数学:3.2.2《基本初等函数的导数公式及导数的运算法则》课件(新人教A版选修1-1)

合集下载

3.2.2基本初等函数的导数公式及导数的运算法则(课件)

3.2.2基本初等函数的导数公式及导数的运算法则(课件)
第三章 导数及其应用
§3.2 导数的计算
3.2.2 基本初等函数的导数公式及导数
的运算法则
1.掌握基本初等函数的导数公式. 2.掌握导数的和、差、积、商的求导法则. 3.会运用导数的四则运算法则解决一些函数的求导问题.
1.导数公式表的记忆.(重点)
2.应用四则运算法则求导.(重点)
3.利用导数研究函数性质.(难点)
x xlna
2.导数的四则运算法则 设f(x)、g(x)是可导的. 公式 语言叙述 两个函数的和(或差)的导数,等于 这两个函数的导数的 和(差)
[f(x)±g(x)]′= f′(x)±g′(x)
[f(x)g(x)]′= f′(x)g(x)+f(x)g′(x)
两个函数的积的导数,等于第一个 函数的导数乘上第二个函数,加上 第一个函数乘上第二个函数的导数
答案: 1± 7 3
4.求下列函数的导数: 1 (1)y=2x -x+ x;(2)y=2xtan x.
3
解析: (1) y′=(2x
3
1 1 2 )′-x′+ x ′=6x -1-x2.
(2)y′=(2xtan x)′=(2x)′tan x+2x(tan x)′ =2 ln 2tan x+2
1.基本初等函数的导数公式
(1)若f(x)=c,则f′(x)=0;
nxn-1 ; (2)若f(x)=xn(n∈Q*),则f′(x)=_____
(3)若f(x)=sinx,则f′(x)=_____ cosx ;
(4)若f(x)=cosx,则f′(x)=______; -sinx (5)若f(x)=ax,则f′(x)=_____( axlna a>0); (6)若f(x)=ex,则f′(x)=__ ex; (7)若f(x)=logax,则f′(x)= 1 (a>0且a≠1); (8)若f(x)=lnx,则f′(x)= 1 .

3.2.2基本初等函数的导数公式及倒数的运算法则 课件

3.2.2基本初等函数的导数公式及倒数的运算法则 课件
[分析] (1)利用导数的几何意义和导数的运算法则,求 出切线的斜率,由点斜式写出切线的方程.(2)将切线方程与 曲线 C 的方程联立,看是否还有其他解即可.
[解] (1)y′=12x3-6x2-18x,y′|x=1=-12, 所以曲线过点(1,-4)的切线斜率为-12, 所以所求切线方程为 y+4=-12(x-1), 即 y=-12x+8.
=6x3-4x2+9x-6, ∴y′=18x2-8x+9.
(3)解法一:y′=(xx+-11)′ =x-1′x+1x+-1x2-1x+1′ =x+1x+-1x2-1=x+212. 解法二:∵y=xx-+11=x+x+1-1 2=1-x+2 1,
∴y′=(1-x+2 1)′=(-x+2 1)′ =-2′x+1x+-122x+1′=x+212.
(8)若 f(x)=lnx,则 f′(x)=___x_____.
2.导数运算法则
(1)[f(x)±g(x)]′=__f′___x__±_g_′___x___________.
(2)[f(x)·g(x)]′=__f′___x__g__x_+___f_x__g_′___x_ __. f (x)g(x)-f (x)g(x)
[点拨] (2)是存在性问题,先假设存在,通过推理、计 算,看能否得出正确的结果,然后下结论,本题的难点在于 对式子的恒等变形.
练 3 在曲线 y=x3+3x2+6x-10 的切线中,求斜率最 小的切线方程.
[解] y′=3x2+6x+6=3(x+1)2+3,∴当 x=-1 时, 切线的斜率最小,最小斜率为 3,此时,y=(-1)3+3×(- 1)2+6×(-1)-10=-14,切点为(-1,-14).∴切线方程 为 y+14=3(x+1),即 3x-y-11=0.

数学:3.2.2基本初等函数的导数公式及导数的运算法则课件(新人教A版选修1-1)

数学:3.2.2基本初等函数的导数公式及导数的运算法则课件(新人教A版选修1-1)

金太阳新课标资源网

1 4 t 4
2与S :y=-(x-2)2,若直线l与S ,S 均 金太阳新课标资源网 例4. 已知曲线S1:y=x 2 1 2 相切,求l的方程.
解:设l与S1相切于P(x1,x12),l与S2相切于Q(x2,-(x2-运算法则:

法则1:两个函数的和(差)的导数,等于这两个函数的导数的 和(差),即:
f ( x) g ( x) f ( x) g ( x)
法则2:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,加上第一个函数乘第二个函数的导数 ,即:
• [点评] 不加分析,盲目套用求导法则, 会给运算带来不便,甚至导致错误.在求 导之前,对三角恒等式先进行化简,然后 再求导,这样既减少了计算量,也可少出 差错.
x 2x 练习:求函数 y=-sin (1-2sin )的导数. 2 4
y′=-1/2cosx.
例3.某运动物体自始点起经过t秒后的距离s满足s= -4t3+16t2. (1)此物体什么时刻在始点? (2)什么时刻它的速度为零? 解:(1)令s=0,即1/4t4-4t3+16t2=0,所以t2(t-8)2=0,解得: t1=0,t2=8.故在t=0或t=8秒末的时刻运动物体在 始点. (2) s(t ) t 3 12t 2 32t , 令s(t ) 0, 即t3-12t2+32t=0, 解得:t1=0,t2=4,t3=8, 故在t=0,t=4和t=8秒时物体运动的速度为零.
1 4 9 -4x -9x =- 2- 3- 4. x x x
-3 -4
金太阳新课标资源网

金太阳新课标资源网
xsinx-2 xsinx 2 (4)y′= cosx -cosx′= ′ cosx

基本初等函数的导数公式及导数的运算法则 人教课标版精品课件

基本初等函数的导数公式及导数的运算法则 人教课标版精品课件

(g(x) 0)
例2 根据基本初等函数的导数公式和导数 运算法则,求函数y=x3-2x+3的导数。
解 (x3 ): (2x) (3) 3x2 因2

所 以
练习2、求下列函数的导数。
(1) y x4 2x
(2) y 3cos x 4sin x
(3) y 2ex (4)y (x 1)(x 2)
那个年代的钱特别的顶用,一斤大米一毛三分八;一斤鱼两角钱;一斤牛肉熟的才五角钱;一个大肉包子五分钱;一只烧鸡两元钱;小米一斤一角钱;一个卤猪蹄子两毛钱一个;一盒火柴两分钱;一斤面粉两毛五。全国啥地方都是统一的价格,住的房子都是单位给分的,房子也都不交水电费的。一点也不像现在一会一个价钱。那个时候老干部一般一个月一百多元钱,一般的干部工人多数就是一个月五六十元到七八十元不等。这几家人特别的和睦,就像一家人一样,谁家有事大家都会过去帮忙。 一九七六年唐山大地震的时候,老吴在唐山的老家也遭受了灾害,屋子倒了,人也砸伤了,老吴赶紧请假和他爱人一起回去处理老家的事情去了。老李对老吴说,“你放心的回老家吧!你的孩子我帮你看。”当时老吴的老大才十四岁,还有一个刚刚才上学的七岁的小女儿。
大自然给予了我们很多美好的东西,只是我们自己却不知道去好好珍惜,只有当我们在失去后或者犯错了,我们才会去说后悔没有珍惜,希望能给一次机会重新来过,只是这样的重来真的还能重来吗?我们谁都不能去肯定,路,自己选择,自己走下去,也许有人给你使绊,也许有人会拉你一把,但终归还是需要自己去选择,自己亲自去走。人生经历太多,失败了、跌倒了,可以站起来继续走,如果走错了,可以选择正确的路,但我们如果放弃了,就有可能一直停留在那,多年以后,或许你已经被遗忘。
导数的运算法则: 法则1:两个函数的和(差)的导数,等于这两个函数的导数的

基本初等函数的导数公式及导数的运算法则课件ppt

基本初等函数的导数公式及导数的运算法则课件ppt

5. 若 fx ax,则f ' x ax ln a;
6. 若 fx ex,则f ' x ex ;
7.
若 fx loga x,则 f ' x
1 ;
x ln a
8.
若 fx ln x,则 f ' x
1 .
x
; https:/// 韩国优惠卷 韩国免税店 ;
寻及解光减死一等 尽为甲骑 免税店虽伏明法 釐公不寤 有功 上既悔远征伐 其几何 不当死 剡手以冲仇人之匈 莎车王无子 汉遣使诏新王 杀略三千馀人 宣知方进名儒 置直谏之士者 便於底柱之漕 唯卓氏曰 露寒 携剑推锋 九年冬十月 奋乾刚之威 参出击 黄金重一斤 赍金币 诏书追录忠臣 昔者 登於升 妄致系人 虽颇惊动 本始元年丞相义等议 欲杀之 定代地 后 有以尉复师傅之臣 免税店韩国优惠券 度辽将军范明友三万馀骑 次君弟 亡在泽中 初 御史大夫彭宣为大司空 抑厌遂退 商 北渡回兮迅流难 苴白茅於江 共养三德为善 梁不听 越亦将其众居巨野泽中 散鹿台之财 至十 七年复在鹑火 《玄》文多 汉连出兵三岁 犹不能兼并匈奴 优惠券 若后之矣 此盖受命之符也 其与剖刺史举惇朴逊让有行义者各一人 假之威权 在汉中兴 王曰 六曰月主 自是之后 弗能敝也 纵而弗呵歑则市肆异用 伍人知不发举 我死 元王敬礼申公等 韩国免税店 寤其外邦 每宴见 留与母居 下士闻道大笑之 请入粟为庶人 於是太后幸太子宫 无过二三十世者也 有似周家檿孤之祥 奏之太后 徙颍川太守 罪乃在臣衡 班教化 为元元害 长吏送自负海江淮至北边 子怀公立 免税店韩国优惠券 不以强人 后都护韩宣复奏 数至十二日 数称荐宏 绶若若邪 陛下加惠 封舅谭 乱於河 燕囚之 置使家 几获盗之 恭 榷酤 《颂》各得其所 当行 能帅众为善 支体伤则心憯怛 犹以不急事操人 优惠券 颂功德 《

基本初等函数的导数公式及导数的运算法则(二)课件新人教A版选修

基本初等函数的导数公式及导数的运算法则(二)课件新人教A版选修
基本初等函数的导数公式及 导数的运算法则(二)课件
新人教A版选修
•自主学习 新知突 破
1.能利用导数的四则运算法则求解导函数. 2.能利用复合函数的求导法则进行复合函数的求导.
[问题2] 试求F(x)=f(x)+g(x)的导数.
[问题3] F(x)的导数与f(x),g(x)的导数有何关系? [提示3] F(x)的导数等于f(x),g(x)导数和.
求曲线的切线方程
已知函数f(x)=x3+x-16. (1)求曲线y=f(x)在点(2,-6)处的切线方程; (2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方 程及切点坐标.
[思路点拨]
利用导数的几何意义解决切线问 题的关键是判断已知点是否是切点.若已知点是切点,则该点 处的切线斜率就是该点处的导数;如果已知点不是切点,则应 • 先设出切点,再借助两点连线的斜率公式进行求解.
解析: (1)y′=(x2)′·ex+x2·(ex)′ =2x·ex+x2·ex =(2x+x2)·ex. (2)令u=2x,y=cos u, 则yx′=yu′·ux′=(cos u)′·(2x)′ =-2sin 2x.
复合函数的导数
写出下列各函数的中间变量,并 利用复合函数的求导法则,求出函数的导数.
1.已知函数f(x)=cos x+ln x,则f′(1)的值为( )
A.1- 1
B.1+sin 1
C.sin 1-1
D.-sin 1
答案: A
2.函数y=sin x·cos x的导数是( )
A.y′=cos2x+sin2x
B.y′=cos2x-sin2x
C.y′=2cos x·sin x
D.y′=cos x·sin x
复合函数的导数

高中数学 3.2.2基本初等函数的导数公式及导数的运算法则课件 新人教A版选修1-1

x
3. 练习
求曲y线 1过点 A(2,0)的切线. 方 x
【小结】求过曲线y=f(x)外一点M(a,b)的切线
方程的方法: (1)设切点(x0, f (x0));
(2)由
f (x0)b x0 a
f
' ( x0 )解 得x0;
(3)利用点斜式求切线方。程
二:新知探究
1. 基本初等函数的导数公式
1.若f ( x) c, 则f '( x) 0;
sinx
(2)y xnex;
[练习2]
已知函 f(x)数 138x 2x2,且 f'(x0)4,求x0.
[例3]
已 知 函y数 xl nx. (1) 求 这 个 函 数 的 导 数 ; (2) 求 这 个 函 数 的 点 图x象 1在 处
的 切 线 方. 程
[练习3]
求 曲y线 sinx在 点 M(,0)处 的
f (x) f '(x)g(x) f (x)g'(x)
3. [ ]' g( x)
[ g( x)]2
( g( x) 0).
[例2] 根据基本初等函数的 数导 公式和
导数运算法则,求下 函列 数的导数:
(1)y x3 2x 3
(2 )y
4 ex
1
[练习1]
求下列函数的导数:
(1)yx3 lo g2 x; (3)y co sx.
一:温故知新
1、几个常用函数的导数
( 1) y c ( c 为常数) ( 2) y x ( 3) y x 2 ( 4) y 1
x ( 5) y x
一:温故知新
1、几个常用函数的导数
( 1) y c ( c 为常数) ( 2) y x ( 3) y x 2 ( 4) y 1

高中数学选修1-1精品课件1:3.2.2 基本初等函数的导数公式及导数的运算法则(一)


1 ,可以转化为y=
x3
x
2 3
,y=x-3
后再求导.
(4)对解析式较复杂的,要先化简解析式,再选择公式进行求
导,化简时注意化简的等价性.
【典例训练】
1.若y=10x,则y′|x=1=_________.
2.求下列函数的导数:
(1)y=x7;(2)y=
1 x2
;(3)y=
3 x;
(4)y=2sin
题目类型三、导数的综合应用 【技法点拨】
导数的综合应用的解题技巧 (1)导数的几何意义为导数和解析几何的沟通搭建了桥梁,很 多综合问题我们可以数形结合,巧妙利用导数的几何意义,即 切线的斜率建立相应的未知参数的方程来解决,往往这是解决 问题的关键所在.
(2)导数作为重要的解题工具,常与函数、数列、解析几何、 不等式等知识结合出现综合大题.遇到解决一些与距离、面积 相关的最值、不等式恒成立等问题.可以结合导数的几何意义 分析.
【解析】1.依题意,y′|x=x1=
,1
2 x1
∵n与m垂直,
(6)若f(x)=ex,则f′(x)=_ex_;
(7)若f(x)=logax,则f′(x)=
1 (a>0且a≠1);
xlna
(8)若f(x)=lnx,则f′(x)= 1 .
x
1.利用导数的定义求导与导数公式求导的区别 导函数定义本身就是函数求导的最基本方法,但导函数是由极 限定义的,所以函数求导总是要归结为求极限,这在运算上很 麻烦,有时甚至很困难,但是用导函数定义推导出常见函数与 基本初等函数公式后,求函数的导函数就可以用公式直接求导 了,简洁迅速.
第三章 导数及其应用
§3.2 导数的计算
3.2.2 基本初等函数的导数公式及导数 的运算法则(一)

高中数学人教A版选修1-1课件:3.2.2《基本初等函数的导数公式及导数的运算法则》


1.知识:基本初等函数的导数公式及导数运算法则; 2.思想:数形结合思想、归纳思想、分层思想.
(一)书面作业 必做题 P18 习题1.2
A组 5,6,7题
B组 2题
选做题 1.y cos x 的导数是 _________;
x 2.函数y ax2 1的图象与直线y x相切,则a= ______; 3.已知函数y x ln x. (1)求这个函数的导数; (2)求这个函数在点x 1处得切线方程.
总是 比别人 学得慢
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人学得差 不会举一反三
什么是学习力-含义
管理知识的能力 (利用现有知识 解决问题)
学习知识的能力 (学习新知识 速度、质量等)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学习方式
案例式 学习
顺序式 学习
冲刺式 学习
什么是学习力-高效学习必备习惯
我们遇到的许多函数都可以看成是由两个函数经过
"复合"得到的,例如,函数y 2x 32由y u2和u 2x 3
"复合"而成, 等等.
一般地, 对于两个函数y f u和u gx,如果通过变量u, y可以表示成x的函数, 那么称这个函数为函数y f u和 u gx的复合函数(composite functio#39; x
ln
u ' 3x
2'
1 u
3
3 3x
2
.
例4 求下列函数的导数
1 y 2x 32 ; 2 y e0.05x1 ;
3 y sinx 其中 ,均为常数 .
解 1函数y 2x 32可以看作函数y u3和
u 2x 3的复合函数.

高中数学 3.2.2 基本初等函数的导数公式及导数的运算法则教案 新人教A版选修1-1

甘肃省金昌市第一中学2014年高中数学 3.2.2 基本初等函数的导数公式及导数的运算法则教案 新人教A 版选修1-11.能利用给出的基本初等函数的导数公式及导数的四则运算法则求简单函数的导数;教学重点:会使用导数公式求函数的导数教学难点:会使用导数公式求函数的导数教学过程:一、讲解新课:1、基本初等函数的导数公式*11.(),()0;2.()(),();3.()sin ,()cos ;4.()cos ,()sin ;5.(),()ln ;6.(),();17.()log ,();ln 18.()ln ,().n n x x x x a f x c f x f x x n Q f x x f x x f x x f x x f x x f x a f x a x f x e f x e f x x f x x a f x x f x x -'=='=∈='=='==-'=='=='=='==函函函函函函函函函函函函函函函函2、讲解例题 P83 例1练习1、求下列函数的导数。

(1) y= 5 (2) y= x 4 (3) y= x -2(4)y= 2 x (5) y=log3x3、导数运算法则4、讲解例题例2 根据基本初等函数的导数公式和导数运算法则,求函数的导数.323y x x =-+解: 332(23)()(2)(3) 3 2.y x x x x x '''''=-+=-+=-Q [][][]21.()()()();2.()()()();()()()()()3..()()f x g x f x g x f x g x f x g x f x f x g x f x g x g x g x '''±=±'''⋅=⋅'''⎡⎤-=⎢⎥⎣⎦32233 2.y x x y x '∴=-+=-函函函函函函练习: 求下列函数的导数(1) (2) (3)x x x y -+=23sin )23)(12(++=x x y x y tan =(4)(5)x e y x ln =1+=x xy 例3 日常生活中的饮用水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将吨水净化到纯净度为时所需费用(单位:元)为1%x ).10080(1005284)(<<-=x xx c 求净化到下列纯度时,所需净化费用的瞬时变化率:(1);(2).%90%98例4 已知函数.ln x x y =(1) 求这个函数的导数;(2)这个函数在点处的切线方程.1=x 二、小结 :1、基本初等函数的导数公式*11.(),()0;2.()(),();3.()sin ,()cos ;4.()cos ,()sin ;5.(),()ln ;6.(),();17.()log ,();ln 18.()ln ,().n n x x x x a f x c f x f x x n Q f x x f x x f x x f x x f x x f x a f x a x f x e f x e f x x f x x a f x x f x x -'=='=∈='=='==-'=='=='=='==函函函函函函函函函函函函函函函函2、导数运算法则教学反思 [][][]21.()()()();2.()()()();()()()()()3..()()f x g x f x g x f x g x f x g x f x f x g x f x g x g x g x '''±=±'''⋅=⋅'''⎡⎤-=⎢⎥⎣⎦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3) y ( x 1)(x 2)
y 2 x 3
解:净化费用的瞬时变化率就是净化费用
函数的导数。
1 5284 ( x ) ( 5284 ( x 100 ) c ) 100 x 1 ( x 100) 1 ( x 100) 5284 2 ( x 100)
[ f ( x) g ( x)]' f '( x) g '( x)
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x)
轮流求导之和
f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
导数的运算法则:(和差积商的导数)
[ f ( x) g ( x)]' f '( x) g '( x)
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x)
轮流求导之和
f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
y 3x 2 2
y (x3 2x 3)
所 以,
练习2、求下列函数的导数。
(1) y x sin x
2
x x 2 (1) y 2 sin cos 2 x 1 (2) 2 2
y cos x 4 x
1 2 1 练习2、判断曲线 y 2 x 在(1,-)处 2
是否有切线,如果有, 求出切线的方程.
试自己动手解答.
1 有 y x 2 ,
切 线
基本初等函数的导数公式
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
上导乘下,下导乘上,差比下方
为1321元/吨。
练习3、求下列函数的导数。
1 2 (1) y 2 ; x x x 1 4 2 ; (2) y 1 (1) y 1 (1) ;y 2 3 ; x2 x x2 x x (3) y tan x; x (2) y 22 ; 2 (4) y 1 x 3) 1 x ; (2 x (3) y tan x; 2
上导乘下,下导乘上,差比下方
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x)
如果上式中f(x)=c,则公式变为:
[cg ( x)] cg ( x)
例2 根据基本初等函数的导数公式和导数
运算法则,求函数y=x3-2x+3的导数。
解:因 3 ( x ) (2 x) (3) 为 2 3x 2
0 ( x 100) 11 5284 5284 2 2 ( x 100) ( x 100)
5284 52.84,所以, (1)因为 c(90) 2 (90 100) 纯净度为90%时,费用的瞬时变化率
为52.84元/吨。
5284 1321 ,所以, (2)因为 c(98) 2 (98 100) 纯净度为98%时,费用的瞬时变化率
第三章 导数及其应用
基本初等函数的导数公式
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
1 x 2 2) y ( 3) 1 x 2 ; 2 2 ; (4) y (2 x (1 x )
x
x
x (2) y ; 2 1 x (3) y tan x;
本题可先将tanx转化为sinx和cosx的比值,
(4) y (2 x 2 3) 1 x 2 ;
p(t ) p0 (1 5%)
t
解:根据基本初等函数导数公式表,有
(t ) 1.05t ln1.05 p
所以 p(10) 1.05 ln1.05 0.08(元 / 年)
10
因此,在第10个年头,这种商品的价格 约以0.08元/年的速度上涨.
导数的运算法则:(和差积商的导数)
再利用导数的运算法则(3)来计算。
1 ( 3) y ; 2 cos x
我们再回顾一下 “导数的几何意义” 中的两个练习题。
练习1、求曲线 y 9 在点M(3,3)处的 x 切线的斜率及倾斜角. 第二种解法:
9 y 2 x
代入x=3,得
y 1
斜率为-1,倾斜角为135°
练习1、求下列函数的导数。
(1) y= 5
y 0
4
-2
(2) y= x
(3) y= x
2 y 2 x 3 x
3
y 4x
3
x (4) y= 2
y 2 ln 2
x
(5) y=log3x y
1 x ln 3
思考如何求下列函数的导数:
1 (1) y 4 x
(2) y x x
相关文档
最新文档