图的拓扑排序和生成树.
数据结构复习与习题解析(2)

按路径长度递增次序产生最短路径
1、把 V 分成两组: (1) S:已求出最短路径的顶点的集合。 (2) V - S = T:尚未确定最短路径的顶点集合。
2、将 T 中顶点按最短路径递增的次序加入到 S 中,保证: (1) 从源点 v0 到 S 中各顶点的最短路径长度都不大于 从 v0 到 T 中任何顶点的最短路径长度。 (2) 每个顶点对应一个距离值: S中顶点:从 v0 到此顶点的最短路径长度。 T中顶点:从 v0 到此顶点的只包括 S 中顶点作中间顶点的 最短路径长度。
例题解析
例已知某网的邻接(出边)表,请画出该网络。
当邻接表的存储 结构形成后,图 便唯一确定!
图的遍历
❖广度优先搜索
从图的某一结点出发,首先依次访问该结点的所有邻接顶点 V1, V2, …, Vn 再按这些顶点被访问的先后次序依次访问与它们 相邻接的所有未被访问的顶点,重复此过程,直至所有顶点均 被访问为止。
7 10 3
a10 16 16 0 ✓
a11 14 14 0 ✓
v2
v7
v5
v9
v3
v8
v4 a6=2 v6
顶点 ve vl
v1
00
v2
66
v3
46
v4
58
v5
77
v6
7 10
v7 16 16
v8 14 14
v9 18 18
有向图的应用 应用
无向图的应用
Dijkstra算法 最短路径 Floyd算法
条件:边数不等于 n-1时 边 动作 连通分量 (0,2) 添加 {0,2},{1},{3},{4},{5} (3,5) 添加 {0,2},{3, 5},{1},{4} (1,4) 添加 {0,2},{3, 5},{1,4} (2,5) 添加 {0,2,3,5},{1,4} (0,3) 放弃 因构成回路 (2,3) 放弃 因构成回路 (1,2) 添加 {0,2,3,5,1,4}
图论及其应用习题答案

图论及其应用习题答案图论及其应用习题答案图论是数学的一个分支,研究的是图的性质和图之间的关系。
图是由节点和边组成的,节点表示对象,边表示对象之间的关系。
图论在计算机科学、电子工程、物理学等领域有着广泛的应用。
下面是一些图论习题的解答,希望对读者有所帮助。
1. 问题:给定一个无向图G,求图中的最大连通子图的节点数。
解答:最大连通子图的节点数等于图中的连通分量个数。
连通分量是指在图中,任意两个节点之间存在路径相连。
我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,统计连通分量的个数。
2. 问题:给定一个有向图G,判断是否存在从节点A到节点B的路径。
解答:我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,查找从节点A到节点B的路径。
如果能够找到一条路径,则存在从节点A到节点B的路径;否则,不存在。
3. 问题:给定一个有向图G,判断是否存在环。
解答:我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,同时记录遍历过程中的访问状态。
如果在搜索过程中遇到已经访问过的节点,则存在环;否则,不存在。
4. 问题:给定一个加权无向图G,求图中的最小生成树。
解答:最小生成树是指在无向图中,选择一部分边,使得这些边连接了图中的所有节点,并且总权重最小。
我们可以使用Prim算法或Kruskal算法来求解最小生成树。
5. 问题:给定一个有向图G,求图中的拓扑排序。
解答:拓扑排序是指将有向图中的节点线性排序,使得对于任意一条有向边(u, v),节点u在排序中出现在节点v之前。
我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,同时记录节点的访问顺序,得到拓扑排序。
6. 问题:给定一个加权有向图G和两个节点A、B,求从节点A到节点B的最短路径。
解答:我们可以使用Dijkstra算法或Bellman-Ford算法来求解从节点A到节点B的最短路径。
这些算法会根据边的权重来计算最短路径。
图基本算法拓扑排序(基于dfs)

图基本算法拓扑排序(基于dfs) 拓扑排序,是对有向⽆回路图进⾏排序,以期找到⼀个线性序列,这个线性序列在⽣活正可以表⽰某些事情完成的相应顺序。
如果说所求的图有回路的话,则不可能找到这个序列。
在⼤学数据结构课上,我们知道求拓扑排序的⼀种⽅法。
⾸先⽤⼀个⼊度数组保存每个顶点的⼊度。
在进⾏拓扑排序时,我们需要找到⼊度为0的点,将其存⼊线性序列中,再将其从图中删除(与它相关的边都删除,相邻的顶点的⼊度均减1),再重复上⾯的操作,直⾄所有的顶点都被找到为⽌。
如果不对每次找⼊度为0的顶点的⽅法进⾏处理,⽽直接去遍历⼊度数组,则该算法的时间复杂度为O(|V|2),如果使⽤⼀个队列来保存⼊度为0的顶点,则可以将这个算法的复杂度降为O(V+E)。
今天在算法导论上看了⽤dfs来求拓扑排序的算法,才发现其⾼深之处,膜拜之Orz…下⾯是算法导论的叙述: 本节说明了如何运⽤深度优先搜索,对⼀个有向⽆回路图(dag)进⾏拓扑排序。
对有向⽆回路图G=(V,E)进⾏拓扑排序后,结果为该图顶点的⼀个线性序列,满⾜如果G包含边(u, v),则在该序列中,u就出现在v的前⾯(如果图是有回路的,就不可能存在这样的线性序列)。
⼀个图的拓扑排序可以看成是图中所有顶点沿⽔平线排列⽽成的⼀个序列。
使得所有的有向边均从左指向右。
因此,拓扑排序不同于通常意义上的排序。
在很多应⽤中,有向⽆回路图⽤于说明时间发⽣的先后次序,下图1即给出⼀个实例,说明Bumstead教授早晨穿⾐的过程。
他必须先穿好某些⾐服,才能再穿其他⾐服(如先穿袜⼦后穿鞋),其他⼀些⾐服则可以按任意次序穿戴(如袜⼦和裤⼦),在图1中,有向边<u,v>表⽰⾐服u必须先于⾐服v穿戴。
因此,该图的拓扑排序给出了⼀个穿⾐的顺序。
图2说明了对该图进⾏拓扑排序后,将沿⽔平线⽅向形成⼀个顶点序列,使得图中所有有向边均从左指向右。
拓扑排序算法具体步骤如下:1、调⽤dfs_travel();2、在dfs_travel()每次调⽤dfs()的过程中,都记录了顶点s的完成时间,将顶点s按完成顺序保存在存放拓扑排序顺序的数组topoSort[]中。
图论常考知识点总结

图论常考知识点总结1. 图的基本概念图是由顶点集合和边集合构成的。
顶点之间的连接称为边,边可以有方向也可以没有方向。
若图的边没有方向,则称图为无向图;若图的边有方向,则称图为有向图。
图的表示方式:邻接矩阵和邻接表。
邻接矩阵适合存储稠密图,邻接表适合存储稀疏图。
2. 图的连通性连通图:如果图中任意两点之间都存在路径,则称该图是连通图。
强连通图:有向图中,任意两个顶点之间都存在方向相同的路径,称为强连通图。
弱连通图:有向图中,去掉每条边的方向之后,所得到的无向图是连通图,称为弱连通图。
3. 图的遍历深度优先搜索(DFS):从起始顶点出发,沿着一条路往前走,走到不能走为止,然后退回到上一个分支点,再走下一条路,直到走遍图中所有的顶点。
广度优先搜索(BFS):从起始顶点出发,先访问它的所有邻居顶点,再按这些邻居顶点的顺序依次访问它们的邻居顶点,依次类推。
4. 最短路径狄克斯特拉算法:用于计算图中一个顶点到其他所有顶点的最短路径。
弗洛伊德算法:用于计算图中所有顶点之间的最短路径。
5. 最小生成树普里姆算法:用于计算无向图的最小生成树。
克鲁斯卡尔算法:用于计算无向图的最小生成树。
6. 拓扑排序拓扑排序用于有向无环图中对顶点进行排序,使得对每一条有向边(u,v),满足排序后的顶点u在顶点v之前。
以上就是图论中一些常考的知识点,希望对大家的学习有所帮助。
当然,图论还有很多其他的知识点,比如欧拉图、哈密顿图、网络流等,这些内容都值得我们深入学习和探讨。
图论在实际应用中有着广泛的应用,掌握好图论知识对于提升计算机科学和工程学的技能水平有着重要的意义。
计算机中图的名词解释

计算机中图的名词解释在计算机领域中,图(Graph)是一种常见的数据结构,用于描述对象之间的关系和相互作用。
图的概念最早由数学家欧拉提出,并且在计算机科学中得到广泛运用。
本文将从图的基本概念和操作开始,逐步介绍计算机中图的相关术语和应用。
1. 图的基本概念图由节点(Node)和边(Edge)组成。
节点表示对象或实体,边表示节点之间的连接关系。
图可以分为有向图(Directed Graph)和无向图(Undirected Graph)。
在有向图中,边具有方向性,表示从一个节点流向另一个节点;而在无向图中,边没有方向性,表示两个节点之间的相互关系。
2. 图的存储方式为了在计算机中表示和处理图,常见的存储方式有邻接矩阵(Adjacency Matrix)和邻接表(Adjacency List)。
邻接矩阵是一个二维数组,其中行和列表示节点,矩阵的值表示节点之间是否有边相连。
邻接表则使用链表的形式来表示节点之间的连接关系,每个节点对应一个链表,链表中存储了与该节点相连的其他节点。
3. 图的遍历图的遍历是指沿着图中的路径,依次访问所有节点的过程。
常见的图遍历算法有深度优先搜索(Depth-First Search)和广度优先搜索(Breadth-First Search)。
深度优先搜索先选择一个起始节点,沿着路径一直深入直到无法继续,然后回溯到其他未访问的节点,继续深入;而广度优先搜索则是从起始节点开始,并逐层扩展,逐层访问。
4. 最短路径算法最短路径算法用于计算两个节点之间的最短路径,即路径上边的权值之和最小。
其中,最常用的最短路径算法是狄克斯特拉算法(Dijkstra Algorithm)。
该算法通过逐步更新节点到其他节点的距离,找到起始节点到目标节点的最短路径。
5. 拓扑排序拓扑排序(Topological Sorting)是一种对有向无环图进行排序的算法。
在有向图中,如果节点 A 的边指向节点 B,那么 B 必须在 A 之后才能出现在排序结果中。
图论及其应用

Prim算法及思想
• • • • • 首先我们将V分成两部分U,S U∩S=∅ U∪S=V 一开始S中只有任意以个节点 每次我们枚举每条U,S之间的边权最小的边S中 这条边的端点 删除并加入U • 我们可以每次更新S中点的这个值不需要每次枚 举边复杂度O(n^2) • 如果使用堆优化可以做到O(nlogn+nlogm)
tarjan算法
tarjan算法
拓扑排序
• 每次选择一个入度为0的点加入队列,然后 删掉这个点的所有出度
小试身手
• APIO2009 atm • 有一个城市有若干条有向道路 • 一个小偷从一个点出发想偷这个城ATM机, 他从一个点出发,最后偷完之后需要到一 个酒吧庆祝,给定道路情况,每个路口atm 的钱数和有没有酒吧,求最多能偷多少钱。 • n<=100000
小试身手
对于n<=1000我们依然可以直接暴力建出图 来进行Dijsktra算法但是对于n<=10000的测 试点,所有边一共有10^10条,我们无法存下 来但是我们发现,只有x坐标相邻和y坐标相 邻的边才有意义(为什么?),然后就可以建出 图来用堆优化的Dij或者spfa过掉
小试身手
• 给你一个n个点的图,小Q有q个询问,每次 询问任意两点之间的最短路 • n<=200,q<=4000000
Байду номын сангаас
最短路算法
• 如果我们需要知道所有的点对之间的最短 路,可以使用floyed的传递闭包方法。 • floyed算法思想: • 我们每次选择一个中间点,然后枚举起点 和终点,用通过中间点的最短路径更新起 点和终点之间的最短路径时间复杂度O(n^3)
floyed代码实现
• 代码非常简单 • 注意枚举顺序
数据库图

V0
V2
V0
V4
V2
V4
V3
V5
V1
V3
V1
V5
无向图G3及连通分量
9
在有向图中,若任意两个顶点vi和vj都连通,则称该有向 图为强连通图。有向图的极大强连通子图称为强连通分量。
V0
V1
V1
V0
V2
图的定义和相关术语 图的存储 图的遍历 最小生成树 拓扑排序 最短路径 关键路径
2
7.1 图的基本概念 1.图的定义
图G (Graph)是由非空的顶点集合V(G)和描述顶点 之间关系的边集合E(G)构成,其形式定义为:G =(V(G),E(G))。简写为G=(V,E)。 G表示一个图,V是图G中非空顶点的集合,E是图G 中边的集合。
2.图的邻接矩阵的建立
图的邻接矩阵存储方法用一个二维数组存储顶点之间 的相邻关系,再用一个一维数组存储顶点信息,另外 还需要存储图的顶点数和边(弧)数。
12
typedef char Vextype;
typedef struct {
Vextype vexs[VEX_NUM];
int adj[MAXSIZE][MAXSIZE]; /*邻接矩阵*/
有向图:在一个图中,如果两个顶点构成的<vi, vj>∈E是序偶,则称这样的边是有向边,简称弧。用 <vi, vj>来表示。如果某图全部是由有向边构成,则称 该图为有向图。
4
无向完全图:在一个无向图中,设V是包含n个结
点的集合,且对于任意两个不相同的顶点之间都有
一条边将它们连接,则称该图为无向完全图。
NOIP信息学竞赛初赛-图论算法基础-专题十一-1

专题十一:图论算法基础对于图论算法,NOIP初赛不要求会实现算法,但手工操作还是要会的,复赛是要求会代码实现的。
什么是图一个图是一个序偶<V, E>,记为G =<V, E> 。
V 为顶点集, E 为V 中结点之间的边的集合。
自环:一条边的两个端点是相同的。
重边:两个端点之间有两条以上的边,称他们是重边。
简单图:没有自环和重边的图。
无向边:边是双向的。
有向边:单向边,有箭头。
无向图:只有无向边的图。
有向图:只有有向边的图。
混合图:既有无向边又有有向边。
顶点的度:无向图中,一个顶点相连的边数称为该顶点的度;有向图中,从一个顶点出发的边数称为该顶点得出度;到达该顶点的边数称为它的入度。
图论基本定理:著名的握手定理。
无向图中结点度数的总和等于边数的两倍。
有向图中结点入度的和等于出度的和等于边数。
通路:给定图G中结点和边交替出现的一个序列:v0 e1 v1 e2 v2 …ek vk,若每条边ei的两端点是vi-1 和vi ,那么称该序列是从v0到vk的一条通路。
基本通路(路径):没有重复出现的结点的通路。
图的连通性:若一张无向图的任意两个结点之间都存在通路,那么称该图是连通的。
连通分量:图中连通的顶点与边的集合。
权和网:在图的边给出相关的数,成为权。
权可以表示一个顶点到另一个顶点的距离,耗费等。
带权图一般成为网。
最短路径:对于一张不带权的无向图来说,从s到t的最短路径就是所有从s到t的通路中长度最短的那一条(可能不唯一),通路上的边数称为路径的长度。
完全图:任何两个顶点之间都有边(弧)相连称为完全图。
稀疏图、稠密图:边(弧)很少的图称为稀疏图,反之为稠密图。
图的存储:邻接矩阵在邻接矩阵表示中,除了存放顶点本身信息外,还用一个矩阵表示各个顶点之间的关系。
若(i,j)∈E(G)或〈i,j〉∈E(G),则矩阵中第i行第j列元素值为1,否则为0 。
例如, 下面为两个无向图和有向图对应的邻接矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11章
图
1
拓扑排序Topological Sort (1)
问题: 给定一组有先决条件约束的工作、课程等, 希望 以某种线性顺序组织这些任务,且不违反任何的先 决条件.
可以用一个有向无环图(DAG)来模拟这个问题。因为 任务之间存在先决条件关系,即顶点之间有方向性, 因此图是有方向的。图又需要是无回路的,因为回 路中隐含了相互冲突的条件,从而使某些条件不可 能在不违反任何先决条件的情况下得到实现.
将一个DAG中所有顶点在不违反先决条件规定的基 础上排成线性序列的过程称为拓扑排序
2
拓扑排序 (2)
3
由此所得顶点的线性序列称之为 拓扑有序序列
例如:对于下列有向图
B A C D
可求得拓扑有序序列: ABCD 或 ACBD
5
反之,对于下列有向图
B
A C D
不能求得它的拓扑有序序列。 因为图中存在一个回路 {B, C, D}
8
J1 J2
J3
J4
J5
J6
J7
0
1
0
1
0 0
2
2 1
2
2 1
1
1 0
1
1 1 1 0 0
打印J1
打印J2 打印J3 打印J4 打印J5 打印J7
0
1
0 0
0
1 打印J6
使用队列对图11.1所示图进行拓扑排序,其顶点的打印顺序 将是J1,J2,J3,J6,J4,J5,J7 9
Queue-Based Topsort
void topsort(Graph* G, Queue<int>* Q) { int Count[G->n()]; int v, w; for (v=0; v<G->n(); v++) Count[v] = 0; for (v=0; v<G->n(); v++) // Process edges for (w=G->first(v); w<G->n(); w = G->next(v,w)) Count[w]++; // Add to v2's count for (v=0; v<G->n(); v++) // Initialize Q if (Count[v] == 0) // No prereqs Q->enqueue(v); while (Q->length() != 0) { Q->dequeue(v); printout(v); // PreVisit for V for (w=G->first(v); w<G->n(); w = G->next(v,w)) { Count[w]--; // One less prereq if (Count[w] == 0) // Now free Q->enqueue(w); } } 10 }
拓扑排序 (3)
void topsort(Graph* G) { // Topological sort int i; for (i=0; i<G->n(); i++) // Initialize G->setMark(i, UNVISITED); for (i=0; i<G->n(); i++) // Do vertices if (G->getMark(i) == UNVISITED) tophelp(G, i); // Call helper } void tophelp(Graph* G, int v) { // Process v G->setMark(v, VISITED); for (int w=G->first(v); w<G->n(); w = G->next(v,w)) if (G->getMark(w) == UNVISITED) tophelp(G, w); printout(v); // PostVisit for Vertex v }
11
关键路径
a1=6 V1
V2
a4=1 V5
a7=9
V7
a10=2 V9
a2=4
V3
a5=1
a3=5 V4
a8=7
V8 a9=4
a11=4
a6=2 V6
12
事件V1之前的活动就是以 V1 为头的弧表 示的活动, V1之后的活动是以V1为尾的弧表 示的活动。如 V5之前的活动是a4, a5; V5之后 的活动是a7, a8 。
6
如何进行拓扑排序?
一、从有向图中选取一个没有前驱 的顶点,并输出之;
二、从有向图中删去此顶点以及所 有以它为尾的弧; 重复上述两步,直至图空,或者 图不空但找不到无前驱的顶点为止。
7
c a g b h f d e
a
b h c d g f
e
在算法中需要用定量的描述替代定性的概念
没有前驱的顶点 入度为零的顶点 删除顶点及以它为尾的弧 弧头顶点的入度减1
正常情况下,整个工程只有一个开始点和一 个完成点。在AOE网中
开始点:(即入度为零的点)称为源点
完成点:(出度为零的点)称为汇点
15
关键路径
与AOV网不同。对AOE网要研究的问题是: 1) 完成整个工程至少需多少时间?
2) 哪些活动是影响工程进度的关键?
16
术语
• 关键路径(criticed path):从源点到汇点的最长路径叫关键 路径,其路径长度是该路径上活动持续时间之和. 也是工 程完成的最少时间. • 事件最早发生时间:从源点到事件Vi的最长路径长度,称 为Vi的最早发生时间. 用Ve(i)表示. Ve(i)也决定了所有Vi 之后的活动的最早可以开始时间. • 事件最迟发生时间:不影响整个工程进度,而Vi可最迟发 生的时间称为Vi的最迟发生时间. 用Vl(i)表示. • 活动最早开始时间:活动ai最早可以开始进行的时间. 用e(i) 表示. • 活动最迟开始时间:在不推迟整个工程完成的前提下,活 动ai最迟必须开始进行的时间,用l(i)表示. • 关键活动:活动时间余量为0的活动. 即l(i)e(i)=0的活动. 关键路径上的所有活动都是关键活动. • 非关键活动:不在关键路径上的活动.
V3 a3=5
V4
a6=2 V6
V5: a4, a5完成, a7, a8可以开始
V6: a6完成, a9可以开始 V7: a7完成, a10可以开始 V8: a8, a9完成, a11可以开始 V9: a10, a11完成, 即工程结束
14
注:工程开始,某些活动可以同时执行,但不一 定要同时执行。某一事件发生前,在它之后 的活动不能开始执行,(如v2, v3发生之前,a4, a5不能执行)
事件 V1 的发生表示 V1 之前的活动已完成,
V1之后的活动可以开始,(但不一定马上开始)。 对此假想工程有:
13
a1=6 V1: 工程开始
V2
a4=1
V7 a7=9
a10=2
V1
a2=4
V5
a5=1
V9 a8=7 V8 a9=4 a11=4
V2: a1完成, a4可以开始 V3: a2完成, a5可以开始 V4: a3完成, a6可以开始