对应的数 a 、b 分别叫做点 A 的横坐标和纵坐标,有序数对(a , b )叫做点 A 的坐标,记作A (a , b ) ,如图。
1. 已知坐标平面内的点,确定点的坐标先由已知点 P 分别向 x 轴、 y 轴作垂线,设垂足分别为 A 、 B ,再求出垂足 A 在 x 轴上的坐标 a 与垂足 B 在 y 轴上的坐标b ,最后按顺序写成(a , b )即可。
(完整版)平面直角坐标系知识点总结

平面直角坐标系二、知识要点梳理知识点一:有序数对比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。
我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作: (a,b).要点诠释:对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。
知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。
水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。
注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。
平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。
2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。
在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。
注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。
横、纵坐标的位置不能颠倒。
②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。
知识点三:点坐标的特征l.四个象限内点坐标的特征:两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).2.数轴上点坐标的特征:x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b).注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。
初二平面直角坐标系知识点及习题

平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系画平面直角坐标系时, x 轴、y 轴上的单位长度通常应相同,但在实际应用中,有时会遇到取相同的单位长度有困难的情况,这时可灵活规定单位长度,但必须注意的是,同一坐标轴上相同长度的线段表示的单位数量相同。
2、各个象限内点的特征:第一象限:(+,+) 点P (x,y ),则x >0, y >0;第二象限:(-,+) 点P (x,y ),则x <0, y >0;第三象限:(-,-) 点P (x,y ),则x <0, y <0;第四象限:(+,-) 点P (x,y ),则x >0, y <0;在x 轴上:(x,0) 点P (x,y ),则y =0;在x 轴的正半轴:(+,0) 点P (x,y ),则x >0, y =0;在x 轴的负半轴:(—,0) 点P (x,y ),则x <0, y =0;在y 轴上:(0,y ) 点P (x,y ),则x =0;在y 轴的正半轴:(0,+) 点P (x,y ),则x =0, y >0;在y 轴的负半轴:(0,—) 点P (x,y ),则x =0, y <0;坐标原点:(0,0) 点P (x,y ),则x =0, y =0;3、点到坐标轴的距离:点P (x,y )到x 轴的距离为 |y|, 到y 轴的距离为 |x|到坐标原点的距离为d=y x 224、点的对称:点P(m,n),关于x 轴的对称点坐标是(m,-n),关于y 轴的对称点坐标是(-m,n)关于原点的对称点坐标是(-m,-n)5、平行线:平行于x 轴的直线上的点的特征:纵坐标相等;平行于y 轴的直线上的点的特征:横坐标相等。
6、象限角的平分线:。
点P(a,b)(b, a) 第二、四象限角平分线上的点横纵坐标互为相反数,可记作点P(a,b)关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b,-a)7、点的平移:在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点(x+a ,y );将点(x,y )向左平移a 个单位长度,可以得到对应点(x-a ,y );将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b );将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。
平面直角坐标系复习讲义(知识点+典型例题)

D、第四象限.
【例 3】点 P(m,1)在第二象限内,则点 Q(-m,0)在( )
A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上
【例 4】(1)在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,则 a= ,点的坐标为
。
(2)当 b=______时,点 B(-3,|b-1|)在第二、四象限角平分线上.
电量为 8 千瓦时,则应交电费 4.4 元;④若所交电费为 2.75 元,则用电量为 6 千瓦时,其中正确的有( )
A.4 个 B.3 个 C.2 个 D.1 个
【例 7】小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下来修车.车修好后,因怕
耽误上课,故加快速度继续匀速行驶赶往学校.如图是行驶路程 S(米)与时间 t(分)的函数图象,那么符合小明骑
D. .
11、星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离 y(千米)与时间 t(分钟)的关系如图所示.根 据图象回答下列问题:
2
2
巩固练习
5
1、下列 各曲线中表示 y 是 x 的函数的是( )
A.
B.
C.
D.
2、下列平面直角坐标系中的图象,不能表示 y 是 x 的函数的是( )
A.
B.
C.
D.
3、下列四个选项中,不是 y 关于 x 的函数的是( )
A.|y|=x﹣1 B.y=
C.y=2x﹣7 D.y=x2
4、下列四个关系式:(1)y=x;(2) y x2 ;(3) y x3 ;(4) y x ,其中 y 不是 x 的函数的是( )
.
【例 8】在坐标系内,点 P(2,-2)和点 Q(2,4)之间的距离等于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系知识点归纳总结
1、 在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;
2、 坐标平面上的任意一点P 的坐标,都和惟一的一对 有序实数对(b a ,) 一一对应;其中,a 为横坐标,b 为纵坐标坐标;
3、x 轴上的点,纵坐标等于0;y
坐标轴上的点不属于任何象限;
4、 四个象限的点的坐标具有如下特征:
小结:(1)点P (y x ,)所在的象限 横、纵坐标x 、y 的取值的正负性;
(2)点P (y x ,)所在的数轴 横、纵坐标x 、y 中必有一数为零;
5、 在平面直角坐标系中,已知点P ),(b a ,则
(1) 点P 到x 轴的距离为b ;
(2) (2)点P 到y 轴的距离为a ;
(3) 点P 到原点O 的距离为PO =
22b a
-2 a
6、 平行直线上的点的坐标特征:
a) 在与x 轴平行的直线上, 所有点的纵坐标相等;
点A 、B 的纵坐标都等于m ;
b) 在与y 轴平行的直线上,所有点的横坐标相等;
点C 、D 的横坐标都等于n ;
7、 对称点的坐标特征:
a)
点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为
相反数;
b) 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为
相反数;
c) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;
关于x 轴对称 关于y 轴对称 关于原
点对称
X
X X X P X -
8、 两条坐标轴夹角平分线上的点的坐标的特征:
a) 若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标
相等;
b) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐
标互为相反数;
习题考点归纳
考点一——平面直角坐标系中点的位置的确定 已知坐标系中特殊位置上的点,求点的坐标
【例1】下列各点中,在第二象限的点是 ( )
A .(2,3)
B .(2,-3)
C .(-2,3)
D .(-2, -3)
【例2】已知点M(-2,b)在第三象限,那么点N(b, 2 )在 ( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
【例3】 若点P (x ,y )的坐标满足xy=0(x ≠y),则点P 在( )
A .原点上
B .x 轴上
C .y 轴上
D .x 轴上或y 轴上 X
【例1】点A (﹣1,2)关于y 轴的对称点坐标是 ;点A 关于原点的对称点的坐标是 。
点A 关于x 轴对称的点的坐标为 。
【例2】已知点M ()y x ,与点N ()3,2--关于x 轴对称,则______=+y x 。
【例3】已知点P ()3,3b a +与点Q ()b a 2,5+-关于x 轴对称,___________==b a 。
【例4】将三角形ABC 的各顶点的横坐标都乘以1-,则所得三角形与三角形ABC 的关系( )
A .关于x 轴对称
B .关于y 轴对称
C .关于原点对称
D .将三角形ABC 向左平移了一个单位
考点三——平面直角坐标系中平移问题
【例1】线段CD 是由线段AB 平移得到的。
点A (–1,4)的对应点为C (4,7),则点B (–4,–1)的对应点D 的坐标为______________。
【例2】在平面直角坐标系内,把点P (-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是 。
【例3】将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x ,-1),则xy=__ 。
【例4】点P 在x 轴上对应的实数是3-,则点P 的坐标是 ,若点Q 在y 轴上对应的实数是3
1,则点Q 的坐标是 ,
考点四——平面直角坐标系中平行线问题
【例1】已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为。
【例2】过A(4,-2)和B(-2,-2)两点的直线一定()
A.垂直于x轴 B.与Y轴相交但不平于x轴
B.平行于x轴 D.与x轴、y轴平行
【例3】已知点A(m,-2),点B(3,m-1),且直线AB∥x轴,则m的值为。
【例4】已知:A(1,2),B(x,y),AB∥x轴,且B到y轴距离为2,则点B的坐标是
.
【例5】平行于x轴的直线上的点的纵坐标一定()
A.大于0 B.小于0 C.相等D.互为相反数
【例6】若点(a ,2)在第二象限,且在两坐标轴的夹角平分线上,则a= .
【例7】已知点P(x2-3,1)在一、三象限夹角平分线上,则x= .
【例8】过点A(2,-3)且垂直于y轴的直线交y轴于点B,则点B坐标为().
A.(0,2) B.(2,0)C.(0,-3)D.(-3,0)
【例9】如果直线AB平行于y轴,则点A,B的坐标之间的关系是().
A.横坐标相等 B.纵坐标相等
C.横坐标的绝对值相等 D.纵坐标的绝对值相等
考点五——平面直角坐标系中对角线上的问题
【例1】已知P点坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是_________________。
【例2】已知点A(-3+a,2a+9)在第二象限的角平分线上,则a的值是
____________。
【例3】已知点P(x,-y)在第一、三象限的角平分线上,由x与y的关系是________。
考点六——平面直角坐标系中面积的求法,图形的平移
【例1】如图所示的直角坐标系中,三角形ABC的顶点坐标分别是A(0,0)、B (6,0)、
C(5,5)。
求:
(1)求三角形ABC的面积;
(2)如果将三角形ABC向上平移3个单位长度,得三角形A1B1C1,再向右平移2个单位长度,得到三角形A2B2C2。
分别画出三角形A1B1C1和三角形A2B2C2。
并试求出A2、B2、C2的坐标?
【例2】如图,正方形ABCD以(0,0)为中心,边长为4,求各顶点的坐标.
【例3】三角形ABC 三个顶点A 、B 、C 的坐标分别为A(2,-1)、B(1,-3)、C(4,-3.5).把三角形A 1B 1C 1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC ,试写出三角形A 1B 1C 1三个顶点的坐标,并在直角坐标系中描出这些点;在平面直角坐标系中,将点M (1,0)向右平移3个单位,得到点1M ,则点1M 的坐标为________.。