基因工程学习资料

合集下载

基因工程知识点总结归纳(更新版)

基因工程知识点总结归纳(更新版)

基因工程绪论1、克隆(clone):作名词:含有目的基因的重组DNA分子或含有重组分子的无性繁殖。

作动词:基因的分离和重组的过程。

2、基因工程(gene engineering):体外将目的基因插入病毒、质粒、或其他载体分子中,构成遗传物质的新组合,并使之掺入到原先没有这些基因的宿主细胞内,且能稳定的遗传。

供体、受体和载体是基因工程的三大要素。

3、基因工程诞生的基础三大理论基础:40年代发现了生物的遗传物质是DNA;50年代弄清楚DNA 的双螺旋结构和半保留复制机理;60年代确定遗传信息的遗传方式。

以密码方式每三个核苷酸组成一个密码子代表一个氨基酸。

三大技术基础:限制性内切酶的发现;DNA连接酶的发现;载体的发现3、基因工程的技术路线:切:DNA片段的获得;接:DNA片段与载体的连接;转:外源DNA片段进出受体细胞;选:选择基因;表达:目的基因的表达;基因工程的工具酶1、限制性内切酶(restriction enzymes):主要是从原核生物中分离纯化出来的,是一类能识别双链DNA分子中某种特定核苷酸序列,并由此切割DNA双链的核酸内切酶。

2、限制酶的命名:属名(斜体)+种名+株系+序数3、II型限制性内切酶识别特定序列并在特定位点切割4、同裂酶:来源不同,其识别位点与切割位点均相同的限制酶。

5、同尾酶:来源不同,识别的靶序列不同,但产生相同的黏性末端的酶形成的新位点不能被原来的酶识别。

6、限制性内切酶的活性:在适当反应条件下,1小时内完全酶解1ug特定的DNA 底物,所需要的限制性内切酶的量为1个酶活力单位。

7、星号活性:改变反应条件,导致限制酶的专一性和酶活力的改变。

8、DNA连接酶的特点:具有双链特异性,不能连接两条单链DNA分子或闭合单链DNA,连接反应是吸能反应,最适反应温度是4至15度,最常用的是T4连接酶。

9、S1核酸酶:特异性降解单链DNA或RNA。

10、RNAH降解与DNA杂交的RNA,用于cDNA文库建立时除去RNA以进行第二链的合成。

基因工程知识点

基因工程知识点

基因工程各章知识点第一章绪论1.基因工程的首例操作实验三大理论基础:DNA是遗传物质、DNA的双螺旋结构和半保留复制、遗传密码的破译和遗传物质传递方式的确定三大技术基础:限制性核酸内切酶的发现与DNA的切割、DNA连接酶的发现与DNA片段的连接、基因工程载体的研究与应用基因工程的诞生:72年,P.Berg首次实现体外DNA重组:体外用EcoRI分别切割SV40和λDNA,并用T4 DNA连接酶连接成为重组的杂种DNA分子73年,S.Cohen 体外重组DNA并转化:具Kanr的E.Coli质粒R6-5和具Tetr的E.Coli质粒pSC101切割并连接转化的大肠杆菌具有双重抗性S.Cohen 和H.Boyer首次实现真核基因在原核中表达:将非洲爪蟾的DNA与E.Coli质粒(pSC101)体外切割并连接,转化大肠杆菌2.基因工程的基本概念基因工程是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种新物体(受体)内,使之稳定遗传并表达出新产物或具有新性状的DNA体外操作技术,也称为分子克隆或重组DNA 技术。

供体、载体、受体是基因工程的三大基本元件。

3.基因工程的基本操作过程a分离目的DNA片段:酶切、PCR扩增、化学合成等。

b重组:体外连接的DNA和载体DNA,形成重组DNA分子。

c转化:将重组DNA分子导入受体细胞并与之一起增殖。

d筛选:鉴定出获得了重组DNA分子的受体细胞。

e对获得外源基因的细胞或生物体通过培养,获得所需的遗传性状或表达出所需要的产物。

第二章载体1.理解用PBR322和PUC18作载体的克隆外源基因的原理。

答案不确定PBR322作载体的克隆外源基因的原理:PBR322质粒具有12 种限制性内切酶的单一识别位点:Tet r 基因内有7个酶切位点:Bam HⅠ,SalⅠ:Amp r基因内有3 个酶切位点:PstⅠ。

Eco RⅠ和HindⅢ不在抗生素基因内,不导致插入失活。

《基因工程是一种重组 DNA 技术》 学历案

《基因工程是一种重组 DNA 技术》 学历案

《基因工程是一种重组 DNA 技术》学历案一、学习目标1、理解基因工程的定义和基本原理,明确其作为重组 DNA 技术的核心概念。

2、掌握基因工程的主要操作步骤,包括目的基因的获取、载体的选择与构建、重组 DNA 的形成、导入受体细胞以及筛选和鉴定。

3、了解基因工程在农业、医药、工业等领域的应用,认识其对人类生活和社会发展的重要影响。

4、培养对基因工程的科学态度,关注其发展带来的伦理和社会问题。

二、学习重难点1、重点基因工程的基本原理和操作步骤。

基因工程在不同领域的应用实例。

2、难点目的基因的获取方法和技术。

重组 DNA 导入受体细胞的方法和原理。

三、学习过程(一)知识准备在学习基因工程之前,我们需要先了解一些相关的基础知识。

1、 DNA 的结构和功能DNA 是由两条反向平行的脱氧核苷酸链组成的双螺旋结构,它携带着生物体的遗传信息。

基因是具有遗传效应的 DNA 片段,控制着生物体的性状。

2、中心法则中心法则描述了遗传信息从 DNA 传递到 RNA,再到蛋白质的过程。

这是基因表达的基本途径。

3、酶的作用在基因工程中,会用到多种酶,如限制性内切酶、DNA 连接酶等。

限制性内切酶能够识别特定的核苷酸序列并切割 DNA,DNA 连接酶则能够将两段 DNA 连接起来。

(二)基因工程的原理基因工程是指按照人们的愿望,进行严格的设计,通过体外 DNA重组和转基因等技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。

其核心是构建重组 DNA 分子,即将不同来源的 DNA 片段连接在一起,形成新的 DNA 分子。

基因工程的基本原理基于以下几点:1、不同生物的 DNA 分子具有相同的化学组成和双螺旋结构,这使得来自不同生物的基因可以拼接在一起。

2、基因是控制生物性状的基本遗传单位,具有相对独立性。

3、各种生物都共用一套遗传密码,这使得一种生物的基因能够在另一种生物体内得以表达。

(三)基因工程的操作步骤1、目的基因的获取目的基因是指我们希望导入受体细胞并表达的基因。

高中生物选修3教案 第1章 基因工程

高中生物选修3教案 第1章 基因工程

专题一 1.1 DNA重组技术的基本工具1、教材分析《DNA重组技术的基本工具》是人教版生物选修三专题一《基因工程》的第一节,本节内容主要是介绍了DNA重组技术的三种基本工具,是学习《基因工程的基本操作程序》的基础和前提。

2、教学目标1.知识目标:(1)简述基础理论研究和技术进步催生了基因工程。

(2)简述DNA重组技术所需的三种基本工具。

2.能力目标:运用所学DNA重组技术的知识,模拟制作重组DNA模型。

3.情感、态度和价值观目标:(1)关注基因工程的发展。

(2)认同基因工程的诞生和发展离不开理论研究和技术创新。

3、教学重点和难点1、教学重点DNA重组技术所需的三种基本工具的作用。

2、教学难点基因工程载体需要具备的条件。

4、学情分析学生在必修课中已经学习过关于基因工程的基础知识,对于本部分内容已经有了初步了解,所以学习起来应该不会有太大的困难。

5、教学方法1、学案导学:见学案。

2、新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习6、课前准备1.学生的学习准备:预习《DNA重组技术的基本工具》,初步把握DNA重组技术所需的三种基本工具的作用。

2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。

七、课时安排:1课时一、教学过程(一) 预习检查、总结疑惑。

检查学生落实预习情况并了解学生的疑惑,使教学具有针对性。

(二)情景导入、展示目标。

教师首先提问:A.我们以前在哪部分学习过基因工程?(必修二从杂交育种到基因工程)B.回想一下,转基因抗虫棉是怎样培育出来的?经过了哪些主要步骤?(实质是基因工程的基本操作程序:目的基因的获取,基因表达载体的构建,将目的基因导入受体细胞,目的基因的检测与鉴定)从这节课开始,我们将深入学习基因工程,今天我们来学习DNA重组技术的基本工具。

我们来看本节课的学习目标。

(多媒体展示学习目标,强调重难点)(三)合作探究、精讲点拨。

分子生物学与基因工程

分子生物学与基因工程

分子生物学与基因工程引言:分子生物学与基因工程是现代生物学领域中最为重要和前沿的研究方向之一。

分子生物学研究了生物体内分子的结构、功能和相互作用,而基因工程则利用分子生物学的原理和技术,对生物体内的基因进行操作和改造,以实现对生物体的控制和改良。

本教案将分为三个小节,分别探讨分子生物学的基础知识、基因工程的原理和应用以及分子生物学与基因工程在生物医学领域的应用。

第一小节:分子生物学的基础知识(700字左右)1. 分子生物学的起源和发展- DNA的发现和双螺旋结构的揭示- 中心法则的提出和基因的概念- 分子生物学的研究方法和技术的发展2. DNA的结构和功能- DNA的化学组成和结构特点- DNA的复制、转录和翻译过程- DNA的遗传信息传递和遗传变异3. RNA的结构和功能- mRNA、tRNA和rRNA的功能和作用- RNA的修饰和调控- RNA在基因表达中的重要性第二小节:基因工程的原理和应用(700字左右)1. 基因工程的基本原理- DNA的重组和修饰技术- 基因的克隆和表达- 基因组编辑和定点突变2. 基因工程在农业领域的应用- 转基因作物的培育和应用- 抗虫、抗病和耐逆性的改良- 农作物品质和产量的提高3. 基因工程在医学领域的应用- 基因治疗和基因药物的研发- 基因诊断和个性化医疗- 基因工程在疾病治疗中的前景第三小节:分子生物学与基因工程在生物医学领域的应用(700字左右)1. 基因组学和蛋白质组学的发展- 基因组学和蛋白质组学的研究方法和技术- 基因组学和蛋白质组学在疾病研究中的应用2. 疾病基因的发现和研究- 遗传性疾病的基因定位和克隆- 疾病相关基因的功能解析和调控机制研究- 基因工程在疾病治疗中的应用前景3. 基因工程在干细胞和再生医学中的应用- 干细胞的特性和应用前景- 基因工程在干细胞治疗和组织工程中的应用- 基因工程在器官移植和再生医学中的前景结语:分子生物学与基因工程作为现代生物学的重要分支,不仅推动了生物学的发展,也为人类社会的进步和生活质量的提高做出了巨大贡献。

《基因工程说课》课件

《基因工程说课》课件
《基因工程说课》ppt课 件
CATALOGUE
目 录
• 基因工程简介 • 基因工程的基本技术 • 基因工程实验操作流程 • 基因工程的安全与伦理问题 • 未来展望
01
CATALOGUE
基因工程简介
基因工程的定义
基因工程是指通过人工操作将外源基因导入细胞或生物体内,以改变其遗传物质, 从而达到改良生物性状、生产生物制品或治疗遗传性疾病目的的技术。
基因工程是生物工程的一个重要分支,它利用分子生物学和分子遗传学的原理和技 术,对生物体的遗传物质进行操作和改造。
基因工程的基本操作包括基因克隆、基因转移、基因表达和基因沉默等,这些技术 为人类提供了强大的工具来探索和利用生命系统的奥秘。
基因工程的历史与发展
基因工程的起源可以追溯到20世纪70 年代初期,当时科学家们开始探索限制 性内切酶和DNA连接酶等基本工具,
健康风险
基因工程可能对人类健康产生负面 影响,如基因治疗中的副作用。
安全风险
基因工程可能被用于制造生物武器 或生物恐怖主义。
基因工程的伦理问题
人类基因编辑
基因资源与知识产权
基因工程应用于人类胚胎编辑可能引 发一系列伦理问题,如设计婴儿等。
基因资源属于全人类共享的遗产,涉 及知识产权和利益分配问题。
为基因操作奠定了基础。
1973年,美国科学家斯坦利·柯恩和赫 伯特·博耶利用限制性内切酶和DNA连 接酶,成功地将SV40病毒的DNA切割 并重新连接,从而实现了第一个重组
DNA分子。
自此以后,基因工程技术不断发展,逐 渐形成了完整的理论体系和技术体系, 并在医学、农业、工业和基础研究中得
到了广泛应用。
基因歧视
基因信息可能被用于歧视某些人群, 如保险、就业等方面。

《基因工程及其应用》 学历案

《基因工程及其应用》学历案一、学习目标1、理解基因工程的概念和原理。

2、掌握基因工程的基本操作工具。

3、了解基因工程的操作步骤。

4、认识基因工程在农业、医药、环境保护等领域的应用。

二、知识回顾在学习基因工程之前,我们先来回顾一下与基因相关的一些基础知识。

基因是具有遗传效应的 DNA 片段,它控制着生物体的性状。

DNA 是由两条反向平行的脱氧核苷酸链组成的双螺旋结构。

中心法则揭示了遗传信息的流动方向,包括 DNA 的复制、转录和翻译等过程。

三、基因工程的概念基因工程,又叫基因拼接技术或 DNA 重组技术,是指按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。

四、基因工程的原理基因工程的原理是基因重组。

传统的杂交育种是在同种生物之间进行的基因重组,而基因工程则打破了物种之间的界限,实现了不同物种之间的基因重组。

五、基因工程的操作工具1、限制性核酸内切酶(简称限制酶)限制酶能够识别双链 DNA 分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。

2、 DNA 连接酶DNA 连接酶的作用是将两个具有相同末端的 DNA 片段连接起来,形成重组 DNA 分子。

3、运载体常用的运载体有质粒、噬菌体和动植物病毒等。

运载体需要具备的条件有:能够在宿主细胞中复制并稳定保存;具有多个限制酶切点,以便与外源基因连接;具有标记基因,便于进行筛选。

六、基因工程的操作步骤1、目的基因的获取目的基因可以从自然界中已有的物种中分离出来,也可以通过人工合成的方法获得。

2、基因表达载体的构建这是基因工程的核心步骤。

将目的基因与运载体结合,形成重组DNA 分子。

3、将目的基因导入受体细胞根据受体细胞的不同,导入的方法也有所不同。

例如,将目的基因导入植物细胞可以采用农杆菌转化法、基因枪法和花粉管通道法;导入动物细胞常用的方法是显微注射法;导入微生物细胞则通常用感受态细胞法。

基因工程高三知识点

基因工程高三知识点基因工程是现代生物学中的一项重要技术,通过改变生物体的遗传物质(DNA)来创造新的基因组合或改变生物体的性状。

在高中生物学课程中,学生需要掌握基因工程的基本原理、应用以及相关的伦理和社会问题。

以下是基因工程的一些高三知识点。

一、基因工程的基本原理基因工程是利用DNA技术改变生物体的遗传信息,主要包括以下几个步骤:1. DNA提取:从感兴趣的生物体中提取DNA,通常使用PCR 技术扩增目标DNA片段。

2. DNA剪切:利用限制酶切割目标DNA,产生特定的切口。

3. DNA连接:将DNA片段连接到载体DNA上,形成重组DNA。

4. DNA转化:将重组DNA导入目标细胞中,使其具有新的遗传特性。

5. PCR扩增:使用聚合酶链反应扩增目标DNA的数量。

二、基因工程的应用领域1. 农业领域:基因工程可以用于改良作物,包括提高抗病虫害能力、增加产量、提高品质等。

2. 医学领域:基因工程可以用于制备重组蛋白药物,如胰岛素、生长激素等。

3. 环境领域:基因工程可以用于环境修复,包括通过基因修复技术降解污染物。

4. 科研领域:基因工程可以用于基因功能研究、疾病模型建立等。

三、基因工程的风险与伦理问题1. 生物安全风险:基因工程可能导致基因剥离和转基因生物的释放,风险包括基因污染、基因流动等。

2. 伦理问题:基因工程涉及到修改生物的基因组,可能引发对自然与人类的伦理关切,如人类基因改造、人类克隆等。

四、国际和国内基因工程的监管措施1. 国际监管:1992年生物安全议定书规定,转基因生物的跨国转运需要进行风险评估和合格证明。

2. 国内监管:我国设立了生物安全管理委员会,建立了转基因食品的安全管理体系。

五、基因工程的前景与挑战基因工程作为一种重要的生物技术,将会继续在农业、医学、环境等领域发挥重要作用。

但同时也面临着风险与挑战,需要加强监管、推动科学研究和公众教育。

总结:基因工程作为现代生物学的重要分支,已经在农业、医学、环境等领域取得了巨大的进展和应用。

专题 基因工程知识点梳理(含教材答案)

专题1 基因工程※基因工程的概念:基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。

基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。

﹡原理:基因重组﹡目的:创造出更符合人们需要的新的生物类型和生物产品。

﹡意义:能够打破生物种属的界限(即打破生殖隔离,克服远源杂交不亲和的障碍),在分子水平上定向改变生物的遗传特性。

﹡操作水平:DNA分子水平【思考】:(1)基因工程的物质基础是:所有生物的DNA均由四种脱氧核苷酸组成。

(2)基因工程的结构基础是:所有生物的DNA均为双螺旋结构。

(3)一种生物的DNA上的基因之所以能在其他生物体内得以进行相同的表达,是因为它们共用一套遗传密码子。

一、基因工程的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分离纯化出来的。

(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。

(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端(回文结构特点)。

①在中心轴线两侧将DNA切开,切口是黏性末端。

②沿着中心轴线切开DNA,切口是平末端。

2.“分子缝合针”——DNA连接酶(1)分类:根据酶的来源不同,可分为E·coliDNA连接酶和T4DNA连接酶两类(2)功能:恢复被限制酶切开了的两个核苷酸之间的磷酸二酯键。

★两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较:①相同点:都缝合磷酸二酯键②区别:E.coIiDNA连接酶来源于大肠杆菌,只能使黏性末端之间连接;T4DNA连接酶能缝合两种末端,但连接平末端之间的效率较低。

(3)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。

高中生物学选择性必修3基因工程的应用


知识点一 基因工程在农牧业方面的应用
梳理教材
新教材·生物(RJ) 选择性必修3
1.转基因抗虫植物 (1)方法:从某些生物中分离出具有____抗__虫___功__能__的__基__因______,将其导入作物中。 (2)成果:______转__基__因__抗__虫__棉___花_______、玉米、水稻等。 (3)意义:减少____化__学__杀__虫__剂_____的使用,降低生产成本,减少环境污染。 2.转基因抗病植物 (1)方法:将来源于某些病毒、真菌等的___抗__病__基__因____导入植物中。 (2)成果:转基因抗病毒甜椒、番木瓜等。 (3)意义:能获得用常规育种方法很难培育出的_________抗__病__的__新__品__种___________。
新教材·生物(RJ) 选择性必修3
解析:将抗逆性基因导入农作物体内,可用于提高农作物的抗逆能力, A 正确;我国转基因抗虫棉是转入了苏云金芽孢杆菌的抗虫基因培育出来的, B 错误;因为盐碱和干旱对农作物的危害与细胞内调节渗透压有关,所以科 学家可以调节细胞渗透压的基因,来提高作物抗盐碱、抗干旱的能力,这在 烟草等植物中已获得了比较明显的成果,C 正确;外源生长激素基因表达可 以使转基因动物生长更快,D 正确。
(4)用基因工程的方法,使外源基因得到高效表达的菌类一般称为基因工 程菌。( √ )
互动探究
新教材·生物(RJ) 选择性必修3
1.(科学思维)用乳腺生物反应器或乳房生物反应器可大量生产药物,构 建这种药物基因的表达载体时,需要怎样的启动子?
提示:乳腺蛋白基因的启动子。
2.什么是干扰素?有何作用?用什么方法可大量生产干扰素? 提示:干扰素是动物或人体细胞受到病毒侵染后产生的一种糖蛋白。干 扰素几乎能抵抗所有病毒引起的感染,它是一种抗病毒的特效药。用基因工 程的方法利用大肠杆菌及酵母菌细胞大量生产干扰素。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Dra III
Ear I
同裂酶(isoschizomer)
• 指来源不同但具有相同识别序列的一类限制酶,但其切割位点可能不同。 • 可分为如下几种情况: 1 ) 同 序 同 切 酶 , 如 BamH I 和 BstY I 具 有 相 同 的 识 别 切 割 位 点 G↓GATCC; 2)同序异切酶,如Kpn I(GGTAC↓C)和Acc65 I(G↓GTACC); 3 ) 识别简并序列的限制酶包含了另一种限制酶识别序列,如 EcoR I ( G↓AATTC )和 Apo I ( R↓AATTY )、 Sal I ( G↓TCGAC )和 Acc I (GT↓MKAC)、Hinc II(GTY↓RAC)。
H.O.Smith and D.Nathans(1973)年提议的命名系统 • 用属名第一个字母和种名的头两个字母组成的3个字母的略 语表示寄主菌的物种名。 如:Escherichia coli 用Eco表示。 • 用一个写在右下方的标注字母代表菌株或型,如:EcoR。 • 以罗马字母表示同一菌株中不同的限制和修饰体系。如: EcoRI 和EcoRV (EcoR I, EcoR V)。 • 例:Hind III 表示为从流感嗜血菌Rd 菌株(Haemophilus influenzae Rd)中分离到的第三种限制性内切酶。
2.1.9.3 酶量
• 根据酶的活性和DNA底物的量、反应时间而定。 限制性核酸内切酶活性单位定义: 在最适反应条件下,60分钟内完全切割1μg λDNA所需的酶量为1个酶活性单位(unit 或U) • 容积活性: U/ μl • 与DNA分子上识别位点的密度、位点偏爱有关: 密度大用酶量多;密度小用酶量少。 • 常用酶量:酶和底物比例为2~10U/ μgDNA
识别序列的结构
回纹结构(palindromic sequence) 或旋转对称或二重互补对称
识别序列可以以5’→3’ 走向的单链DNA表示: 5‘-ABCC’B’A’-3’
限制酶识别序列的特殊情况
间断对称:对称轴之间含若干任意碱基
♦ 有些识别序列呈间断对称: AlwN I CA GNNNC↓TG GT↑CNNNG AC ♦ 有些识别序列完全不对称: AccBS I CCG↓CTC GGC↑GAG C↓TNA G G ANT↑C
具有相同的识别序列和切割位点, 但来源菌不同,甲基化敏感程度 , 作用条件以及酶活性可能不同。
同尾酶(isocaudamer)
• 指来源不同,识别序列可能不同,但可以产生相同黏性末 端的限制性内切酶。如Spe I(A↓CTAGT)、Nhe I (G↓CTAGC)和Xba I(T↓CTAGA)。 • 一组同尾酶切割产生的粘性末端可进行互补连接。 • 两个同尾酶形成的黏性末端连接之后,一般连接处不能够 再被其任何一种同尾酶识别。
教材p17表2-2
三亚基双功能
二亚基双功能
不需ATP
非对称
回文结构
非对称
REBASE(The Restriction Database), 由NEB(New England Biolabs)公司维护()。
2.1.4 限制性内切酶的识别序列
• 识别序列:
2.1.1 限制(restriction) 与修饰(modification)
寄主控制的限制与修饰现象 : (寄主控制专一性) 限制:寄主(细菌)能够识别自 己的DNA和外来的DNA,并 使后者降解掉。 EOP (efficiency of plate):感染率 •修饰: 在寄主大肠杆菌K菌株生长的λ噬菌体( λk)感染大肠杆菌 B菌株,因为受到限制,产生稀少的噬菌斑。但用这少量的噬菌 斑中的噬菌体再感染B菌株,这些噬菌体可以在B菌株上有效的生 长。B菌株赋予了λk噬菌体的这种非遗传变化,使得它再感染B菌 株时没有再次受到B菌株限制的现象,称为修饰。
Sau3A I ↓GATC CTAG↑ Bcg I ↓10(N)CGA(N)6TGC(N)12↓ ↑12(N)CGA(N)6ACG(N)10↑
Байду номын сангаас
TspR I
NNCAC(G)TGNN↓ ↑NNGTG(C)ACNN
2.1.6 限制性内切酶的切割方式
• 交错切割(staggered cut): DNA双链断开的位置对称地分布在识别序 列中心位置的两侧,使切割后的DNA末端为单 链突出的末端。 黏性末端;非对称突出末端 • 平切割(blunt cut) : DNA双链断开的位置处在识别序列的对称 中心,使切割后的DNA末端为平齐的平末端。
指限制性内切酶在双链DNA上能够 识别的特殊核苷酸序列。 • 专一 • 通常4~6/8个特定的核苷酸对组成。
限制性内切酶的识别序列
• 识别序列出现的概率: 1/4n(n=识别序列核苷酸组成的数目)。 识别序列为4bp,则每隔256( 44 )bp会出 现一个识别位点。 识别序列为6bp,则每隔4096( 46 )bp会 出现一个识别位点。 • 稀切酶: 指识别序列长和识别序列富含GC或富含AT 的限制性核酸内切酶。 • 有的限制性内切酶可识别两种以上序列。
2.1.9.4 底物DNA
• DNA的纯度:高。不含蛋白质、酚、氯仿、 酒精、EDTA、SDS等。 • DNA的浓度:适量。 • DNA分子构型:线性DNA切割效率>超螺 旋质粒DNA和环状病毒DNA。 • DNA上识别序列的侧面序列 • 甲基化程度:识别序列中的核苷酸被甲 基化会影响限制性内切酶的切割效率。
BamH I 识别序列:G↓GATCC Bgl II 识别序列: A↓GATCT
2.1.7 DNA末端长度对限制性酶切的影响 • DNA上识别序列的侧面序列:大多数限制 性内切酶对只含识别序列的寡核苷酸不具 催化活性,识别位点两侧至少要有一定数 量的核苷酸,才能被有效切割。 • 不同酶对末端长度的要求不同
2.1 限制性核酸内切酶
2.1.1 限制与修饰 2.1.2 限制性核酸内切酶的发现与命名 2.1.3 限制性核酸内切酶的类型 2.1.4 限制性内切酶的识别序列 2.1.5 限制性内切酶的切割位点 2.1.6 限制性内切酶的切割方式 2.1.7 DNA末端长度对限制性酶切的影响 2.1.8 位点偏爱 2.1.9 酶切反应条件 2.1.10 星活性 2.1.11 酶切注意事项 2.1.12 限制酶酶切位点的引入
第二章 分子克隆的工具酶
2.1 限制性核酸内切酶 2.2 聚合酶 2.3 DNA连接酶 2.4 其它分子克隆工具酶
2.1 限制性核酸内切酶
(restriction endonuclease) “分子剪刀”或
• 是一类能识别双链DNA 中特殊核苷酸序列,并 使每条链的一个磷酸二 酯键断开的内脱氧核糖 核酸酶。 • 是生物细胞内限制性修 饰系统的一部分,防止 外源DNA的入侵。 “分子手术刀”
3’黏性末端
5’黏性末端
平末端
只有一个碱基突出 的黏性末端(识别 序列核苷酸为奇数)
限制酶切割非对称识别序列产生 非对称的突出末端
BbvC I Acc I
CC↓TCAGC GGAGT↑CG GT↓MKAC CAKM↑TG CACNNN↓GTG GTG↑NNNCAC CTCTTCN↓ GAGAAGNNNN↑
2.1.8 位点偏爱 (site preference)
• 位点偏爱:同一DNA分子上不同位点的 相同的识别序列的切割效率不同的现象。 与识别序列两侧的核苷酸组成有关。 • 切割相同量的不同DNA时所需的酶量是 不同的。
2.1.9 限制性核酸内切酶的反应条件
2.1.9.1 2.1.9.2 2.1.9.3 2.1.9.4 反应缓冲液 反应温度和时间 酶量 底物DNA
• 设计PCR引物在末端引入酶切位点,为了保证 PCR扩增片段顺利切割,应在设计引物末端加上 满足要求的碱基数目。一般在引物末端加3~4个 碱基能满足常规酶切的要求 • 双酶切多克隆位点时选择酶切秩序 CTCGAG GAATTC CTGCAG Xho I EcoR I Pst I 97% 1 37% 1 100% 88% 1
• 通用缓冲液 • 双酶切缓冲液的选择
2.1.9.2 反应温度和时间
• 大多数限制酶的反应温度为370C。 • 个别特殊的内切酶则需要在300C 、500C、600C或650C 的温度下进行切割。 • 反应时间:一般在适宜的缓冲液和温度条件下,每微克 DNA用5U的酶,保温1~2小时。时间延长,则酶用量可 相应减少。 • 终止反应:加入EDTA、加热65、80度处理20min处理 或者用苯酚抽提、试剂盒纯化、电泳分离。
• 1968年,首次从大肠杆菌K中分离到限制 酶,没有特定的切割位点(I型) • 1970年,美国的H. Smith首先在流感嗜血 杆菌中发现了第一个限制性内切酶(Hind II) • 2006年2月,共发现了3773种限制酶,其中 商业化的限制酶有609种。
2.1.2 限制性核酸内切酶的发现与命名
限制酶切割回文序列 产生粘性末端
平切割产生平末端
黏性末端 和平末端
• 黏性末端 (cohesive terminus/sticky ends): DNA末端一条链突出的几个核苷酸能与另一 个具有突出单链的DNA末端通过互补配对粘合,这 样的DNA末端,称为黏性末端。 • 3’黏性末端: 3’ 突出的黏性末端(DNA末端的3’端 比5 ’长) • 5 ’黏性末端: 5’ 突出的黏性末端(DNA末端的5’端 比3 ’长) • 平末端(blunt ends):DNA片段的末端是平齐的。
1 1
教材p15表2-1
核酸内切限制酶EcoRI及修饰的甲基化酶MEcoRI的限制与修饰作用
生物体内,甲基化是最常 见的修饰作用,甲基化酶 与限制酶二者对应并同时 存在。甲基化酶与对应的 限制酶识别相同的序列, 但其作用不是切割,而是 在两条链上对某个碱基进 行甲基化。
2.1.2 限制性核酸内切酶的发现与命名
Dde I
相关文档
最新文档