线性代数矩阵的初等变换及其性质

合集下载

矩阵初等变换及其在线性代数中的应用

矩阵初等变换及其在线性代数中的应用

矩阵初等变换及其在线性代数中的应用线性代数是一门重要的数学分支,它研究的是线性变换及其代数分析性质。

其中,矩阵是线性代数中非常重要的工具,它可以把线性方程组转化成一个更简单的形式,使得我们可以更容易地进行求解。

而矩阵的初等变换则是在求解线性方程组时必须要用到的一种基本技巧。

本篇文章将深入探讨矩阵初等变换及其在线性代数中的应用。

矩阵初等变换到底是什么?矩阵初等变换是指对于一个矩阵来说,可以通过三种基本变换操作得到新的矩阵。

这三种操作分别是:交换矩阵的任意两行或两列;用一个非零常数 k 乘以矩阵的某一行或某一列;将矩阵的某一行或某一列加上另一行或另一列的 k 倍。

这三种操作称为矩阵的行初等变换或列初等变换。

首先来看一个示例,假设有如下矩阵:$$\begin{bmatrix}1 &2 \\3 &4 \\\end{bmatrix}$$对于这个矩阵,我们可以进行如下初等变换:①交换第一行和第二行$$\begin{bmatrix}3 &4 \\1 &2 \\\end{bmatrix}$$②将第二行乘以2$$\begin{bmatrix}1 &2 \\6 & 8 \\\end{bmatrix}$$③将第二行减去第一行的两倍$$\begin{bmatrix}1 &2 \\4 & 4 \\\end{bmatrix}$$通过这三种基本变换,我们可以将原始矩阵变换成一个新的矩阵。

这个过程通常用矩阵的运算符号表示,比如将第二行减去第一行两倍的操作可以表示为:$$\begin{bmatrix}1 & 0 \\-2 & 1 \\\end{bmatrix}\begin{bmatrix}1 &2 \\3 &4 \\\end{bmatrix}=\begin{bmatrix}1 &2 \\1 & 0 \\\end{bmatrix}$$其中,左侧的矩阵就是一个变换矩阵,它表示了对原矩阵的操作。

线性代数1.5 (1)矩阵的初等变换

线性代数1.5 (1)矩阵的初等变换

1 0 1 0 0 0 0 1 0 0 0 0

0
0

0
1

,
0
0 0
0


0
1 0 0
0 1 0
0 0 1
0

0

,

0 0
0

0
1 0 0
0 1 0
0 0 0
0

0
0

,

1 0 0
0 问题,读者将会在学习完第三章第3.3.1 节之后有深入的理解和答案.所有与矩阵 A 等价 的矩阵组成的一个集合,称为一个等价类,标准 形是这个等价类中最简单的矩阵.
Linear Algebra
BUCT
小结
Chapter 1 Matrix
初等变换的定义 化矩阵为行阶梯形的初 等变换法 矩阵的等价及其标准形
4
6 4

r2 3r1
r3 r1
r2 3r1
r3 r1

1 0 0
2 4 0
3 8 0
4
6 0

1 2 3 4
14 r2
0
1
2
3

@B,
4r2
0
0
0
2 0
显然,以上每一步 变换都是可以逆回 去的,具体如下:
0 0 0
1 0 0 0 0


0 c4 c1 c4 2c2 0 c5 3c1 c5 8c2 0 c5 6c3
1 0 0
0
0
0

@N
1 0 0
0 0 0

线性代数矩阵的初等变换

线性代数矩阵的初等变换

r2 ( 2) 1
r3

1)
0 0
0 1 0
0 0 1
3 2 1
23 , 3
3 2 X 2 3.
1 3
如果要求Y CA1,则可对矩阵 A作初等列变换, C
A 列变换 E
C
CA1
,
即可得Y CA1.
也可改为对( AT ,CT ) 作初等行变换,
行变换
(AT , CT )
a23 a33
a11 a12 a13 a14
a21
a22
a23
a24
a31 a32 a33 a34
矩阵 A 的一个 2 阶子式
a12 a13 a22 a23
矩阵 A 的一个 2 阶子块
a12 a13
a22
a23
定义:设矩阵 A 中有一个不等于零的 r 阶子式 D,且所有 r +1 阶子式(如果存在的话)全等于零,那么 D 称为矩阵 A 的最高阶非零子式,数 r 称为矩阵 A 的秩,记作 R(A).
口诀:左行右列. 定理3.2 设A是一个 m×n 矩阵, ✓对 A 施行一次初等行变换,相当于在 A 的左边乘以相应的 m 阶初等矩阵; ✓对 A 施行一次初等列变换,相当于在 A 的右边乘以相应的 n 阶初等矩阵.
定理3.3 方阵A可逆的充要条件是存在有限个初等矩阵P1, P2, …, Pl,使 A = P1 P2 …, Pl .
r3 3r1 0 2 6 2 12
r1 r2 r3 r2
1 0 2 1 4 0 2 5 1 9 0 0 1 1 3
r1 2r3 1 0 0 3 2
r2 5r3
0 0
2 0 4 6 0 1 1 3

线性代数 2-5 矩阵的初等变换和初等矩阵

线性代数 2-5  矩阵的初等变换和初等矩阵
所以 A Ps1 P11IQt 1 Q11 Ps1 P11Qt 1 Q11 .
"" 因为初等矩阵可逆,所以充分性显然。.
设 Ann 可逆, 则存在初等矩阵P1 , Pm , 使 I Pm P1 A
所以 A1 Pm P1 Pm P1I

0
0
2
1
0
1
1(2)(1) 1 12(3) 0
0
0 1 0
1 0 1
2
1 1
2
1 1 0
0
1
0 1

2
1(3)(1) 0

0
0 1 0
0 0 1
5
2 1 1
2
1 1 0
1 2 0 1
.2
0L L L 1
i
Eij
M1
M


M
O
M


M
1M


1L L L 0
j

1


O

1

将单位矩阵的第i,j行(列)对换而得到;.
三、初等矩阵与初等变换的关系 例1 计算下列初等矩阵与矩阵
A (aij )3n , C (cij )32 , B (bij )33 的乘积:
B ( AT A 2 AT )1
1 0 0 1 1 0 0


0
1
2



0
3
2

.
0 2 3 0 2 1
注意
1 用初等行变换法求逆,只能对(A I)进行行变换

线性代数课件 矩阵的初等变换

线性代数课件 矩阵的初等变换



第i列
第 j列
11
(2) 以数 k 0 乘某行或某列,得初等倍乘矩阵。
以数k 0乘单位矩阵的第i行( ri k ),得初等 矩阵E ( i ( k )).
1 1 E ( i ( k )) k 1 1
标准形矩阵
特点:左上角为一个单 位矩阵,其他位置上的元素全 都为 0 .
9
二、初等矩阵
矩阵的初等变换是矩阵的一种基本运算,应 用广泛. 定义 由单位矩阵 E 经过一次初等变换得到的方 阵称为初等矩阵. 1 0 0 r 4r 1 0 4 1 3 例如 E 0 1 0 ~ 0 1 0 0 0 1 0 0 1 三种初等变换对应着三种初等方阵. 1. 对调两行或两列; 2. 以数 k 0 乘某行或某列; 3. 以数 k 乘某行(列)加到另一行(列)上去.
3
定义3 如果矩阵 A 经有限次初等变换变成 矩阵 B, 就称矩阵 A 与 B 等价,记作A ~ B.
等价关系的性质:
(1)自反性 A A;
(2)对称性 若 A B , 则 B A; (3)传递性 若 A B, B C, 则 A C.
4
行阶梯形矩阵:
特点: (1)可划出一 条阶梯线,线的 下方全为零; (2)每个台阶 只有一行,
对应的元素上去(第 j 行的 k 倍加到第 i 定义矩阵的初等列变换(所用记号是 把“r”换成“c”).
定义2 矩阵的初等列变换与初等行变换统称为 初等变换.
初等变换的逆变换仍为初等变换, 且变换类型 相同.
ri rj 逆变换 ri rj ; 1 ri k 逆变换 ri ( ) 或 ri k; k ri krj 逆变换 ri ( k )rj 或 ri krj .

线性代数第五讲 矩阵的初等变换及其性质

线性代数第五讲 矩阵的初等变换及其性质

线性代数第五讲矩阵的初等变换及其性质一、初等矩阵及其性质在前面的讲义中,我们已经学习到了矩阵的基本概念,包括矩阵的定义、矩阵的运算、矩阵的秩等基本知识点。

本章我们将学习一些矩阵的“变换”的概念,主要介绍矩阵的初等变换及其性质。

矩阵的初等变换指的是将一个矩阵通过某种方式变化成另外一个矩阵的运算。

初等变换可以分为三种:交换矩阵的某两行或某两列;用一个非零数乘以矩阵的某一行或某一列;用一个非零数乘以矩阵的某一行或某一列,再加到另一行或另一列上。

这三种变换分别称为矩阵的第一类、第二类和第三类变换。

对于任意一个矩阵A,我们可以进行一系列的初等变换,从而将A变换成标准形。

标准形主要有三种:行简化阶梯形矩阵、列简化阶梯形矩阵和对角矩阵。

从定义可以看出,行简化阶梯形矩阵和列简化阶梯形矩阵都是初等矩阵形式,是矩阵的标准形。

初等矩阵的定义:如果矩阵B是A通过一次初等变换得到的,则称矩阵B为矩阵A的初等矩阵。

我们前面已经学习过,矩阵的逆是一个重要的概念。

下面我们就来发现一个有趣的性质:一个矩阵是可逆矩阵,当且仅当它可以表示为一系列初等矩阵的乘积。

定理1:矩阵可逆的充分必要条件是它可以表示为一系列初等矩阵的乘积。

以上两个定理的证明可以参考矩阵论相关的课程。

二、矩阵的等价关系在学习矩阵的初等变换时,我们介绍了三类变换,也就是矩阵的第一类、第二类和第三类变换。

我们可以使用这三类变换将一个矩阵变换成另一个矩阵。

如果对于任意的矩阵A、B,B可以通过一系列的初等变换变成A,那么我们就称A和B是等价的。

性质1:等价关系具有反身性、对称性和传递性。

性质2:如果一个矩阵可以通过初等变换化为一个标准形,则标准形是唯一的。

性质3:如果一个矩阵可逆,则它和单位矩阵等价。

性质4:如果A、B等价,则r(A)=r(B)。

三、矩阵的秩和特殊矩阵在前面的讲义中,我们已经学习到了矩阵的秩的定义和性质。

矩阵的秩是矩阵实际所包含的信息量,因此秩是矩阵的一个重要特征。

线性代数-矩阵的初等变换

线性代数-矩阵的初等变换

求解未知量
根据行最简形式的矩阵,直接求解出未知量 的值。
案例分析:具体求解过程展示
案例一
01
简单线性方程组求解过程展示,包括构造增广矩阵、进行初等
变换和求解未知量等步骤。
案例二
02
复杂线性方程组求解过程展示,涉及更多未知量和更复杂的增
广矩阵,展示如何利用初等变换求解该类问题。
案例三
03
含参数线性方程组求解过程展示,通过引入参数,展示如何对
含参数的线性方程组进行求解和分析。
04 初等变换在矩阵秩计算中 应用
矩阵秩定义及性质
矩阵秩定义:矩阵A中不等 于0的子式的最大阶数称为
矩阵A的秩,记作r(A)。
矩阵秩的性质
矩阵的秩是非负的,且等于 其行秩或列秩。
若矩阵A可逆,则r(A)=n, 其中n为A的阶数。
若矩阵A为0矩阵,则 r(A)=0。
初等变换与矩阵的等价关系
通过初等变换,我们可以得到与原矩阵等价的矩阵。这种等价关系在线性代数中具有重要意义,它揭示了矩 阵之间的一种本质联系。
初等变换在求解线性方程组中的应用
通过对方程组的增广矩阵进行初等变换,我们可以将方程组化为简化阶梯形式,从而方便地求出方程组的解。
对未来研究方向和趋势展望
深入研究初等变换的 性质和应用
条件
01
非零行的首非零元为1;
02
首非零元所在列的其他元素全 为零。
03
性质
最简形矩阵是唯一的;
对于任意行阶梯形矩阵,总可
04
05
以通过初等行变换化为最简形
矩阵。
06
行阶梯形与最简形矩阵,二者都可以通过初等行变换得到。
区别
行阶梯形矩阵只要求非零行的首非零元所在列的上三角元素全为零,而最简形矩阵还要求非零行的首非零元为1, 且所在列的其他元素全为零。因此,最简形矩阵比行阶梯形矩阵具有更简洁的形式。

线性代数:矩阵的初等变换和初等矩阵

线性代数:矩阵的初等变换和初等矩阵

a12 3a22
a13 3a23
a11 a21
a12 a22
a13 a23
2 0 0
0 1 0
0 0 1
2a11 2a12
a12 a22
a13 a23
10
a11 a21
a12 a22
a13 a23
c1 2
2a11 2a12
a13 a23
a12 a22
3、以数k 0乘某行(列)加到另一行(列)上去
矩阵的初等变换和 初等矩阵
1
一、矩阵的初等变换初等矩阵
定义 下面三种变换称为矩阵的初等行变换:
1 对调两行(对调i, j两行,记作ri rj); 2 以数 k 0 乘以某一行的所有元素;
(第 i 行乘 k,记作 ri k)
3 把某一行所有元素的k 倍加到另一行
对应的元素上去(第 j 行的 k 倍加到第 i 行上
相当于对矩阵 A 施行第一种初等列变换: 把 A 的第 i 列与第 j 列对调(ci c j ).
7
2、以数 k 0 乘某行或某列
以数k 0乘单位矩阵的第i行(ri k),得初等 矩阵E (i (k )).
1
1
E(i(k))
k

i

1
1
8
以 Em (i(k)) 左乘矩阵A,
25
三、初等变换法求逆矩阵
当A可逆时,由推论4,A P1P2 Pl,有 Pl1Pl11P11 A E, 及 Pl1Pl11P11E A1,
Pl1Pl11P11 A E
Pl1Pl11P11 A Pl1Pl11P11E E A1
即对 n 2n 矩阵 ( A E) 施行初等行变换, 当把 A 变成 E 时,原来的 E 就变成 A1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的第一个非零元素.
行最简形矩阵:
4. 非零行的第一个非零元为1; 5. 这些非零元所在的列的其它
元素都为零.
1 0 1 0 4
0
0
1 0
1 0
0 1
3 3
B5
0
0
00
0
c3 c4
c4 c1 c2 c5 4c1 3c2 3c3
1 0 0 0 0
0
0
x3 2x3 9x3
x4 2x4 7 x4
2 4 9
增广矩阵的比较
2 -1 -1 1 2 1 1 -2 1 4 (A b)= 4 -6 2 -2 4 3 6 -9 7 9
1 1 -2 1 4 2 -1 -1 1 2 4 -6 2 -2 4 3 6 -9 7 9
交换(A b) 的第1行与第2行
1 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0
0 0
1 0
0 0
00
1 0 0 0 0 1 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
例 1 用初等行变换化为行简化阶梯形
12 3 45
12 3 45
~ A= 2 4 6 8 10
例2 阶梯形,行简化阶梯形,标准形
1 A 0
0
0 1 0
8 1 0
0 0 1
1
B
0 0 0
0 1 0 0
2 0 0 0
1 0 0 0
0 0 10
0 1 1 0 C 0 0 0 1
0 0 0 0
0 1 2 0 3 D 0 0 0 1 2
0 0 0 0 0
例 3 阶梯形,行简化阶梯形,标准形
0 -3 3 -1 -6 1 1 -2 1 4 2 -3 1 -1 2
3 6 -9 7 9
(A b) 第2行乘以(2)加到第1行
定义:下列三种变换称为矩阵的初等行变换:
✓对调两行,记作 ri rj ; ✓以非零常数 k 乘某一行的所有元素,记作 ri k ; ✓某一行加上另一行的 k 倍,记作 ri krj .
2 -1 -1 1 2 1 1 -2 1 4 (A b)= 4 -6 2 -2 4 3 6 -9 7 9
2 -1 -1 1 2 1 1 -2 1 4 2 -3 1 -1 2
3 6 -9 7 9
(A b)第3行乘以1/2
例如
2x1 x2 x3 x4 2
43xxx111
x2 6x2 6x2
2x3 2x3 9x3
F
0
0
0
0
0
行最简形矩阵: 4. 非零行的第一个非零元为1; 5. 这些非零元所在的列的其它
元素都为零.
标准形矩阵:
6. 左上角是一个单位矩阵,其 它元素全为零.
结论
任何矩阵 有限次初等行变换
行阶梯形矩阵
有限次初等变换
行最简形矩阵
有限次初等行变换
有限次初等列变换 标准形矩阵
例1 阶梯形,行简化阶梯形,标准形
例1
2x1 x2 x3 x4 2
43xxx111
x2 6x2 6x2
2x3 2x3 9x3
x4 2x4 7 x4
4 4 9
③2
③2
2x1 x2 x3 x4 2
23xxx111
x2 3x2 6x2
2x3 x3 9x3
x4 x4 7 x4
4 2 9
增广矩阵的比较
初等变换
初等行变换 初等列变换
把定义中的“行”换成“列”,就得到矩阵的初等列变换的定 义. 矩阵的初等行变换与初等列变换统称为初等变换.
1 5 1 1
1 5 1 1
例1
1 2 1 3 r2r4 1 9 3 7 ———
3 8 1 1
3 8 1 1
1 9 3 7
1 2 1 3
r1×2
———
2 10 -2 -2
x4 2x4 7 x4
4 4 9
①2②
①2②
43xxx111
3x2 x2 6x2 6x2
3x3 2x3 2x3 9x3
x4 x4 2x4 7x4
6 4 4 9
增广矩阵的比较
2 -1 -1 1 2 1 1 -2 1 4 (A b)= 4 -6 2 -2 4 3 6 -9 7 9
1 A 0
0
5 3 0
8 1 0
3 0 1
1 1 2 1 0
B
0 0 0
2 0 0
0 0 2
0 0
0 0
1 0
1 6 1 4 C 0 0 0 3
0 1 2 0
0 1 2 1 3 D 0 0 0 0 0
0 0 0 1 2
例1 阶梯形,行简化阶梯形,标准形
25 1 3 8 4 7 2 00 2 5 687 5 E= 0 0 3 4 5 2 6 9 00 0 0 042 8 00 0 0 000 0
(2) 把某个方程乘以一个非零数
(3) 某个方程的非零倍加到另一个方程上
例1
2x1 x2 x3 x4 2
43xxx111
x2 6x2 6x2
2x3 2x3 9x3
x4 2x4 7 x4
4 4 9
①②
①②
x1 x2 2x3 x4 4
423xxx111
x2 6x2 6x2
00000
00 0 0 2
00 0 0 2
r2 2r1
~ ~ 1 2 3 4 5 00002
第五讲 矩阵的初等变换
矩阵的初等变换是矩阵的一种十分重要的运 算 它在解线性方程组、求逆阵及矩阵理论的探 讨中都起重要的作用
本讲主要讨论两个问题 一 三种初等变换
二 用初等变换化简矩阵为阶 梯形、行最简形
一 三种初等变换 1 方程组的同解变换与增广矩阵的关系 在解线性方程组的过程中 我们可以把 一个方程变为另一个同解的方程 这种变换 过程称为同解变换 同解变换有 (1) 交换两个方程的位置
2. 每个台阶只有一行; 3. 阶梯线的竖线后面是非零行
的第一个非零元素.
1 1 2 1 4
0
0
1 0
1 0
1 1
0
3
B4
0
0
00
0
r1 r2
r2 r3
1 0 1 0 4
0
0
1 0
1 0
0 1
3
3
B5
0
0
00
0
行阶梯形矩阵: 1. 可画出一条阶梯线,线的下
方全为零; 2. 每个台阶只有一行; 3. 阶梯线的竖线后面是非零行
1 -9 3 7
3 8 -1 1
1 -2 1 3
r1-r4×2
———
0 14 -4 -8
1 -9 3 7 3 8 -1 1 1 -2 1 3
二 阶梯形、行简化阶梯形、标准形矩阵 1 行阶梯形
1 1 2 1 4
0
0
1 0
1 0
1 1
0 3
B4
0 0 0 0 0
行阶梯形矩阵:
1. 可画出一条阶梯线,线的下 方全为零;
相关文档
最新文档