西藏林芝地区高考数学备考复习(理科)专题十九:算法初步

合集下载

高考数学备考算法初步知识点-

高考数学备考算法初步知识点-

高考数学备考算法初步知识点1:算法的概念(1)算法概念:在数学上,现代意义上的算法通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.(2)算法的特点:①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.④不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.⑤普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.2:程序框图(1)程序框图基本概念:①程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

②构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

2、框图一般按从上到下、从左到右的方向画。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点,学习规律。

判断框具有超过一个退出点的唯一符号。

4、判断框分两大类,一类判断框是与否两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。

5、在图形符号内描述的语言要非常简练清楚。

3:算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

(1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

2019年高考数学(理科)一轮复习通用版:第十九单元 算法初步、复数、推理与证明

2019年高考数学(理科)一轮复习通用版:第十九单元  算法初步、复数、推理与证明

第十九单元 算法初步、复数、推理与证明教材复习课“算法初步、复数、推理与证明”相关基础知识一课过三种基本逻辑结构1.(2018·成都质检)阅读如图所示的程序框图,运行相应的程序,则输出的结果是( )A .-3B .0C. 3D .336 3解析:选C 由框图知输出的结果 s =sin π3+sin 2π3+…+sin 2 018π3,因为函数y =sin π3x 的周期是6,所以s =336⎝⎛⎭⎫sin π3+sin 2π3+…+sin 6π3+sin π3+sin 2π3=336×0+32+32= 3. 2.执行如图所示的程序框图.若输出y =-3,则输入的角θ=( )A.π6 B .-π6C.π3D .-π3解析:选D 由输出y =-3<0,排除A 、C ,又当θ=-π3时,输出y =-3,故选D.3.执行如图所示的程序框图,已知输出的s ∈[0,4],若输入的t ∈[m ,n ],则实数n -m 的最大值为( )A .1B .2C .3D .4解析:选D 由程序框图得s =⎩⎪⎨⎪⎧3t ,t <1,4t -t 2,t ≥1,作出s 的图象如图所示.若输入的t ∈[m ,n ],输出的s ∈[0,4],则由图象得n -m 的最大值为4.4.某程序框图如图所示,若输出的p 值为31,则判断框内应填入的条件是( )A .n >2?B .n >3?C .n >4?D .n >5?解析:选B 运行程序:p =1,n =0;n =1,p =2;n =2,p =6;n =3,p =15;n =4,p =31,根据题意,此时满足条件,输出p =31,即n =3时不满足条件,n =4时满足条件,故选B.[清易错]某程序框图如图所示,若该程序运行后输出的值是74,则a =________.解析:由已知可得该程序的功能是计算并输出S =1+11×2+12×3+…+1a (a +1)=1+1-12+12-13+…+1a -1a +1=2-1a +1.若该程序运行后输出的值是74,则2-1a +1=74, 解得a =3.答案:31.复数的有关概念复数集C 和复平面内所有的点组成的集合是一一对应的,复数集C 与复平面内所有以原点O 为起点的向量组成的集合也是一一对应的,即(1)复数z =a +b i 一一对应复平面内的点Z (a ,b )(a ,b ∈R). (2)复数z =a +b i(a ,b ∈R)一一对应平面向量OZ ―→. 3.复数的运算设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd +(bc -ad )ic 2+d 2(c +d i ≠0).[小题速通]1.(2016·全国卷Ⅲ)若z =4+3i ,则z |z |=( ) A .1B .-1C.45+35iD.45-35i 解析:选D ∵z =4+3i ,∴z =4-3i ,|z |=42+32=5, ∴z |z |=4-3i 5=45-35i. 2.若复数z 满足(1+i)z =|3+i|,则在复平面内,z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选A 由题意,得z =(3)2+121+i =2(1-i )(1+i )(1-i )=1-i ,所以z =1+i ,其在复平面内对应的点为(1,1),位于第一象限.3.复数2i1+i (i 为虚数单位)实部与虚部的和为( )A .2B .1C .0D .-2解析:选A 因为2i 1+i =2i (1-i )(1+i )(1-i )=1+i ,所以复数2i1+i (i 为虚数单位)实部与虚部的和为2.4.已知(1+2i)z =4+3i ,则z =________. 解析:∵z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=10-5i5=2-i ,∴z =2+i. 答案:2+i[清易错]1.利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件. 2.注意不能把实数集中的所有运算法则和运算性质照搬到复数集中来.例如,若z 1,z 2∈C ,z 21+z 22=0,就不能推出z 1=z 2=0;z 2<0在复数范围内有可能成立.1.已知4+m i1+2i ∈R ,且m ∈R ,则|m +6i|=( )A .6B .8C .8 3D .10解析:选D4+m i 1+2i =(4+m i )(1-2i )(1+2i )(1-2i )=4+2m +(m -8)i5,因为复数4+m i1+2i ∈R ,故m =8,所以|m +6i|=|8+6i|=10.2.已知5i2-i =a +b i(a ,b ∈R ,i 为虚数单位),则a +b =______.解析:5i 2-i =5i (2+i )(2-i )(2+i )=-1+2i , 由5i 2-i =a +b i ,得-1+2i =a +b i ,∴a =-1,b =2, ∴a +b =1. 答案:11.合情推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断. [小题速通]1.已知2和3都是无理数,试证:2+3也是无理数,某同学运用演绎推理证明如下:依题设2和3都是无理数,而无理数与无理数之和是无理数,所以2+3必是无理数.这个同学证明是错误的,错误原因是( )A .大前提错误B .小前提错误C .推理形式错误D .以上都可能解析:选A 大前提:无理数与无理数之和是无理数,错误; 小前提:2和3都是无理数,正确; 结论:2+3也是无理数,正确, 故只有大前提错误.2.我们在学习立体几何推导球的体积公式时,用到了祖暅原理:即两个等高的几何体,被等高的截面所截,若所截得的面积总相等,那么这两个几何体的体积相等.类比此方法:求双曲线x 2a 2-y 2b2=1(a >0,b>0)与x 轴,直线y =h (h >0)及渐近线y =ba x 所围成的阴影部分(如图)绕y 轴旋转一周所得的几何体的体积为________.解析:由题意可知,该几何体的横截面是一个圆环,设圆环的外半径与内半径分别为R ,r ,其面积S =π(R 2-r 2).∵x 2a 2-y 2b 2=1⇒R 2=a 2+a 2b2y 2, 同理:r 2=a 2b2y 2,∴R 2-r 2=a 2,由祖暅原理知,此旋转体的体积等价于一个半径为a ,高为h 的柱体的体积,为πa 2h .答案:πa 2h 3.有如下等式: 2+4=6;8+10+12=14+16;18+20+22+24=26+28+30;……以此类推,则2 018出现在第________个等式中. 解析:①2+4=6; ②8+10+12=14+16;③18+20+22+24=26+28+30, ……其规律为:各等式首项分别为2×1,2×(1+3),2×(1+3+5),…,所以第n 个等式的首项为2[1+3+…+(2n -1)]=2×n (1+2n -1)2=2n 2,当n =31时,等式的首项为2×312=1 922, 当n =32时,等式的首项为2×322=2 048, 所以2 018在第31个等式中. 答案:311.直接证明间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法. (1)反证法的定义:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.(2)用反证法证明的一般步骤: ①反设——假设命题的结论不成立;②归谬——根据假设进行推理,直到推出矛盾为止; ③结论——断言假设不成立,从而肯定原命题的结论成立. 3.数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. [小题速通]1.(2018·成都一模)要证a 2+b 2-1-a 2b 2≤0,只需证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0解析:选D a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.2.如果命题p (n )对n =k (k ∈N *)成立,则它对n =k +2也成立.若p (n )对n =2也成立,则下列结论正确的是( )A .p (n )对所有正整数n 都成立B .p (n )对所有正偶数n 都成立C .p (n )对所有正奇数n 都成立D .p (n )对所有自然数n 都成立解析:选B 由题意n =k 成立,则n =k +2也成立,又n =2时成立,则p (n )对所有正偶数都成立.3.下列命题适合用反证法证明的是________.(填序号) ①已知函数f (x )=a x +x -2x +1(a >1),证明:方程f (x )=0没有负实数根; ②若x ,y ∈R ,x >0,y >0,且x +y >2, 求证:1+x y 和1+yx 中至少有一个小于2; ③关于x 的方程ax =b (a ≠0)的解是唯一的;④同一平面内,分别与两条相交直线垂直的两条直线必相交.解析:①是“否定”型命题,②是“至少”型命题,③是“唯一”型命题,且命题中条件较少,④中条件较少,不足以直接证明,因此四个命题都适合用反证法证明.答案:①②③④一、选择题1.若z =i(3-2i)(其中i 为复数单位),则z =( ) A .3-2i B .3+2i C .2+3iD .2-3i解析:选D 由z =i(3-2i)=2+3i ,得z =2-3i.2.已知i 为虚数单位,a 为实数,复数z =a -3i1-i在复平面上对应的点在y 轴上,则a 为( )A .-3B .-13C.13D .3解析:选A ∵z =a -3i 1-i =(a -3i )(1+i )(1-i )(1+i )=a +3-(3-a )i2,又复数z =a -3i1-i在复平面上对应的点在y 轴上,∴⎩⎪⎨⎪⎧a +3=0,3-a ≠0,解得a =-3. 3.分析法又称执果索因法,若用分析法证明“设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0解析:选Cb 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0 ⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0 ⇔(a -c )(a -b )>0.4.利用数学归纳法证明“(n +1)(n +2)·…·(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1)C.2k +1k +1D.2k +3k +1解析:选B 当n =k (k ∈N *)时, 左式为(k +1)(k +2) ·…·(k +k );当n =k +1时,左式为(k +1+1)(k +1+2)·…·(k +1+k -1)(k +1+k )(k +1+k +1), 则左边应增乘的式子是(2k +1)(2k +2)k +1=2(2k +1).5.(2017·北京高考)执行如图所示的程序框图,输出的s 值为( )A .2 B.32 C.53D.85解析:选C 运行该程序,k =0,s =1,k <3; k =0+1=1,s =1+11=2,k <3; k =1+1=2,s =2+12=32,k <3; k =1+2=3,s =32+132=53,此时不满足循环条件,输出s ,故输出的s 值为53.6.若数列{a n }是等差数列,b n =a 1+a 2+…+a nn,则数列{b n }也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c nn B .d n =c 1·c 2·…·c n nC .d n = n c n 1+c n 2+…+c nnn D .d n =n c 1·c 2·…·c n解析:选D 因为数列{a n }是等差数列,所以b n =a 1+a 2+…+a n n =a 1+(n -1)·d2(d 为等差数列{a n }的公差),{b n }也为等差数列,因为正项数列{c n }是等比数列,设公比为q ,则d n =n c 1·c 2·…·c n =n c 1·c 1q ·…·c 1q n -1=c 1q n -12,所以{d n }也是等比数列.7.执行如图所示的程序框图,若输出的结果是99199,则判断框内应填的内容是( )A .n <98?B .n <99?C .n <100?D .n <101?解析:选B 由14n 2-1=1(2n -1)(2n +1)=1212n -1-12n +1,可知程序框图的功能是计算并输出S =12⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n 2n +1的值.由题意令n 2n +1=99199,解得n =99,即当n <99时,执行循环体,若不满足此条件,则退出循环,输出S 的值.8.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A .(7,5)B .(5,7)C .(2,10)D .(10,1)解:选B 依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).二、填空题 9.M =1210+1210+1+1210+2+…+1211-1与1的大小关系为__________. 解析:因为M =1210+1210+1+1210+2+…+1211-1=1210+1210+1+1210+2+…+1210+(210-1)<1210+1210+1210+…+1210=1, 所以M <1.答案:M <1 10.若复数z =a +ii(其中i 为虚数单位)的实部与虚部相等,则实数a =________. 解析:因为复数z =a +i i =a i +i 2i 2=1-a i ,所以-a =1,即a =-1. 答案:-111.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =________.解析:a =14,b =18.第一次循环:14≠18且14<18,b =18-14=4; 第二次循环:14≠4且14>4,a =14-4=10; 第三次循环:10≠4且10>4,a =10-4=6; 第四次循环:6≠4且6>4,a =6-4=2; 第五次循环:2≠4且2<4,b =4-2=2; 第六次循环:a =b =2,跳出循环,输出a =2. 答案:212.设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为________.解析:∵f (21)=32,f (22)>2=42,f (23)>52,f (24)>62,∴归纳得f (2n )≥n +22(n ∈N *). 答案:f (2n )≥n +22(n ∈N *)三、解答题13.若a >b >c >d >0且a +d =b +c , 求证:d +a <b +c .证明:要证d +a <b +c , 只需证(d +a )2<(b +c )2, 即证a +d +2ad <b +c +2bc ,因为a +d =b +c ,所以只需证ad <bc ,即证ad <bc , 设a +d =b +c =t ,则ad -bc =(t -d )d -(t -c )c =(c -d )(c +d -t )<0, 故ad <bc 成立,从而d +a <b +c 成立.14.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)由已知得⎩⎨⎧a 1=1+2,3a 1+3d =9+32,所以d =2,故a n =2n -1+2,S n =n (n +2).(2)证明:由(1),得b n =S nn =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2),所以(q 2-pr )+2(2q -p -r )=0.因为p ,q ,r ∈N *,所以⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,所以⎝⎛⎭⎫p +r 22=pr ,(p -r )2=0.所以p =r ,这与p ≠r 矛盾,所以数列{b n }中任意不同的三项都不可能成为等比数列. 高考研究课(一)算法与程序框图考查2类型——推结果、填条件 [全国卷5年命题分析][典例] =-1,则输出的S =( )A.2B.3C.4 D.5(2)(2017·山东高考)执行两次如图所示的程序框图,若第一次输入的x的值为7,第二次输入的x的值为9,则第一次、第二次输出的a的值分别为()A.0,0 B.1,1C.0,1 D.1,0[解析](1)运行程序框图,a=-1,S=0,K=1,K≤6成立;S=0+(-1)×1=-1,a=1,K=2,K≤6成立;S=-1+1×2=1,a=-1,K=3,K≤6成立;S=1+(-1)×3=-2,a=1,K=4,K≤6成立;S=-2+1×4=2,a=-1,K=5,K≤6成立;S=2+(-1)×5=-3,a=1,K=6,K≤6成立;S=-3+1×6=3,a=-1,K=7,K≤6不成立,输出S=3.(2)当输入x=7时,b=2,因为b2>x不成立且x不能被b整除,故b=3,这时b2>x成立,故a=1,输出a的值为1.当输入x=9时,b=2,因为b2>x不成立且x不能被b整除,故b=3,这时b2>x不成立且x 能被b 整除,故a =0,输出a 的值为0.[答案] (1)B (2)D [方法技巧]解决程序框图推结果问题要注意几个常用变量(1)计数变量:用来记录某个事件发生的次数,如i =i +1. (2)累加变量:用来计算数据之和,如S =S +i . (3)累乘变量:用来计算数据之积,如p =p ×i . [即时演练]1.(2016·全国卷Ⅰ)执行如图所示的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x解析:选C 输入x =0,y =1,n =1, 运行第一次,x =0,y =1,不满足x 2+y 2≥36; 运行第二次,x =12,y =2,不满足x 2+y 2≥36;运行第三次,x =32,y =6,满足x 2+y 2≥36,输出x =32,y =6.由于点⎝⎛⎭⎫32,6在直线y =4x 上,故选C. 2.执行如图所示的程序框图,输出的s 是________.解析:第一次循环:i=1,s=1;第二次循环:i=2,s=-1;第三次循环:i=3,s=2;第四次循环:i=4,s=-2,此时i=5,执行s=3×(-2)=-6,故输出s=-6.答案:-6[典例]第六章“均输”中,有一竹节容量问题,某教师根据这一问题的思想设计了如图所示的程序框图,若输出的m的值为35,则输入的a的值为()A.4 B.5C.7 D.11(2)一个算法的程序框图如图所示,该程序输出的结果为3655,则空白处应填入的条件为()A.i≤9? B.i≤6?C.i≥9? D.i≤8?[解析](1)起始阶段有m=2a-3,i=1,第一次循环:m=2×(2a-3)-3=4a-9,i=2,第二次循环:m=2×(4a-9)-3=8a-21,i=3,第三次循环:m=2×(8a-21)-3=16a-45,i=4,第四次循环:m =2×(16a -45)-3=32a -93, 跳出循环,输出m =32a -93=35,解得a =4.(2)由1i (i +2)=12⎝⎛⎭⎫1i -1i +2及题意知,该程序框图的功能是计算S =121-13+12-14+…+1i -1-1i +1+1i -1i +2=34-121i +1+1i +2的值,由S =3655,得i =9.故空白处应填入的条件为:i ≤9. [答案] (1)A (2)A [方法技巧]程序框图的补全及逆向求解问题(1)先假设参数的判断条件满足或不满足;(2)运行循环结构,一直到运行结果与题目要求的输出结果相同为止; (3)根据此时各个变量的值,补全程序框图. [即时演练]1.执行如图所示的程序框图,若输出k 的值为16,则判断框内可填入的条件是( )A .S <1510?B .S >85?C .S >1510?D .S <85?解析:选D 运行程序:k =10,S =1;S =1110,k =11;S =1210,k =12;S =1310,k =13;S =1410,k =14;S =1510,k =15;S =1610=85,k =16,此时不满足条件,循环结束,输出k =16,所以判断框内可填入条件是S <85?.2.运行如图所示的程序框图,若输出的y 值的范围是[0,10],则输入的x 值的范围是________.解析:该程序的功能是计算分段函数的值, y =⎩⎪⎨⎪⎧3-x ,x <-1,x 2,-1≤x ≤1,x +1,x >1.当x <-1时,由0≤3-x ≤10,可得-7≤x <-1; 当-1≤x ≤1时,0≤x 2≤10成立;当x >1时,由0≤x +1≤10,可得1<x ≤9, 综上,输入的x 值的范围是[-7,9]. 答案:[-7,9]1.(2017·全国卷Ⅰ)如图所示的程序框图是为了求出满足3n -2n >1 000的最小偶数n ,那么在◇和▭两个空白框中,可以分别填入( )A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +2解析:选D 程序框图中A =3n -2n ,且判断框内的条件不满足时输出n ,所以判断框中应填入A ≤1 000,由于初始值n =0,要求满足A =3n -2n >1 000的最小偶数,故执行框中应填入n =n +2.2.(2017·全国卷Ⅲ)执行如图所示的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5 B.4C.3 D.2解析:选D执行程序框图,S=0+100=100,M=-10,t=2;S=100-10=90,M =1,t=3,S<91,输出S,此时,t=3不满足t≤N,所以输入的正整数N的最小值为2.3.(2016·全国卷Ⅱ)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7 B.12C.17 D.34解析:选C第一次运算:s=0×2+2=2,k=1;第二次运算:s=2×2+2=6,k=2;第三次运算:s=6×2+5=17,k=3>2,结束循环,s=17.4.(2016·全国卷Ⅲ)执行如图所示的程序框图,如果输入的a=4,b=6,那么输出的n=()A.3 B.4C.5 D.6解析:选B程序运行如下:开始a=4,b=6,n=0,s=0.第1次循环:a=2,b=4,a=6,s=6,n=1;第2次循环:a=-2,b=6,a=4,s=10,n=2;第3次循环:a=2,b=4,a=6,s=16,n=3;第4次循环:a=-2,b=6,a=4,s=20,n=4.此时,满足条件s>16,退出循环,输出n=4.故选B.5.(2015·全国卷Ⅰ)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6C .7D .8解析:选C 运行第一次:S =1-12=12=0.5,m =0.25,n =1,S >0.01;运行第二次:S =0.5-0.25=0.25,m =0.125,n =2,S >0.01; 运行第三次:S =0.25-0.125=0.125,m =0.062 5,n =3,S >0.01; 运行第四次:S =0.125-0.062 5=0.062 5,m =0.031 25,n =4,S >0.01; 运行第五次:S =0.031 25,m =0.015 625,n =5,S >0.01; 运行第六次:S =0.015 625,m =0.007 812 5,n =6,S >0.01; 运行第七次:S =0.007 812 5,m =0.003 906 25,n =7,S <0.01. 输出n =7.故选C.6.(2014·全国卷Ⅰ)执行如图所示程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )A.203B.165C.72D.158解析:选D 第一次循环:M =32,a =2,b =32,n =2;第二次循环:M =83,a =32,b =83,n =3;第三次循环:M =158,a =83,b =158,n =4. 则输出M =158. 7.(2014·全国卷Ⅱ)执行如图的程序框图,如果输入的x ,t 均为2,则输出的S =( )A.4 B.5C.6 D.7解析:选D执行循环体,第一次循环,M=2,S=5,k=2;第二次循环,M=2,S=7,k=3.故输出的S=7.一、选择题1.(2017·山东高考)执行如图所示的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为()A.x>3B.x>4C.x≤4 D.x≤5解析:选B当x=4时,若执行“是”,则y=4+2=6,与题意矛盾;若执行“否”,则y=log24=2,满足题意,故应执行“否”.故判断框中的条件可能为x>4.2.执行如图所示的程序框图,若输入的a的值为2,则输出的b的值为()A .-2B .1C .2D .4解析:选A 第一次循环,a =12,b =1,i =2;第二次循环,a =-1,b =-2,i =3;第三次循环,a =2,b =4,i =4;第四次循环,a =12,b =1,i =5;……;由此可知b 的值以3为周期出现,且当i =2 019时退出循环,此时共循环2 018次,又2 018=3×672+2,所以输出的b 的值为-2.3.某班有50名学生,在一次数学考试中,a n 表示学号为n 的学生的成绩,则执行如图所示的程序框图,下列结论正确的是( )A .P 表示成绩不高于60分的人数B .Q 表示成绩低于80分的人数C .R 表示成绩高于80分的人数D .Q 表示成绩不低于60分,且低于80分的人数解析:选D P 表示成绩低于60分的人数,Q 表示成绩低于80分且不低于60分的人数,R 表示成绩不低于80分的人数.4.(2017·天津高考)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为( )A .0B .1C .2D .3解析:选C 第一次循环,24能被3整除,N =243=8>3;第二次循环,8不能被3整除,N =8-1=7>3; 第三次循环,7不能被3整除,N =7-1=6>3; 第四次循环,6能被3整除,N =63=2<3,结束循环,故输出N 的值为2.5.执行如图所示的程序框图,则输出S 的值为( )A .3B .-6C .10D .-15解析:选D 第一次执行程序,得到S =0-12=-1,i =2; 第二次执行程序,得到S =-1+22=3,i =3; 第三次执行程序,得到S =3-32=-6,i =4; 第四次执行程序,得到S =-6+42=10,i =5; 第五次执行程序,得到S =10-52=-15,i =6, 结束循环,输出的S =-15.6.某校为了了解高三学生日平均睡眠时间(单位:h),随机选择了50位学生进行调查.下表是这50位同学睡眠时间的频率分布表:现根据如下程序框图用计算机统计平均睡眠时间,则判断框①中应填入的条件是()A.i>4? B.i>5?C.i>6? D.i>7?解析:选B根据题目中程序框图,用计算机统计平均睡眠时间,总共执行6次循环,则判断框①中应填入的条件是i>5(或i≥6?).7.下图为某一函数的求值程序框图,根据框图,如果输出y的值为3,那么应输入x=()A.1 B.2C.3 D.6解析:选B 该程序的作用是计算分段函数y =⎩⎪⎨⎪⎧x -3,x >66,2<x ≤6,5-x ,x ≤2的函数值,由题意,若x >6,则当y =3时,x -3=3,解得x =6,舍去; 若x ≤2,则当y =3时,5-x =3,解得x =2, 故输入的x 值为2.8.给出30个数:1,2,4,7,…,其规律是:第1个数是1;第2个数比第1个数大1;第3个数比第2个数大2;第4个数比第3个数大3,…,以此类推,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框①处和执行框②处应分别填入( )A .i ≤30?;p =p +i -1B .i ≤29?;p =p +i +1C .i ≤31?;p =p +iD .i ≤30?;p =p +i解析:选D 由于要计算30个数的和,故循环要执行30次,由于循环变量的初值为1,步长为1,故①中应填写“i ≤30?”.又由第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,故②中应填p =p +i .二、填空题9.(2017·江苏高考)如图是一个算法流程图.若输入x 的值为116,则输出y 的值是________.解析:由流程图可知其功能是运算分段函数y =⎩⎪⎨⎪⎧2x ,x ≥1,2+log 2x ,0<x <1,所以当输入的x 的值为116时,y =2+log 2116=2-4=-2.答案:-210.按下列程序框图来计算:如果输入的x =5,则应该运算________次才停止. 解析:由题意,该程序按如下步骤运行:经过第一次循环得到x =3×5-2=13,不满足x >200,进入下一步循环; 经过第二次循环得到x =3×13-2=37,不满足x >200,进入下一步循环; 经过第三次循环得到x =3×37-2=109,不满足x >200,进入下一步循环; 经过第四次循环得到x =3×109-2=325,因为325>200,结束循环并输出x 的值 因此,运算进行了4次后,输出x 值而程序停止.故答案为4. 答案:411.中国古代有计算多项式值的秦九韶算法,该算法的程序框图如图所示. 执行该程序框图,若输入的x =3,n =3,输入的a 依次为由小到大顺序排列的质数(从最小质数开始),直到结束为止,则输出的s =________.解析:运行程序:x =3,n =3,k =0,s =0;a =2,s =2,k =1;a =3,s =9,k =2;a =5,s =32,k =3;a =7,s =103,k =4,此时满足条件,循环结束,输出s =103.答案:10312.阅读如图所示的程序框图,运行相应的程序,输出的结果是a =________.解析:运行程序,可得a=10,i=1,不满足i≥5,不满足a是奇数,a=5,i=2,不满足i≥5,满足a是奇数,a=16,i=3,不满足i≥5,不满足a是奇数,a=8,i=4,不满足i≥5,不满足a是奇数,a=4,i=5,满足i≥5,退出循环,输出a的值为4.答案:413.已知某程序框图如图所示,则程序运行结束时输出的结果为________.解析:第一次循环结束时,n=2,x=3,y=1;第二次循环结束时,n=4,x=9,y=3;第三次循环结束时,n=6,x=27,y=3.此时满足n>4,结束循环,输出log y x=log327=3.答案:314.(2018·黄山调研)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=________.解析:第一次循环,得S=2;第二次循环,得n=2,a=12,A=2,S=92;第三次循环,得n=3,a=14,A=4,S=354;第四次循环,得n=4,a=18,A=8,S=1358>10,结束循环,输出的n=4.答案:41.图1是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次是A1,A2,…,A16,图2是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么该程序框图输出的结果是()图1图2A.6B.7C.10D.16解析:选C由程序框图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图知,数学成绩大于等于90的人数为10,因此输出结果为10.2.如果执行程序框图,如果输出的S=2 550,则判断框内应填入的条件是()A.k≤50? B.k≥51?C.k<50? D.k>51?解析:选A根据题中的程序框图,可得该程序经过第一次循环得到S=2,k=2;经过第二次循环得到S=2+4,k=3;经过第三次循环得到S=2+4+6,k=4;……设经过第n次循环得到2+4+6+…+2n=n2+n=2 550,解得n=50,由此说明,当n>50时不满足判断框中的条件,则正好输出S=2 550,∴判断框应填入的条件是k≤50?.高考研究课(二)数系的扩充与复数的引入的命题3角度——概念、运算、意义[全国卷5年命题分析][典例](1)设i是虚数单位.若复数a-10(a∈R)是纯虚数,则a的值为()3-iA.-3B.-1C.1 D.3(2)已知复数z 满足z1+i=|2-i|,则z 的共轭复数对应的点位于复平面内的( ) A .第一象限 B .第二象限 C .第三象限D .第四象限(3)若复数 z 满足z (1+i)=2i(i 为虚数单位),则|z |=( ) A .1 B .2C. 2D. 3 [解析] (1)∵复数a -103-i=a -10(3+i )10=(a -3)-i 为纯虚数,∴a -3=0,∴a =3.(2)∵z1+i=|2-i|=5,∴z =5+5i , 则z 的共轭复数5-5i 对应的点(5,-5)位于复平面内的第四象限.(3)法一:设z =a +b i(a ,b ∈R),则由z (1+i)=2i ,得(a +b i)·(1+i)=2i ,所以(a -b )+(a+b )i =2i ,由复数相等的条件得⎩⎪⎨⎪⎧a -b =0,a +b =2,解得a =b =1,所以z =1+i ,故|z |=12+12=2.法二:由z (1+i)=2i ,得z =2i 1+i=2i (1-i )2=i -i 2=1+i ,所以|z |=12+12= 2.[答案] (1)D (2)D (3)C [方法技巧]求解与复数概念相关问题的技巧复数的分类、复数的相等、复数的模,共轭复数的概念都与复数的实部与虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即a +b i(a ,b ∈R)的形式,再根据题意求解.[即时演练]1.(2017·山东高考)已知a ∈R ,i 是虚数单位.若z =a + 3 i ,z ·z =4,则a =( ) A .1或-1 B.7或-7 C .- 3 D. 3解析:选A 法一:由题意可知z =a -3i , ∴z ·z =(a +3i)(a -3i)=a 2+3=4,故a =1或-1. 法二:z ·z =|z |2=a 2+3=4,故a =1或-1.2.若复数2+a i1-i (a ∈R)是纯虚数(i 是虚数单位),则复数z =a +(a -3)i 在复平面内对应的点位于第________象限.解析:∵2+a i 1-i =(2+a i )(1+i )(1-i )(1+i )=2-a +(2+a )i 2=2-a 2+2+a2i 是纯虚数,∴⎩⎨⎧2-a2=0,2+a2≠0,解得a =2.∴z =2-i ,在复平面内对应的点(2,-1)位于第四象限. 答案:四3.(2017·浙江高考)已知a ,b ∈R ,(a +b i)2=3+4i(i 是虚数单位),则a 2+b 2=________,ab =________.解析:∵(a +b i)2=a 2-b 2+2ab i =3+4i ,∴⎩⎪⎨⎪⎧a 2-b 2=3,2ab =4,∴⎩⎪⎨⎪⎧ a =2,b =1或⎩⎪⎨⎪⎧a =-2,b =-1,∴a 2+b 2=5,ab =2. 答案:5 2[典例] (1)i 为虚数单位,则⎝ ⎛⎭⎪⎫1-i 1+i 2 018=( ) A .-i B .-1 C .iD .1(2)(2017·全国卷Ⅱ)3+i1+i =( )A .1+2iB .1-2iC .2+iD .2-i (3)(2017·全国卷Ⅱ)(1+i)(2+i)=( ) A .1-i B .1+3i C .3+iD .3+3i[解析] (1)∵1-i 1+i =(1-i )2(1+i )(1-i )=1-2i -12=-i ,∴⎝ ⎛⎭⎪⎫1-i 1+i 2 018=(-i)2 018=(-i)2 016·(-i)2=-1.(2)3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i 2=2-i.(3)(1+i)(2+i)=2+i 2+3i =1+3i. [答案] (1)B (2)D (3)B[方法技巧]复数代数形式运算问题的解题策略(1)复数的乘法复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式. [提醒] 在进行复数的代数运算时,记住以下结论,可提高计算速度. (1)(1±i)2=±2i ;1+i 1-i =i ;1-i1+i=-i ; (2)-b +a i =i(a +b i);(3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0,n ∈N *.[即时演练]1.设复数z =1+i(i 是虚数单位),则2z +z 2=( )A .1+iB .1-iC .-1-iD .-1+i解析:选A 2z +z 2=21+i +(1+i)2=1-i +2i =1+i.2.已知复数z =3+i(1-3i )2,z 是z 的共轭复数,则z ·z =________.解析:∵z =3+i (1-3i )2=3+i-2-23i=3+i-2(1+3i )=(3+i )(1-3i )-2(1+3i )(1-3i ) =23-2i -8=-34+14i ,故z =-34-14i , ∴z ·z =⎝⎛⎭⎫-34+14i ⎝⎛⎭⎫-34-14i =316+116=14. 答案:143.已知i 是虚数单位,⎝ ⎛⎭⎪⎫21-i 2 018+⎝ ⎛⎭⎪⎫1+i 1-i 6=________.解析:原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫21-i 2 1 009+⎝ ⎛⎭⎪⎫1+i 1-i 6=⎝⎛⎭⎫2-2i 1 009+i 6=i 1 009+i 6=i 4×252+1+i 4+2=i +i 2=-1+i.答案:-1+i[典例] (1)( ) A .第一象限 B .第二象限 C .第三象限D .第四象限(2)(2017·北京高考)若复数(1-i)(a +i)在复平面内对应的点在第二象限,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,-1)C .(1,+∞)D .(-1,+∞)[解析] (1)因为复数z =a +i(a ∈R).若|z |<2,则a 2+1<2,解得-1<a <1,所以z +i 2=a -1+i 在复平面内对应的点(a -1,1)位于第二象限.(2)复数(1-i)(a +i)=a +1+(1-a )i ,其在复平面内对应的点(a +1,1-a )在第二象限,故⎩⎪⎨⎪⎧a +1<0,1-a >0,解得a <-1. [答案] (1)B (2)B [方法技巧](1)复数z 、复平面上的点Z 及向量OZ ―→相互联系,即z =a +b i(a ,b ∈R)⇔Z (a ,b )⇔OZ ―→. (2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.[即时演练]1.如图,若向量OZ ―→对应的复数为z ,则z +4z表示的复数为( )A .1+3iB .-3-iC .3-iD .3+i解析:选D 由图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i =1-i +4(1+i )(1-i )(1+i )=1-i +4+4i2=1-i +2+2i =3+i.2.若z =(a -2)+(a +1)i 在复平面内对应的点在第二象限,则实数a 的取值范围是________.解析:∵z =(a -2)+(a +1)i 在复平面内对应的点在第二象限,∴⎩⎪⎨⎪⎧a -2<0,a +1>0,解得-1<a <2. 即实数a 的取值范围是(-1,2). 答案:(-1,2)1.(2017·全国卷Ⅰ)设有下面四个命题: p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R. 其中的真命题为( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4解析:选B 设复数z =a +b i(a ,b ∈R),对于p 1,∵1z =1a +b i =a -b i a 2+b 2∈R ,∴b =0,∴z ∈R ,∴p 1是真命题;对于p 2,∵z 2=(a +b i)2=a 2-b 2+2ab i ∈R ,∴ab =0,∴a =0或b =0,∴p 2不是真命题; 对于p 3,设z 1=x +y i(x ,y ∈R),z 2=c +d i(c ,d ∈R),则z 1z 2=(x +y i)(c +d i)=cx -dy +(dx +cy )i ∈R ,∴dx +cy =0,取z 1=1+2i ,z 2=-1+2i ,z 1≠z 2, ∴p 3不是真命题;对于p 4,∵z =a +b i ∈R ,∴b =0,∴z =a -b i =a ∈R , ∴p 4是真命题.2.(2017·全国卷Ⅲ)复平面内表示复数z =i(-2+i)的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C z =i(-2+i)=-2i +i 2=-1-2i ,故复平面内表示复数z =i(-2+i)的点位于第三象限.3.(2016·全国卷Ⅰ)设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( ) A .1 B. 2 C. 3D .2解析:选B ∵(1+i)x =1+y i ,∴x +x i =1+y i. 又∵x ,y ∈R ,∴x =1,y =1. ∴|x +y i|=|1+i|= 2.4.(2016·全国卷Ⅱ)已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)解析:选A 由题意知⎩⎪⎨⎪⎧m +3>0,m -1<0,即-3<m <1.故实数m 的取值范围为(-3,1).5.(2016·全国卷Ⅲ)若z =1+2i ,则4iz z -1=( )A .1B .-1C .iD .-i解析:选C 因为z =1+2i ,则z =1-2i ,所以z z =(1+2i)(1-2i)=5,则4iz z -1=4i 4=i. 6.(2015·全国卷Ⅰ)设复数z 满足1+z1-z=i ,则|z |=( ) A .1 B. 2 C. 3D .2解析:选A 由1+z 1-z =i ,得z =-1+i 1+i =(-1+i )(1-i )2=2i2=i ,所以|z |=|i|=1.7.(2015·全国卷Ⅱ)若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1D .2解析:选B ∵(2+a i)(a -2i)=-4i , ∴4a +(a 2-4)i =-4i.∴⎩⎪⎨⎪⎧4a =0,a 2-4=-4.解得a =0.一、选择题1.(2017·山东高考)已知i 是虚数单位,若复数z 满足z i =1+i ,则z 2=( ) A .-2i B .2i C .-2D .2解析:选A ∵z i =1+i ,∴z =1+i i =1i +1=1-i.∴z 2=(1-i)2=1+i 2-2i =-2i.2.(2018·沈阳质量监测)已知i 为虚数单位,则复数21-i 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A 因为21-i =1+i ,其在复平面内对应的点(1,1)在第一象限.3.已知复数z 满足z =a +i2-i+a 为纯虚数,则|z |=( ) A.12 B .2 C.37D.13解析:选C ∵z =(a +i )(2+i )(2-i )(2+i )+a =(7a -1)+(a +2)i5为纯虚数,∴7a -15=0,a +25≠0,解得a =17,∴z =37i ,∴|z |=37.4.设复数z 满足(1+i)z =-2i ,i 为虚数单位,则z =( ) A .-1+i B .-1-i C .1+iD .1-i解析:选B z =-2i 1+i =-2i (1-i )(1+i )(1-i )=-i -1.5.已知i 是虚数单位,复数z 满足(1-i)z =i ,则|z |=( ) A.12 B.22 C .1 D. 2解析:选B ∵z =i 1-i =i (1+i )(1-i )(1+i )=-12+12i ,∴|z |=⎝⎛⎭⎫-122+⎝⎛⎭⎫122=22.6.(2018·遵义模拟)复数z =4i 2 018-5i1+2i(其中i 为虚数单位)在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C z =4i 2 018-5i1+2i =4×i 2 016·i 2-5i (1-2i )(1+2i )(1-2i )=-4-5(2+i )5=-6-i ,故z在复平面内对应的点在第三象限.7.已知复数z =(cos θ-isin θ)(1+i),则“z 为纯虚数”的一个充分不必要条件是( ) A .θ=π4B .θ=π2C .θ=3π4D .θ=5π4解析:选C z =(cos θ-isin θ)(1+i)=(cos θ+sin θ)+(cos θ-sin θ)i.z 是纯虚数等价于⎩⎪⎨⎪⎧cos θ+sin θ=0,cos θ-sin θ≠0,等价于θ=3π4+k π,k ∈Z.故选C.8.已知t ∈R ,i 为虚数单位,复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则t 等于( ) A.34 B.43 C .-43D .-34解析:选D 因为z 1=3+4i ,z 2=t +i , 所以z 1·z 2=(3t -4)+(4t +3)i ,又z 1·z 2是实数,所以4t +3=0,所以t =-34,故选D.二、填空题9.(2017·天津高考)已知a ∈R ,i 为虚数单位,若a -i2+i 为实数,则a 的值为________.解析:由a -i 2+i =(a -i )(2-i )(2+i )(2-i )=2a -15-2+a 5i 是实数,得-2+a5=0,所以a =-2.答案:-2 10.定义运算⎪⎪⎪⎪⎪⎪a cb d =ad -bc ,复数z 满足⎪⎪⎪⎪⎪⎪z i 1 i =1+i ,z 为z 的共轭复数,则z =________.解析:∵复数z 满足⎪⎪⎪⎪⎪⎪zi 1i =z i -i =1+i ,∴z =1+2i i =i (2-i )i=2-i ,∴z =2+i. 答案:2+i11.(2017·江苏高考)已知复数z =(1+i)(1+2i),其中i 是虚数单位,则z 的模是________. 解析:法一:复数z =1+2i +i -2=-1+3i , 则|z |=(-1)2+32=10.法二:|z |=|1+i|·|1+2i|=2×5=10. 答案:1012.(2018·山东实验中学诊断)在复平面内,复数21-i 对应的点到直线y =x +1的距离是________.解析:因为21-i =2(1+i )(1-i )(1+i )=1+i ,所以复数21-i 对应的点为(1,1),点(1,1)到直线y =x+1的距离为|1-1+1|12+(-1)2=22. 答案:22三、解答题13.计算:(1)(-1+i )(2+i )i 3;(2)(1+2i )2+3(1-i )2+i ;(3)1-i (1+i )2+1+i (1-i )2; (4)1-3i (3+i )2. 解:(1)(-1+i )(2+i )i 3=-3+i-i=-1-3i.(2)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i =i2+i =i (2-i )5=15+25i.(3)1-i (1+i )2+1+i (1-i )2=1-i 2i +1+i -2i =1+i -2+-1+i2=-1. (4)1-3i (3+i )2=(3+i )(-i )(3+i )2 =-i 3+i=(-i )(3-i )44414.已知复数z =x +y i(x ,y ∈R)满足z ·z +(1-2i)·z +(1+2i)·z =3,求复数z 在复平面内对应的点的轨迹.解:∵z =x +y i(x ,y ∈R)且z ·z +(1-2i)·z +(1+2i)·z =3. ∴x 2+y 2+(1-2i)(x +y i)+(1+2i)(x -y i)=3, 即x 2+y 2+x +2y +y i -2x i +x +2y -y i +2x i =3, ∴x 2+y 2+2x +4y -3=0, 即(x +1)2+(y +2)2=8.∴复数z 在复平面内对应的点的轨迹是以(-1,-2)为圆心,以22为半径的圆.1.已知t ∈R ,若复数z =1-t i1+i(i 为虚数单位)为纯虚数,则|3+t i|=( ) A .2 B .4 C .6D .8解析:选A ∵z =1-t i 1+i =(1-t i )(1-i )(1+i )(1-i )=1-t 2+-t -12i 为纯虚数,∴1-t 2=0,-t -12≠0,解得t =1.则|3+t i|=|3+i|=(3)2+12=2.2.甲、乙两人各抛掷一次正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),设甲、乙所抛掷骰子朝上的面的点数分别为x ,y ,则满足复数x +y i 的实部大于虚部的概率为________.解析:∵试验发生所包含的事件是甲、乙两人各抛掷一次正方体骰子,所得点数分别为x ,y ,得到复数x +y i 共有36个,满足条件的事件是复数x +y i 的实部大于虚部, 当实部是2时,虚部是1; 当实部是3时,虚部是1,2; 当实部是4时,虚部是1,2,3; 当实部是5时,虚部是1,2,3,4; 当实部是6时,虚部是1,2,3,4,5, 共有15个,故实部大于虚部的概率是1536=512.。

2019届理科一轮复习 通用版 算法初步 课件

2019届理科一轮复习 通用版 算法初步 课件
[考什么·怎么考]
基本算法语句在高考中的考查极少,主要考查 算法语句表示的算法功能的识别,题型为选择题或 填空题,难度较小.
返回 1.根据下列算法语句,当输入 x 为 60 时,输出 y 的值为( )
A.25 C.31
B.30 D.61
解析:该语句表示分段函数 y=02.55+x,0.x6≤×5x0-,50,x>50, 当 x=60 时,y=25+0.6×(60-50)=31. 故输出 y 的值为 31. 答案:C
返回
3.定义[x]为不超过 x 的最大整数,例如[1.3]=1.执行如图所示的
程序框图,当输入的 x 为 4.7 时, 输出的 y 值为
()
A.7
B.8.6
C.10.2
D.11.8
返回
解析:当输入的 x 为 4.7 时,执行程序框图可知,4.7>3, 4.7-[4.7]=0.7,即 4.7-[4.7]不等于 0,因而可得 y=7+ ([4.7-3]+1)×1.6=10.2,即输出的 y 值为 10.2. 答案:C
角度(二) 完善程序框图
返回
4.(2017·全国卷Ⅰ)如图所示的程序框图是为了求出满足 3n-
2n>1 000 的最小偶数 n,那么在◇和▭两个空白框中,可以
分别填入
()
A.A>1 000 和 n=n+1 C.A≤1 000 和 n=n+1
B.A>1 000 和 n=n+2 D.A≤1 000 和 n=n+2
返回
解析:第一次循环:S=12,n=4; 第二次循环:n=4<8,S=12+14,n=6; 第三次循环:n=6<8,S=12+14+16,n=8; 第四次循环:n=8<8 不成立,输出 S=12+14+16=1112. 答案:1112

高考数学大一轮复习 9.1算法初步 理

高考数学大一轮复习 9.1算法初步 理
必考部分
精品课件
第九章
算法初步、统计与统计案例
精品课件
知识点
考纲下载
1.理解随机抽样的必要性和重要性. 随机抽
2.会利用简单随机抽样方法从总体中抽取样 样
本,了解分层抽样和系统抽样的方法.
精品课件
知识点
考纲下载
1.了解分布的意义和作用,会列频率分布表,会画频率分布直
方图、频率折线图、茎叶图,理解它们各自的特点.
简单的实际问题.
精品课件
知识点
考纲下载
1.会作两个有关联变量数据的散点图,会利用散点图认识变
量间的相关关系.
2.了解最小二乘法的思想,能根据给出的线性回归方程系
数公式建立线性回归方程.
3.了解下列常见的统计方法,并能应用这些方法解决一些 统计案例
实际问题.
(1)了解独立性检验(只要求2×2列联表)的基本思想、方法及
其结构形式为
精品课件
2.条件结构是指算法的流程根据条件是否成立而选择 执行不同的流向的结构形式.
其结构形式为
精品课件
3.循环结构是指从某处开始,按照一定的条件反复执 行某些步骤的情况.反复执行的步骤称为 循环体 .循环结 构又分为当型(WHILE型)和直到型(UNTIL型).
其结构形式为
精品课件
其简单应用.
(2)了解假设检验的基本思想、方法及其简单应用.
(3)了解回归的基本思想、方法及其简单应用.
精品课件
知识点
考纲下载
算法与 1.了解算法的含义,了解算法的思想. 程序框 2.理解程序框图的三种基本逻辑结构:顺序结
图 构、条件结构、循环结构.
精品课件
纵观高考涉及统计与算法初步的考题可以说是精彩纷 呈、奇花斗艳.命题特点与变式的趋势如下:

2020高考数学理科大一轮复习导学案《算法初步》含答案

2020高考数学理科大一轮复习导学案《算法初步》含答案

第九章算法初步、统计、统计案例第一节算法初步知识点一程序框图1.顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.其结构形式为2.条件结构是指算法的流程根据条件是否成立而选择执行不同的流向的结构形式.其结构形式为3.循环结构是指从某处开始,按照一定的条件反复执行某些步骤的情况.反复执行的步骤称为循环体.循环结构又分为当型(WHILE型)和直到型(UNTIL型).其结构形式为1.(必修3P20A组T3改编)某居民区的物业公司按月向居民收取卫生费,每月收费方法是:4人和4人以下的住户,每户收取6元;超过4人的住户,每超出1人加收1.1元,相应收费系统的程序框图如图所示,则①处应填(C)A .y =6+1.1xB .y =15+1.1xC .y =6+1.1(x -4)D .y =15+1.1(x -4)解析:依题意得,费用y 与人数x 之间的关系为y =⎩⎪⎨⎪⎧6,x ≤4,6+1.1(x -4),x >4, 则程序框图中①处应填y =6+1.1(x -4).2.(2018·北京卷)执行如图所示的程序框图,输出的s 值为( B )A.12B.56C.76D.712解析:运行程序框图,k =1,s =1;s =1+(-1)1×12=12,k =2;s =12+(-1)2×13=56,k =3;满足条件,跳出循环,输出的s =56.3.(必修3P50A 组第4题改编)如图,给出的是计算12+14+16+…+12 014的值的程序框图,其中判断框应填入的是( A )A.i≤2 014? B.i>2 014?C.i≤1 007? D.i>1 007?解析:依题意,i=2 016时,终止循环,故应填i≤2 014? 知识点二基本算法语句1.输入语句、输出语句、赋值语句的格式与功能2.条件语句(1)程序框图中的条件结构与条件语句相对应.(2)条件语句的格式.①IF—THEN格式②IF—THEN—ELSE格式3.循环语句(1)程序框图中的循环结构与循环语句相对应.(2)循环语句的格式.4.计算机执行下面的程序段后,输出的结果是(B)a=1b=3a=a+bb=a-bPRINT a,bENDA.1,3 B.4,1C.0,0 D.6,0解析:读程序可知a=1+3=4,b=4-3=1.5.(2018·江苏卷)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为8.I←1S←1While I<6I←I+2S←2SEnd WhilePrint S解析:该伪代码运行3次,第1次,I=3,S=2;第2次,I=5,S=4;第3次I=7,S=8,结束运行.故输出的S的值为8.1.循环结构的两个形式的区别(1)当型循环结构:先判断是否满足条件,若满足条件,则执行循环体.(2)直到型循环结构:先执行循环体,再判断是否满足条件,直到满足条件时结束循环.2.理解赋值语句要注意的三点(1)赋值语句中的“=”称为赋值号,与等号的意义不同.(2)赋值语句的左边只能是变量的名字,而不能是表达式.(3)对于同一个变量可以多次赋值,变量的值始终等于最近一次赋给它的值,先前的值将会被替换.考向一顺序结构与条件结构【例1】(1)阅读如图所示程序框图.若输入x为9,则输出的y的值为()A.8 B.3C.2 D.1(2)如图所示的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.14【解析】(1)由题意可得a=92-1=80,b=80÷10=8,y=log28=3.(2)由a=14,b=18,a<b,则b=18-14=4;由a>b,则a=14-4=10;由a>b,则a=10-4=6;由a>b,则a=6-4=2;由a<b,则b=4-2=2;由a=b=2,则输出a=2.【答案】(1)B(2)B应用顺序结构与条件结构的注意点(1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.(2)条件结构:利用条件结构解决算法问题时,重点是判断框,判断框内的条件不同,对应的下一程序框中的内容和操作要相应地进行变化,故要重点分析判断框内的条件是否满足.(1)阅读如图所示的程序框图,若输入的a,b,c的值分别是21,32,75,则输出的a,b,c分别是(A)A.75,21,32 B.21,32,75C.32,21,75 D.75,32,21(2)执行如图所示的程序框图,如果输入的t∈[-2,2],则输出的S属于(D)A .[-6,-2]B .[-5,-1]C .[-4,5]D .[-3,6]解析:(1)该程序框图的执行过程是输入21,32,75;x =21,a =75,c =32,b =21;输出75,21,32.(2)由程序框图可得S =⎩⎪⎨⎪⎧ 2t 2+1-3,t ∈[-2,0),t -3,t ∈[0,2],其值域为[-3,6].考向二 循环结构方向1 求输出结果【例2】 (2018·天津卷)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为( )A .1B .2C .3D .4【解析】 N =20,i =2,T =0,N i =202=10,是整数;T =0+1=1,i =2+1=3,3<5,N i =203,不是整数;i =3+1=4,4<5,N i =204=5,是整数;T =1+1=2,i =4+1=5,结束循环.输出的T =2,故选B.【答案】 B方向2辨析程序框图的功能【例3】阅读如图所示的程序框图,该算法的功能是()A.计算(1+20)+(2+21)+(3+22)+…+(n+1+2n)的值B.计算(1+21)+(2+22)+(3+23)+…+(n+2n)的值C.计算(1+2+3+…+n)+(20+21+22+…+2n-1)的值D.计算[1+2+3+…+(n-1)]+(20+21+22+…+2n)的值【解析】初始值k=1,S=0,第1次进入循环体时,S=1+20,k=2;第2次进入循环体时,S=1+20+2+21,k=3;第3次进入循环体时,S=1+20+2+21+3+22,k=4;…;给定正整数n,当k=n时,最后一次进入循环体,则有S =1+20+2+21+…+n +2n -1,k =n +1,终止循环体,输出S =(1+2+3+…+n )+(20+21+22+…+2n -1).【答案】 C方向3 完善循环条件【例4】 (2018·全国卷Ⅱ)为计算S =1-12+13-14+…+199-1100,设计了下面的程序框图,则在空白框中应填入( )A .i =i +1B .i =i +2C .i =i +3D .i =i +4【解析】 由程序框图的算法功能知执行框N =N +1i 计算的是连续奇数的倒数和,而执行框T =T +1i +1计算的是连续偶数的倒数和,所以在空白执行框中应填入的命令是i=i+2,故选B.【答案】 B1.求程序框图运行结果的思路(1)要明确程序框图中的顺序结构、条件结构和循环结构.(2)要识别运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.2.确定控制循环变量的思路结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.1.(方向1)(2019·广州高三调研测试)在如图所示的程序框图中,f i′(x)为f i(x)的导函数,若f0(x)=sin x,则输出的结果是(A)A.-sin x B.cos xC.sin x D.-cos x解析:依题意可得f1(x)=f0′(x)=cos x,f2(x)=f1′(x)=-sin x,f3(x)=f2′(x)=-cos x,f4(x)=f3′(x)=sin x,f5(x)=f4′(x)=cos x,故易知f k(x)=f k (x),k∈N,当i=2 018时循环结束,故输出的f2 018(x)=f2(x)=-sin x,故+4选A.2.(方向2)(2019·洛阳高三统考)已知某算法的程序框图如图所示,则该算法的功能是(C)A.求首项为1,公差为2的等差数列的前2 017项和B.求首项为1,公差为2的等差数列的前2 018项和C.求首项为1,公差为4的等差数列的前1 009项和D.求首项为1,公差为4的等差数列的前1 010项和解析:由程序框图得,输出的S=(2×1-1)+(2×3-1)+(2×5-1)+…+(2×2 017-1),可看作数列{2n-1}的前2 017项中所有奇数项的和,即首项为1,公差为4的等差数列的前1 009项和.故选C.3.(方向3)(2019·西安八校联考)如图是求样本x1,x2,…,x10的平均数x的程序框图,则空白框中应填入的内容为(A)A .S =S +x nB .S =S +x n nC .S =S +nD .S =S +x n 10 解析:由题可知,该程序的功能是求样本x 1,x 2,…,x 10的平均数x ,由于“输出x ”的前一步是“x =S n ”,故循环体的功能是累加各样本的值,故应为S =S +x n ,故选A.考向三 算法基本语句【例5】 设计一个计算1×3×5×7×9×11×13的算法.图中给出了程序的一部分,则在横线①上不能填入的数是( )A.13B.13.5C.14D.14.5【解析】当填i<13时,i值顺次执行的结果是5,7,9,11,当执行到i =11时,下次就是i=13,这时要结束循环,因此计算的结果是1×3×5×7×9×11,故不能填13,但填的数字只要超过13且不超过15均可保证最后一次循环时,得到的计算结果是1×3×5×7×9×11×13.【答案】 A与算法语句有关的问题的解题步骤解决算法语句有三个步骤,首先通读全部语句,把它翻译成数学问题;其次领悟该语句的功能;最后根据语句的功能运行程序,解决问题.下列程序执行后输出的结果是990.解析:程序反映出的算法过程为i=11⇒S=1×11,i=10;i=10⇒S=1×11×10,i=9;i=9⇒S=1×11×10×9,i=8;i=8<9,退出循环,执行“PRINT S”.故S=990.。

高考一轮总复习数学 第9章 第4讲 算法初步

高考一轮总复习数学 第9章 第4讲 算法初步

B.7,4 D.9,5
解析 第一次,i=1 时,i=1+1=2,S=2×2-1=3,i=2+2=4.第二次,i=4+1=5,S=2×5-1 =9,i=5+2=7,第三次条件不成立,输出 S=9,i=7,选 C.
3.[2015·天津高考]阅读下边的程序框图,运行相应的程序,则输出 i 的值为( )
A.2 C.4
A.[-3,4]
B.[-5,2]
C.[-4,3]
D.[-2,5]
[解析] 由程序框图可知,s 与 t 可用分段函数 3t,-1≤t<1,
表示为 s=4t-t2,1≤t≤3, 则 s∈[-3,4].
命题角度 2 与数列求和的交汇问题 例 3 [2015·湖南高考]执行如图所示的程序框图,如果输入 n=3,则输出的 S=( )
DO S=S+x i=i+1
LOOP UNTIL a=S/20
PRINT a END
A.i<=20
B.i<20
C.i>=20
D.i>20
[解析] 由于是求 20 个数的平均数,所以应是“直到 i>20”时,退出循环,故选 D.
[易错指导] 解答循环语句时,区分当型循环与直到型循环的主要方法是:当型循环先判断后循环,而 直到型循环是先循环后判断,最重要也是最易搞错的地方是终止循环的条件,对于本例(1)易错选 A.
命题角度 3 与统计的交汇问题 例 4 某班有 24 名男生和 26 名女生,数据 a1,a2,…,a50 是该班 50 名学生在一次数学学业水平模拟 考试中的成绩(成绩不为 0),如图所示的程序用来同时统计全班成绩的平均分:A,男生平均分:M,女生 平均分:W,为了便于区别性别,输入时,男生的成绩用正数,女生的成绩用其成绩的相反数,那么在图 中空白的判断框和处理框中,应分别填入( )

高考数学一轮复习 第九章 算法初步、统计、统计案例 9.1 算法初步课件 理 高三全册数学课件

高考数学一轮复习 第九章 算法初步、统计、统计案例 9.1 算法初步课件 理 高三全册数学课件

2021/12/11
第三十六页,共五十页。
1.(方向 1)(2019·广州高三调研测试)在如图所示的程序框图中,
fi′(x)为 fi(x)的导函数,若 f0(x)=sinx,则输出的结果是( A )
A.-sinx C.sinx
2021/12/11
B.cosx D.-cosx
第三十七页,共五十页。
解析:依题意可得 f1(x)=f0′(x)=cosx,f2(x)=f1′(x)=- sinx,f3(x)=f2′(x)=-cosx,f4(x)=f3′(x)=sinx,f5(x)=f4′(x) =cosx,故易知 fk(x)=fk+4(x),k∈N,当 i=2 018 时循环结束, 故输出的 f2 018(x)=f2(x)=-sinx,故选 A.
解析:该伪代码运行 3 次,第 1 次,I=3,S=2;第 2 次,
I=5,S=4;第 3 次 I=7,S=8,结束运行.故输出的 S 的值
为 8.
2021/12/11
第十九页,共五十页。
1.循环结构的两个形式的区别 (1)当型循环结构:先判断是否满足条件,若满足条件,则执行循 环体. (2)直到型循环结构:先执行循环体,再判断是否满足条件,直到 满足条件时结束循环. 2.理解赋值语句要注意的三点 (1)赋值语句中的“=”称为赋值号,与等号的意义不同. (2)赋值语句的左边只能是变量的名字,而不能是表达式. (3)对于同一个变量可以多次赋值,变量的值始终等于最近一次赋 给它的值,先前的值将会被替换.
其结构形式为
2021/12/11
第七页,共五十页。
3.循环结构是指从某处开始,按照一定的条件反复执行某些步骤
的情况.反复执行的步骤称为 循环体 .循环结构又分为当型

高考理科数学一轮复习课件算法初步

高考理科数学一轮复习课件算法初步

多重背包问题
与01背包问题类似,但每种物品有一个 数量限制。
混合背包问题
同时包含01背包、完全背包和多重背包 的问题。
最长公共子序列问题
最长公共子序列问题的定义
给定两个序列,找出它们的最长公共子序列。
最长公共子序列问题的求解方法
使用动态规划求解最长公共子序列问题,定义状态为两个序列的前缀的最长公共子序列长度,然后根 据状态转移方程进行求解。
将大整数拆分成小整数进行乘法 运算,再将结果合并起来,从而 避免直接进行大整数乘法运算带 来的时间和空间复杂度问题。
棋盘覆盖问题
在一个2^k * 2^k的棋盘中,用 一个L型骨牌覆盖所有空格,通过 分治策略将棋盘划分为四个子棋 盘,分别求解子棋盘的覆盖问题 ,再将结果合并起来得到原棋盘 的覆盖方案。
多资源活动选择问 题
给定多个资源,每个活动需要 占用一种或多种资源,且占用 时间不同。问题是如何选择活 动,使得在满足资源限制的前 提下,活动的总数量或总权重 最大。
货币找零问题及其变形
货币找零问题
给定一些面额的硬币,以及一个总金额。问题是如何用最 少的硬币数量来凑齐这个总金额。
带限制的货币找零问题
重复步骤3,直到找到已排序的元素小于 或者等于新元素的位置。
重复步骤2~5。
排序算法性能比较
时间复杂度
冒泡排序、选择排序和插入排序的时间复杂度均为O(n^2),其中n为序列长度。这意味着当序列长度增加时,这些算 法的执行时间会显著增长。
空间复杂度
这三种排序算法的空间复杂度均为O(1),即它们不需要额外的存储空间来执行排序操作。这使得它们在处理大规模数 据时具有一定的优势。
算法特性
确定性、有穷性、可行性、输入项、 输出项。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西藏林芝地区高考数学备考复习(理科)专题十九:算法初步
姓名:________ 班级:________ 成绩:________
一、单选题 (共15题;共30分)
1. (2分) (2018高二下·晋江期末) 下图是把二进制的数化成十进制数的一个程序框图,则判断框内应填入的条件是()
A .
B .
C .
D .
2. (2分) (2015高三上·房山期末) 执行如图所示的程序框图,则输出S的值为()
A . ﹣10
B . 6
C . 8
D . 14
3. (2分)执行如图所示的程序框图,如果输入x=3,那么输出的n值为()
A . 5
B . 4
C . 3
D . 2
4. (2分)(2017·郴州模拟) 运行如图所示的程序,若输入x的值为256,则输出的y值是()
A .
B . ﹣3
C . 3
D .
5. (2分)执行如图的程序框图,输出的T=()
A . 30
B . 25
C . 20
D . 12
6. (2分)执行如图所示的程序框图.若输出S=15,则框图中①处可以填入()
A . n>4
B . n>8
C . n>16
D . n<16
7. (2分)在输入语句中,若同时输入多个变量,则变量之间的分隔符号是()
A . 逗号
B . 空格
C . 分号
D . 顿号
8. (2分) (2016高一下·黄山期末) 某调查机构对本市小学生课业负担情况进行了调查,设平均每人每天做作业的时间为x分钟.有1000名小学生参加了此项调查,调查所得数据用程序框图处理,若输出的结果是680,
则平均每天做作业的时间在0~60分钟内的学生的频率是()
A . 680
B . 320
C . 0.68
D . 0.32
9. (2分)(2016·河北模拟) 如图是一个程序框图,则输出的S的值是()
A . 0
B . 1
C . 2
D . 4
10. (2分) (2017高一下·瓦房店期末) 若表示不超过的最大整数,则下图的程序框图运行之后输出的结果为()
A . 49850
B . 49900
C . 49800
D . 49950
11. (2分)根据给出的算法框图,计算f(﹣1)+f(2)=()
A . 0
B . 1
C . 2
D . 4
12. (2分)(2017·新课标Ⅲ卷理) 执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()
A . 5
B . 4
C . 3
D . 2
13. (2分)(2015·合肥模拟) 执行如图的程序框图,则输出的n为()
A . 9
B . 11
C . 13
D . 15
14. (2分)(2017·深圳模拟) 执行如图所示的程序框图,若输入p=2017,则输出i的值为()
A . 335
B . 336
C . 337
D . 338
15. (2分)(2013·新课标Ⅱ卷理) 执行右面的程序框图,如果输入的N=10,那么输出的S=()
A .
B .
C .
D .
二、解答题 (共1题;共5分)
16. (5分)画出计算的程序框图,并编写相应的程序.
三、填空题 (共5题;共6分)
17. (2分) (2018高二上·黑龙江期末) 执行如图所示的程序框图,输出的值是________.
18. (1分)(2017·南通模拟) 根据如图所示的伪代码,可知输出的结果是________.
19. (1分)(2017·松江模拟) 按如图所示的程序框图运算:若输入x=17,则输出的x值是________
20. (1分)阅读如图所示的程序框图,运行相应的程序,输出的结果是________ .
21. (1分) (2016高一下·湖南期中) 阅读如图所示程序框图,若输出的n=5,则满足条件的整数p共有________个.
四、综合题 (共4题;共41分)
22. (6分) (2016高一下·福州期中) 如图是计算1+2+ +3+ +…+2010+ 的值的程序框图,
(1)图中空白的判断框应填________?处理框应填________;
(2)写出与程序框图相对应的程序.
23. (10分)(2017·湘西模拟) 某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生
(I)分别求出按程序框图正确编程运行时输出y的值为i的概率pi(i=1,2,3);
(II)甲乙两同学依据自己对程序框图的理解,各自编程写出程序重复运行n次后,统计记录输出y的值为i (i=1,2,3)的频数,以下是甲乙所作频数统计表的部分数据.
甲的频数统计图(部分)
运行次数n输出y的值为1的频
数输出y的值为2的频

输出y的值为3的频

3014610…………21001027376697乙的频数统计图(部分)
运行次数n输出y的值为1的频
数输出y的值为2的频

输出y的值为3的频

3012117
…………
21001051696353
当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合要求的可能系较大;
(III)将按程序摆图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.
24. (15分)①用辗转相除法或更相减损术求228与1995的最大公约数
②将104转化为三进制数.
25. (10分)如图所示,利用所学过的算法语句编写相应的程序.
参考答案
一、单选题 (共15题;共30分)
1、答案:略
2-1、
3-1、
4、答案:略
5、答案:略
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
二、解答题 (共1题;共5分)
16-1、
三、填空题 (共5题;共6分) 17-1、
18-1、
19-1、
20-1、
21-1、
四、综合题 (共4题;共41分)
22-1、
22-2、
23-1、
24-1、25-1、。

相关文档
最新文档