形变奥氏体→先共析铁素体相变动力学的研究
第3章 奥氏体相变

G均匀
r*
*
2 GV GS
G均匀
16 3 3(GV GS ) 2
物理意义:新相核胚的原子团半径(r)必须大于临界半径(r*),系统才 )的阻碍,新相的核胚才能继续长大,完成形核过 能克服势垒( G均匀 程。否则核胚的原子团将重新散开,形核失败。
非均匀形核
3)残留渗碳体的溶解
1.实验现象: 1) F消失时,组织中的Fe3C还未完全转变 2) 测定后发现A中含碳量低于共析成分0.77% 2.原因: Fe-Fe3C相图上ES线斜度大于GS线,S点不在 CA-F与CA-C中点,而稍偏右。所以A中平均碳浓 度,即(CA-F + CA-C)/2低于S点成分。当F全部转 变为A后,多余的碳即以Fe3C形式存在。
σs=σi+Kyd-1/2 σs -屈服强度,σi-抵抗位错在晶粒中运动的 摩擦阻力,Ky-常数, d-晶粒直径
晶粒度 级别图 1-8级
3.4.1 晶粒度概念及晶粒长大现象
一)晶粒度
设N为放大100倍时每平方英寸in2面积内 的晶粒数,则下式中G即为晶粒度。
N=2
G-1
晶粒越细,G越大。 起始晶粒:加热转变终了时所得的A晶粒 实际晶粒:长大到冷却开始时的A晶粒 本质晶粒:930º C保温3~8小时所得的晶粒 1-4级:本质粗晶粒钢,5-8本质细晶粒钢
3.影响P转变为A的因素
温度 形核率与线长大速度随温度升高 而增加 碳含量:A形成速度随C%增加而增加 原始组织 P中Fe3C片厚度和颗粒大小影 响A形成过程及形成速度. 片状大于颗粒状;片层越小,速度越大 合金元素:改变临界点位置、影响C扩散 速度;形成各种碳化物(K)
珠光体转变动力学

珠光体转变动力学(一)珠光体转变的形核率N 及线长大速度G1、形核率N 及长大速度G 与转变温度的关系过冷奥氏体转变为珠光体的动力学参数-N 和G 与转变温度之间都具有极大值和特征。
0.78%C 、0.63%Mn 钢珠光体的成核率和晶体长大速度与温度的关系如下图所示。
产生上述特征的原因,可以定性地说明如下:在其它条件相同的情况下,随着过冷度增大(转变温度降低),奥氏体与珠光体的自由能差增大。
但随着过冷度的增大,原子活动能力减小,因而,又有使成核率减小的倾向。
N 与转变温度的关系曲线具有极大值的变化趋向就是这种综合作用的结果。
由于珠光体转变是典型的扩散性相变,所以珠光体的形成过程与原子的扩散过程密切相关。
当转变温度降低时,由于原子扩散速度减慢,因而有使晶体长大速度减慢的倾向,但是,转变温度的降低,将使靠近珠光体的奥氏体中的C 浓度差增大,亦即C r-cem 与C r-a 差值增大,这就增大了C 的扩散速度,而有促进晶体长大速度的作用。
共析钢(0.78%C 、0.63%Mn )的成核率(N ) 和晶体长大速度(G )与转变温度的关系从热力学条件来分析,由于能量的原因,随着转变温度降低,有利于形成薄片状珠光体组织。
当浓度差相同时,层间距离越小,C原子动力距离越短,因而有增大珠光体长大速度的作用。
综合上述因素的影响,长大速度与转变温度的关系曲线也具有极大值的特征。
2、形核率N和长大速度G与转变时间的关系研究表明等温保持时间对珠光体的长大速度无明显的影响。
当转变温度一定时,珠光体转变的形核与等温温度有一定的关系,随着转变时间的延长形核逐渐增加,当达到一定程度后就急剧下降到零,即所谓的位置饱和。
(二)珠光体等温转变动力学图珠光体等温转变动力学图,一般都是用实验方法来测定的。
由于其形状具有字母“C”的形状,通常称为C曲线,或TTT(Time Temperature Transformation)曲线。
1、C曲线的建立以共析碳钢C曲线的建立过程,说明建立C曲线的建立过程。
共析转变(三)

亚共析钢中先共析铁素体的析出:
1. 块状F的析出
当P转变温度高,Fe原子自扩散便利,且晶粒较细时;
2. 网状F的析出
当转变温度较高,或冷速较大、A晶粒粗大时,Fe自扩 散能力下降,F易沿晶界析出并连成网状;
3. 片状F的析出
当转变温度较低,晶粒粗大时;
过共析钢中先共析渗碳体的析出:
过共析钢加热到Acm温度以上,经保温获得均匀奥氏体 后,再在Acm点以下GS延长线以上等温保持或缓慢冷
② 晶体点阵重构
珠光体团:珠光体片层方向大致相同的区域。
珠光体片间距SO
8.02 S0 10 3 nm T
过冷度越大,片间距 越小
不同的温度形成的珠光体片层间距不同:
在温度区间(A1~ 650℃):SO大约为400nm;珠光体P 在温度区间(650℃~600℃):SO大约为400nm~200nm,称为索氏体S 在温度区间(600℃~500℃):SO小于200nm,称为托氏体T(或屈氏体)
当含碳量为0.77%的奥氏体( γ)冷却到共析温度(727℃ ),将分解成铁素体(α)和 渗碳体(Fe3C)的机械混合 物——珠光体转变
0.77%C 0.0218%C Fe3C6.69%C
珠光体: 铁素体、渗碳体交替分布的片层状共析组织.
珠光体的形成过程:
① 碳的扩散;
二、珠光体的形成过程:
珠 光 体 形 成 过 程
碳 的 扩 散 过 程
三、共析转变动力学
共析转变和其他类型的相变一样,也遵循着形核和长大的过程。
1、影响因素:
影响形核率I和长大速度μ的因素有①过冷度的大小和②等温时间。
结论:形核率I和长大速度μ随过冷度的增大先增后减小!
钢中碳化物的相间析出

钢中碳化物的相间析出通常,对于工业用钢,碳化物的弥散硬化和二次硬化的利用,都是在调质状态下实现的。
但是,在控制轧制条件下使用的非调质高强度钢中,人们却利用添加少量Nb、V等强碳化物形成元素,有效地提高了钢的强度。
之所以如此,是由于钢在冷却过程中从奥氏体中析出了细小的特殊碳(氮)化物。
透射电子显微镜观察表明,这种化合物的直径约为50Å,而且比较规则的一个面接一个面的排列分布。
后来研究又发现,这种碳(氮)化物是在奥氏体-铁素体相界面上形成的,因此将这种转变称为“相间析出”(interphas precipitation)。
相间析出的结果也是由过冷奥氏体转变为铁素体与碳化物的机械混合物。
由于这种转变发生在珠光体与贝氏体形成温度之间,因而研究这种转变,不仅对非调质钢的强化有实际价值,而且对搞清珠光体和贝氏体转变机理也有一定意义。
(一)相间析出产物的形态和性能含有强碳(氮)化物形成元素的低碳合金钢的奥氏体,在冷却过程中有可能首先发生碳(氮)化物的析出,因为析出是在奥氏体与铁素体相界面上发生的,所以把这一过程称为相间析出。
1、组织形态钢中的相间析出的转变产物,其显微组织在低倍的光学显微镜下,相间析形成的铁素体与先共析铁素体相似呈块状。
而在高倍的电子显微镜下,可以观察到铁素体中有呈带状分布的微粒碳(氮)化物存在,这是相间析的组织形态特征。
这种组织与珠光体相似,也是由铁素体与碳化物组成的机械混合物,而碳化物不是片状,而是细小粒状的,分布在有一定间距的平行的平面上,因此也称为“变态珠光体”(degenerate pearlite)。
分布有微粒碳化物的平面彼此之间的距离称为“面间距离”。
随着等温转变温度的降低或冷却速度的增大,析出的碳化物颗粒变细,面间距离减小。
另外,钢中的化学成分不同对碳化物的颗粒直径的面间距离也有一定的影响,通常含特殊碳化物元素越多,形成碳化物颗粒越细,面间距离越小。
在相同转变温度下,随着钢碳含量增高,析出碳化物的数量增多,面间距离也有所减小。
钢中碳化物的相间析出

钢中碳化物的相间析出通常,对于工业用钢,碳化物的弥散硬化和二次硬化的利用,都是在调质状态下实现的。
但是,在控制轧制条件下使用的非调质高强度钢中,人们却利用添加少量Nb、V等强碳化物形成元素,有效地提高了钢的强度。
之所以如此,是由于钢在冷却过程中从奥氏体中析出了细小的特殊碳(氮)化物。
透射电子显微镜观察表明,这种化合物的直径约为50Å,而且比较规则的一个面接一个面的排列分布。
后来研究又发现,这种碳(氮)化物是在奥氏体-铁素体相界面上形成的,因此将这种转变称为“相间析出”(interphas precipitation)。
相间析出的结果也是由过冷奥氏体转变为铁素体与碳化物的机械混合物。
由于这种转变发生在珠光体与贝氏体形成温度之间,因而研究这种转变,不仅对非调质钢的强化有实际价值,而且对搞清珠光体和贝氏体转变机理也有一定意义。
(一)相间析出产物的形态和性能含有强碳(氮)化物形成元素的低碳合金钢的奥氏体,在冷却过程中有可能首先发生碳(氮)化物的析出,因为析出是在奥氏体与铁素体相界面上发生的,所以把这一过程称为相间析出。
1、组织形态钢中的相间析出的转变产物,其显微组织在低倍的光学显微镜下,相间析形成的铁素体与先共析铁素体相似呈块状。
而在高倍的电子显微镜下,可以观察到铁素体中有呈带状分布的微粒碳(氮)化物存在,这是相间析的组织形态特征。
这种组织与珠光体相似,也是由铁素体与碳化物组成的机械混合物,而碳化物不是片状,而是细小粒状的,分布在有一定间距的平行的平面上,因此也称为“变态珠光体”(degenerate pearlite)。
分布有微粒碳化物的平面彼此之间的距离称为“面间距离”。
随着等温转变温度的降低或冷却速度的增大,析出的碳化物颗粒变细,面间距离减小。
另外,钢中的化学成分不同对碳化物的颗粒直径的面间距离也有一定的影响,通常含特殊碳化物元素越多,形成碳化物颗粒越细,面间距离越小。
在相同转变温度下,随着钢碳含量增高,析出碳化物的数量增多,面间距离也有所减小。
奥氏体的形成动力学

(1) 形核率I
在奥氏p( Q W ) kT
(9.1)
式中,C为常数; Q为扩散激活能; T为绝对温度;k为波尔兹曼常数; W为临界晶核的形核功。
W
Gmax
16 3
(ⅱ) 铁素体中有利于奥氏体形核部位增多, 原子扩散距离相对缩短,有利于奥氏体长大;
(ⅲ) 奥氏体与铁素体的相界面浓度差(Cγ/αCα/γ)以及奥氏体与渗碳体的相界面浓度差 (C cem/γ-Cγ/cem)均减小(见图9.5(a)),因而 加速了奥氏体长大时的相界面推移速度。
综上所述,奥氏体形成温度升高时,奥氏体 的形核率I和长大速度G均增大。所以,奥氏体形 成速度随形成温度升高呈单调增大。
由于在一个珠光体片层间距内形成奥氏体的
同时,类似过程也在其他片层中进行,所以可用 一个片层间距内的奥氏体的长大速度代替奥氏体 长大的平均速度。此时
dC C / cem C /
dx
S0
,
其中 S0为珠光体片层间距,Cγ/cem-Cγ/α为奥氏体
两个相界面之间的浓度差(由状态图中GS线和ES线
确定),因此可近似估算奥氏体向铁素体及渗碳体
➢ 原子扩散系数,原子扩散速度 ,有利于铁素体向奥 氏体的点阵重构,促进渗碳体的溶解,也加速奥氏体的 形核。
➢ Cγ/α与Cα/γ之差减小(图9.5(a)) ,奥氏体形核所需的 碳浓度起伏减小,也有利于奥氏体的形核率。
因此,奥氏体形成温度升高,即相变过热度增大, 可以使奥氏体形核急剧,这对于形成细小的奥氏体晶 粒是有利的。
dC
dx 为相界面处奥氏体中碳的浓度梯度;△CB为奥氏体与
铁素体的相界面处或奥氏体与渗碳体的相界面处的两相浓
珠光体转变动力学
珠光体转变动力学(一)珠光体转变的形核率N 及线长大速度G1、形核率N 及长大速度G 与转变温度的关系过冷奥氏体转变为珠光体的动力学参数-N 和G 与转变温度之间都具有极大值和特征。
0.78%C 、0.63%Mn 钢珠光体的成核率和晶体长大速度与温度的关系如下图所示。
产生上述特征的原因,可以定性地说明如下:在其它条件相同的情况下,随着过冷度增大(转变温度降低),奥氏体与珠光体的自由能差增大。
但随着过冷度的增大,原子活动能力减小,因而,又有使成核率减小的倾向。
N 与转变温度的关系曲线具有极大值的变化趋向就是这种综合作用的结果。
由于珠光体转变是典型的扩散性相变,所以珠光体的形成过程与原子的扩散过程密切相关。
当转变温度降低时,由于原子扩散速度减慢,因而有使晶体长大速度减慢的倾向,但是,转变温度的降低,将使靠近珠光体的奥氏体中的C 浓度差增大,亦即C r-cem 与C r-a 差值增大,这就增大了C 的扩散速度,而有促进晶体长大速度的作用。
共析钢(0.78%C 、0.63%Mn )的成核率(N ) 和晶体长大速度(G )与转变温度的关系从热力学条件来分析,由于能量的原因,随着转变温度降低,有利于形成薄片状珠光体组织。
当浓度差相同时,层间距离越小,C原子动力距离越短,因而有增大珠光体长大速度的作用。
综合上述因素的影响,长大速度与转变温度的关系曲线也具有极大值的特征。
2、形核率N和长大速度G与转变时间的关系研究表明等温保持时间对珠光体的长大速度无明显的影响。
当转变温度一定时,珠光体转变的形核与等温温度有一定的关系,随着转变时间的延长形核逐渐增加,当达到一定程度后就急剧下降到零,即所谓的位置饱和。
(二)珠光体等温转变动力学图珠光体等温转变动力学图,一般都是用实验方法来测定的。
由于其形状具有字母“C”的形状,通常称为C曲线,或TTT(Time Temperature Transformation)曲线。
1、C曲线的建立以共析碳钢C曲线的建立过程,说明建立C曲线的建立过程。
热处理组织转变
奥氏体的线生长速度为相界面的推移速度,
式中,“-”表示向减小浓度梯度的下坡扩散;k—常数; —C在奥氏体中的扩散系数; —相界面处奥氏体中C的浓度梯度; —相界面浓度差。
等温转变时: 、 (由相图决定 )均为常数, 为珠光体片间距,平衡冷却时,平均片间距与每一片间距相同。
则: 。(1)由于忽略碳在铁素体的扩散,此计算值与实际速度偏小;(2)对粒状珠光体亦适用。
2.奥氏体晶格改组:(1)一般认为,平衡加热过热度很小时,通过Fe原子自扩散完成晶格改组。(2)也有人认为,当过热度很大时,晶格改组通过Fe原子切变完成。
3.奥氏体晶核的长大速度:奥氏体晶核向F和Fe3C两侧的推移速度是不同的。根据公式:
式中,K—常数; —C在奥氏体中的扩散系数; —相界面处奥氏体中C的浓度梯度; —相界面浓度差;“-”表示下坡(高浓度向低浓度处)扩散。向F一侧的推移速度与向Fe3C一侧的推移速度之比:
二、奥氏体的形核
以共析钢为例,讨论钢中奥氏体形成。
奥氏体晶核主要在F和Fe3C的相界面
形核,其次在珠光体团界、F亚结构(嵌镶块)
界面形核。这样能满足:(1)能量起伏;(2)结构起伏;(3)成分起伏三个条件。
三、奥氏体的长大
α+ Fe3Cγ
晶体结构:体心立方复杂斜方面心立方
含碳量:0.0218% 6.67% 0.77%
讨论:(1)温度T升高, 呈指数增加,长大速度G增加,(2)温度T升高,C1-C2增加, 增加,速度G增加;(3)温度T升高, =C2-C4下降,长大速度G增加。
综上:温度T升高,长大速度及形核率均整大。
三、等温形成动力学曲线
转变量与转变时间的关系曲线—等温动力学曲线,信息少。
共析钢加热时,珠光体转变为奥氏体的过程_概述说明
共析钢加热时,珠光体转变为奥氏体的过程概述说明1. 引言1.1 概述共析钢是一种重要的金属材料,在工业领域应用广泛。
在制备和加热过程中,共析钢的组织会发生相变现象,其中最主要的转变是珠光体向奥氏体的转变。
这个转变过程对于共析钢的性能和性质具有重要影响,因此深入研究珠光体向奥氏体转变的机理和控制方法具有重要意义。
1.2 文章结构本文将从三个方面介绍共析钢加热时珠光体向奥氏体转变的过程。
首先,我们将概述共析钢珠光体和奥氏体之间的相变关系,并介绍组织特点和相变规律。
其次,我们将探讨影响珠光体向奥氏体转变的因素,包括加热温度、合金元素等。
最后,我们将详细介绍珠光体到奥氏体转变的动力学和热力学机制。
1.3 目的本文旨在系统地总结并分析共析钢加热时珠光体向奥氏体转变的过程,并提出相关实验方法与控制策略。
通过对已有研究的综合评价,我们将展望未来可能的研究方向,为共析钢相变行为的控制与应用提供参考。
接下来,将详细介绍第二部分内容,即“2. 共析钢的珠光体与奥氏体转变过程”。
2. 共析钢的珠光体与奥氏体转变过程2.1 共析钢的组织特点与相变规律共析钢是一种由珠光体和奥氏体组成的复合材料。
珠光体是一种具有层状结构的晶体,具有优异的韧性和强度;而奥氏体则是一种具有六角紧密堆积结构的晶体,具有较高的硬度和磁性。
在共析钢中,珠光体和奥氏体之间存在着相变现象,主要表现为加热时珠光体向奥氏体转变,降温时则呈反向转变。
这种相变过程对于共析钢的性能起着重要作用,并且在许多工业应用中都需要进行控制和调控。
2.2 加热过程中珠光体向奥氏体转变的影响因素加热过程中珠光体向奥氏体转变受到多个因素影响。
首先,温度是影响转变过程最重要的因素之一。
通常情况下,在高温条件下进行加热可以促使珠光体向奥氏体转变更快速。
其次,共析钢的化学成分也会对相变过程产生影响。
一些合金元素的加入可以降低转变温度和提高转变速率,从而改善共析钢的性能。
此外,晶体缺陷、应力状态以及加热速率等因素也会对珠光体到奥氏体的相变行为产生影响。
奥氏体低温变形相变α 一Fe晶粒尺寸的预测模型
=1/
单位体积奥氏体内的铁素体晶粒总数 可表示为:
dt
因此铁索体晶粒的平均尺寸为:
= (3)
1.2形核速率模型
变形对α晶粒细化的作用除了使单位体积等效晶界面积增加,提供了大量的形核位置外,还有两个重要的因素,一个是增大了奥氏体内的变形存储能,从而使奥氏体自由能升高、形核驱动力增 ;一个是使 晶界和退火孪晶界上产生大量的凸阶,晶界处形核功率降低.如图1所示凸阶处形核功率降低 / 。现有模型中采用 提出的方法计算形核速率,此方法并没有反映这两个因素对形核的促进作用因此本文在其基础上引入变形因子 (0< <1)描述变形使晶界处平均形核功率降低的作用,由文献[6]可知 是应变 的函数,且随 的增大而降低,用函数妒 ( )=exp(- )来近似描述二者之间的关系.选取合适的常数 ,使得不同应变下计算的晶粒尺寸值与相应的实验结果之差的平方和最小,即认为计算与实测值符合最好:将变形存储能 引入形核驱动力 计算中.即 = . 为未变形条件下的α形核体积自由能变化,此处为负 。本文采用规则溶液亚点阵模 进行计算.形核速率由公式(4)示出
【11】Imao T,Hiroshi S,TomoT.ThermomecanicalProcessing ofHigh Strength LowAlloySteels.Tokyo:Butter-worths,1988:30
【12】Sun ZQ,YangW Y,HuAM.Chin JMaterRes,inprocess
从0到t期间形核的所有铁素体晶粒在平面A上的延伸面积分数为: d
令
x=y/( )
当x<1时,
[ ]
当x>1, =0。在平面B上,通过单位体积的奥氏体晶界面积 所形成的晶核所占有的体积分数为: