新人教版2015年八年级下第三次月考数学试题及答案
2024年教科新版八年级数学下册月考试卷633

2024年教科新版八年级数学下册月考试卷633考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共7题,共14分)1、以下列条件构成的三角形中,不属于直角三角形的是()A. ∠A=∠B=45°B. ∠A=∠B+∠CC. AB=5,BC=12,AC=13D. ∠A=2∠B=3∠C2、【题文】要使二次根式有意义,字母的取值范围必须满足的条件是()A.B.C.D.3、正方形的网格中;每个小正方形的边长为1,则网格中三角形ABC中,边长是无理数的边数是()A. 0B. 1C. 2D. 34、如图;在直角三角形ABC中,∠BAC=90°,AB=AC,D为BC上一点,AB=BD,DE⊥BC,交AC于E,则图中的等腰三角形的个数有()A. 3个B. 4个C. 5个D. 6个5、下列计算正确的是( )A. 5−3=2B. 8+2=4C. 27=33D. (1+2)(1−2)=16、已知△ABC≌△DEF,点A、B的对应点分别是点D、E,若∠A=40°,∠E=60°,则∠C的度数是()A. 100°B. 80°C. 60°D. 40°7、给出下列长度的四组线段:①1,2,2;②5,12,13;③6,7,8;④3m,4m,5m(m>0).其中能组成直角三角形的有()A. ①②B. ②④C. ②③D. ③④评卷人得分二、填空题(共5题,共10分)8、某药品由原售价连续两次降价,每次下降的百分率相同,每瓶零售价由150元降为96元,那么下降的百分率是____.9、如图,把抛物线平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线交于点Q,则图中阴影部分的面积为________________.10、已知关于x的方程2x+mx−2=3的解是非负数,则m的取值范围为 ______ .11、在下面的六幅图中,(2)(3)(4)(5)(6)中的图案_________可以通过平移图案(1)得到的.12、(2015•玉林)某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一个不完整的扇形统计图,其中“其他”部分所对应的圆心角是36°,则“步行”部分所占百分比是____.评卷人得分三、判断题(共9题,共18分)13、由2a>3,得;____.14、正数的平方根有两个,它们是互为相反数____15、-52的平方根为-5.()16、等腰梯形、直角梯形是特殊梯形.(判断对错)17、有意义的x的取值范围是x>.____(判断对错)18、判断:两组邻边分别相等的四边形是菱形.()19、判断:×===6()20、线段是中心对称图形,对称中心是它的中点。
河南省南阳市卧龙区2023-2024学年八年级下学期3月月考数学试题(解析版)

八年级第二学期学习评价数学(1)一.选择题.(每题只有一个正确答案,请将正确答案填在下面的表格里.每题3分,共30分)1. 下列式子是分式的是( )A.B.C. D.【答案】B 【解析】【分析】本题主要考查了分式的识别,对于两个整式A 、B ,且B 中含有字母,,那么形如的式子就叫做分式,据此求解即可.【详解】解:根据分式的定义可知,四个选项中,只有B 选项中的式子是分式,故选:B .2. 化简的结果是( )A. 2 B. C.D. 【答案】C 【解析】【分析】根据负整数指数幂的运算法则进行化简即可.【详解】解:,故选:C .【点睛】本题考查了负整数指数幂,任何不等于零的数的(为正整数)次幂,等于这个数的次幂的倒数,即(,为正整数).3. 下列分式中,最简分式是( )A.B.C.D.【答案】C 【解析】【分析】利用最简分式定义进行分析即可;【详解】解:、该分式的分子、分母中含有公因式,不是最简分式,故此选项不符合题意;32a1x x +x y+xπ0B ≠AB12-2-1212-1122-=n -n n 1nnaa -=0a ≠n 211a a +-246a bc 22a a-2a b a ab++A ()1+aB 、该分式的分子、分母中含有公因数,不是最简分式,故此选项不符合题意;C 、该分式最简分式,故此选项符合题意;D 、该分式的分子、分母中含有公因式,不是最简分式,故此选项不符合题意;故选:C .【点睛】本题考查了最简分式的定义:一个分式的分子与分母没有公因式时,这个分式叫做最简分式,解题关键掌握最简分式的定义.4. 把下列分式中x ,y 的值都同时扩大到原来的5倍,那么分式的值保持不变的是( )A.B.C.D.【答案】A 【解析】【分析】根据分式的基本性质,x ,y 的值都同时扩大到原来的5倍,求出每个式子的结果,看结果是否等于原式.【详解】解:A 、,分式的值保持不变,符合题意;B 、,分式的值改变,不符合题意;C 、,分式的值改变,不符合题意;D 、,分式的值改变,不符合题意;故选:A .【点睛】本题考查了分式的基本性质.解题的关键是掌握分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.5. 春节游河南,探寻千年古韵,品味地道年味!有游客人,到龙门石窟游玩,需要住宿,如每个人住一间房,结果还有一个人无房住,则客房的间数是( )A.B.C.D.【答案】A 【解析】【分析】本题考查了列代数式,根据有一个人无房住可得住进房间的人数为人,再除以即可求出是2()a b +y x y-1x y-x y xy-2x y y -()55555y y yx y x y x y==---()11115555x y x y x y==⨯---()55515·5255x y x y x yx y xy xy---==⨯()()22255512555x y x yx yy yy ---==⨯m n 1m n-1m n-1m n+1m n+()1m -n客房的间数,读懂题意是解题的关键.【详解】解:由题意可得,客房间数为,故选:.6. 解分式方程,去分母后得到的方程是( )A. B. C. D. 【答案】B 【解析】【分析】本题主要考查了解分式方程,把方程两边同时乘以去分母即可得到答案.【详解】解:方程两边同时乘以去分母得,故选:B .7. 若,,则的值是( )A. 2 B. ﹣2C. 4D. ﹣4【答案】D 【解析】【分析】根据完全平方公式的变形求出的值,再计算异分母分式相加即可.【详解】∵,∴,∴,故选D .【点睛】本题考查了求代数式的值,涉及完全平方根公式,异分母分式相加,熟练掌握公式和运算法则是解题的关键.8. 如图,若,则表示的值的点落在( )的1m n-A 12113x x x+-=()1321x x -+=()13213x x-+=()13211x -+=1633x x x-+=3x 12113x x x+-=3x ()13213x x -+=2x y +=2xy =-y xx y+22x y +()2222x y x xy y +=++()()222222228x y x y xy +=+-=-⨯-=22842y x y x x y xy ++===--2a b =222a ab a b --A. 第①段B. 第②段C. 第③段D. 第④段【答案】C 【解析】【分析】把代入即可求出分式的值,再看值的点落在的位置.【详解】解:∵,∴,∵,∴表示的值的点落在段③,故选:C .【点睛】本题考查了分式的值,知晓把整体代入是解此题的关键.9. 已知关于m 的不等式组,且m 为整数,则关于x 的分式方程的解是( )A. B. C. D. 不能确定【答案】C 【解析】【分析】本题主要考查了求不等式组的整数解,解分式方程,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集,进而求出其整数解,即m 的值,然后解分式方程即可得到答案.【详解】解:解不等式①得,解不等式②得:,∴不等式组的解集为,∵m 为整数,2a b =2a b =222a ab a b --2222224222433b b b b b b -===-2013<<222a ab a b--2a b =12020m m -<⎧⎨-<⎩12+=-x x m 5x =1x =3x =12020m m -<⎧⎨-<⎩①②12m >2m <122m <<∴原分式方程为,去分母得:,去括号得:,解得,经检验,是原方程的解,故选:C10. 漳州市教育局为帮助全市贫困师生举行“一日捐”活动,甲、乙两校教师各捐款60000元,已知“…”,设乙学校教师有x 人,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补( )A. 乙校教师比甲校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%B. 甲校教师比乙校教师人均多捐20元,且乙校教师人数比甲校教师的人数多20%C. 甲校教师比乙校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%D. 乙校教师比甲校教师人均多捐20元,且乙校教师人数比甲校教师的人数多20%【答案】A 【解析】【分析】根据乙学校教师有x 人推出的含义,再推出的含义,即可得解.【详解】设乙学校教师有x 人,则表示:甲校教师的人数比乙校教师的人数多20%,表示乙校教师比甲校教师人均多捐20元,因此可得出:已知“甲校教师比乙校教师人数多,且乙校教师比甲校老师人均多捐20元”;故选A .【点睛】本题考查分式方程的应用.准确理解方程中的等量关系,是解题的关键.二.填空题.(每小题3分,共15分)11. 若分式的值为0,则=______.【答案】1的的121x x +=-()121x x +=-122x x +=-3x =3x =600006000020(120)x x-=+%(120)x +%600006000020(120)x x-=+%(120)x +%600006000020(120)x x-=+%20%11x x -+x【分析】分式的值为0,即是分子为0,分母不能为0,据此可以解答本题.【详解】解:∵,∴,∴.故答案为:1【点睛】本题考查分式的值为0的条件,关键在于理解值为0的条件.12. 某种花粉颗粒的直径约为,将用科学记数法可以表示为________.【答案】【解析】【分析】本题主要考查了科学记数法,科学记数法的表现形式为的形式,其中,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:,故答案为:.13. 若关于x 的方程无解,则m =_____.【答案】1或2【解析】【分析】去分母得(m -2)x +1=0,根据方程无解分情况讨论,求解即可.【详解】解:去分母,得mx +1﹣2x =0,化简得(m ﹣2)x +1=0,当=0时,x =0或x =1当方程有增根为x =0时,m 不存在;当方程有增根x =1时,得m ﹣2+1=0,即当方程有增根时m =1;当m ﹣2=0时,原方程无解,此时m =2,综上所述:m =1或2,故答案为:1或2.101x x -=+10x -=10x +≠1x =0.000031m 0.00003153.110-⨯10n a ⨯110a ≤<50.000031 3.110-=⨯53.110-⨯21201mx x x x +-=--2x x -【点睛】本题考查了分式方程的解,理解分式方程无解的含义是解题的关键.14. 已知,则________.【答案】【解析】【分析】本题主要考查了异分母分式加法计算,先把已知式子右边通分得到,进而得到,据此求出A 、B 的值即可得到答案.【详解】解:∵,∴,∴,∴,∴,∴,故答案为:4.15. 已知关于分式方程的解满足,则的取值范围是______.【答案】且【解析】【分析】本题考查了分式方程的解,解不等式组,先求出分式方程的解,根据,得到关于的一元一次不等式组,解不等式组求出的取值范围,又由最简公分母的值不等于,可得不符合条件的取值,最后综合即可得到最终的取值范围,正确求出分式方程的解是解题的关键.【详解】解:由分式方程得,,∵分式方程的解满足,的()()223222x ABx x x +=+---A B -=4()()223222x Bx A Bx x ++-=--231A B B -==,()()223222x AB x x x +=+---()()()()22223222B x x Ax x x -+=+---()()223222x Bx A Bx x ++-=--231A B B -==,51A B ==,514A B -=-=x ()()232223x kx x x +=+--+41x -<<-k 714k -<<0k ≠41x -<<-k k 0k k ()()232223x kx x x +=+--+217x k =-()()232223x k x x x +=+--+41x -<<-∴,即,解得,又∵,∴且,即且,解得且,∴的取值范围为且,故答案为:且.三.解答题.(本大题8小题,共75分)16. 计算:(1);(2)解方程:.【答案】(1);(2)【解析】【分析】本题主要考查了分式的除法计算,解分式方程:(1)先把除法变成乘法,然后约分即可得到答案;(2)按照去分母,去括号,移项,合并同类项的步骤解方程,然后检验即可得到答案.【详解】解:(1);(2)21471k --<<-21472117k k -⎧>-⎪⎪⎨-⎪<-⎪⎩714k -<<()()230x x -+≠20x -≠30x +≠21207k --≠21307k -+≠35k ≠0k ≠k 714k -<<0k ≠714k -<<0k ≠322243x z xz y y ÷-32222x x x x-=---232x yz-1x =322243x z xz y y ÷-322234x z y y xz -=⋅232x yz=-32222x xx x-=---去分母得:,去括号得:,移项得:,合并同类项得;,经检验,是原方程的解,∴原方程的解为.17. 先化简,再求值:,其中.【答案】,【解析】【分析】本题主要考查了分式的化简求值,零指数幂,先把除数的式子通分,然后把除法变成乘法,接着约分化简,最后代值计算即可.【详解】解:,∵,∴原式.18. 已知x =﹣4时,分式无意义,x =2时,此分式的值为零,求分式的值.【答案】5【解析】【分析】由分式无意义,可求出a 的值,由分式的值为0,可求出b 的值.把a 、b 的值代入分式中求值即可.【详解】解:∵分式无意义,∴2x +a =0即当x =﹣4时,2x +a =0.解得a =8()3222x x x -=---3224x x x -=--+2243x x x -++=-1x =1x =1x =11a a a a +⎛⎫⎛⎫÷- ⎪ ⎪⎝⎭⎝⎭020241a =+11a -111a a a a +⎛⎫⎛⎫÷-⎪ ⎪⎝⎭⎝⎭211a a a a+-=÷()()111a a a a a +=⋅+-11a =-020241112a =+=+=1121==-2x b x a -+3a ba b+-∵分式的值为0,∴x ﹣b =0,即当x =2时,x ﹣b =0.解得b =2∴.【点睛】本题考查分式意义的条件,关键在于通过分式无意义算出a 、b 的值.19. 已知x 为整数,且++化简结果为整数,求出所有符合条件的x 值.【答案】x 值的为1或2或4或5【解析】【分析】将原式化简成,由x 为整数且化简结果为整数可得出x −3=±2或±1,解之即可得出结论.【详解】解:==∵x 为整数且也是整数,∴x-3=±2或±1,则x =1或2或4或5.所以所有符合条件的x 值的为1或2或4或5.【点睛】本题考查了分式的化简,将原式化简成是解题的关键.20. 有甲、乙两筐水果,甲筐水果的质量为,乙筐水果的质量为(其中).售完后,两筐水果都卖了150元.(1)哪筐水果卖的单价高?(2)高的单价是低的单价的多少倍?【答案】(1)甲水果的单价卖得高; (2)高的单价是低的单价的倍.【解析】【分析】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.8253832a b a b ++==--⨯23x +23x -22189x x +-23x -222218339x x x x ++++--2222626218999x x x x x x ---+=++---2269x x +-23x -23x -23x -()21kg m -()21kg m -1m >11m m +-(1)用甲框的单间减去乙框的单间,再进行整理即可得出答案;(2)根据题意列出算式,计算即可得到结果.【小问1详解】根据题意得:,所以甲水果的单价卖得高;【小问2详解】根据题意得:,答:高的单价是低的单价的倍.21. 当时,定义一种新运算:,例如:,.(1)直接写出_______________;(2)若,求出m 的值.【答案】(1)2;(2).【解析】【分析】(1)根据题目所给条件代值进去计算即可求出,(2)根据m 与2的大小关系进行分类讨论求解分式方程即可求出m 的值.【详解】解:(1)因为,所以;(2)时,,解得,不合题意,舍去.时,,2222150150150(1)150(1)1500(1)1(1)(1)(1)(1)m m m m m m m m +---==>---+-+()()222111501501501(1)1(1)1501m m m m m m m +-+÷==---- 11m m +-a b ¹2,(,)2,a b a b F a b b a b b a⎧>⎪⎪-=⎨⎪<⎪-⎩2(3,1)131F ==-248(1,4)4(1)5F ⨯-==--(1,)F a a +=(),22,1()F m F m -=0m =1a a +>2(1,)21F a a a a+==+-m>222,22,12()(2)m F m F m m m -=-=--423m =<2m <()(222,22,22)1F m F m m m⨯-=-=--解得.综上,.【点睛】本题主要考查新定义与分式方程的求解,根据题目给定公式代值计算即可,第(2)问注意对m 的值进行分类讨论求解,注意求解出来的m 的值要根据分类讨论时的取值范围进行取舍.22. 甘蔗富含大量铁、钙、锌等人体必需的微量元素,素有“补血果”的美称,是冬季热销的水果之一,为此,某水果商家12月份第一次用600元购进云南甘蔗若干千克,销售完后,他第二次又用600元购进该甘蔗,但这次每千克的进价比第一次的进价提高了20%,所购进甘蔗的数量比第一次少了25千克.(1)求该商家第一次购买云南甘蔗的进价是每千克多少元?(2)假设商家两次购进的云南甘蔗按同一价格销售,要使销售后获利不低于1000元,则每千克的售价至少为多少元?【答案】(1)每千克4元;(2)每千克的售价至少为8元【解析】【分析】(1)设该商家第一次购买云南甘蔗的进价是每千克x 元,根据题意列出方程即可求出答案;(2)设每千克的售价为y 元,根据题意列出不等式即可求出答案.【详解】解:(1)设该商家第一次购买云南甘蔗的进价是每千克x 元,根据题意可知:=﹣25,x =4,经检验,x =4是原方程的解,答:该商家第一次购买云南甘蔗的进价是每千克4元;(2)设每千克的售价为y 元,第一销售了=150千克,第二次销售了125千克,根据题意可知:150(y ﹣4)+125(y ﹣4.8)≥1000,解得:y≥8,答:每千克的售价至少为8元.【点睛】本题考查分式方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.23. 我们定义:如果两个分式与的差为常数,且这个常数为正数,则称是的“和雅式”,这个常数称为关于的“和雅值”.如分式,,,则是的“和雅式”,关于的“和雅值”为.0m =0m =6000.2x x +600x 6004A B A B A B 21x A x =+21B x -=+22222(1)21111x x x A B x x x x -++-=-===++++A B A B 2(1)已知分式,,判断是否为的“和雅式”,若不是,请说明理由;若是,请证明并求出关于的“和雅值”;(2)已知分式,,是的“和雅式”,且关于的“和雅值”是,求的值;(3)已知分式,,是的“和雅式”,且关于的“和雅值”是,为整数,且“和雅式”的值也为整数,求所代表的代数式及所有符合条件的的值之和.【答案】(1)不是,理由见解析(2)(3),【解析】【分析】(1)根据新定义进行判断;(2)根据新定义,列出方程求解;(3)根据新定义列出方程,再根据整除的意义求解.【小问1详解】解:C 不是的“和雅式”;理由:,不是的“和雅式”;【小问2详解】由题意得:,,,,解得:,,;12C x =+225644x x D x x ++=++C D C D M =()(1)x b x x --N =()x x a x-M N M N 1a b +29E P x =-3x Q x=-P Q P Q 1x P E x 239E x =+12D C D -= 12x +-2(2)(3)(2)x x x +++=1(3)2x x -++=22x x --+10=-<C ∴D 1M N -=∴()(1)x b x x ---()x x a x-1=()2a b x b ∴-+=20a b b ∴-+==2a =0b =2a b ∴+=【小问3详解】由题意得:,,,为整数,为整数,的值为:或,的值为:,,,,,所以所有符合条件的的值之和为.【点评】本题考查了分式的加减法,理解新定义和掌握分式的运算是解题的关键.1P Q -=∴(3)(3)E x x +--3x x-1=39E x ∴=+ 29E P x =-=33x-x 3x ∴-1±3±x ∴024*******∴+++=x 12。
山东省泰安市泰山区泰山区大津口中学2022-2023学年八年级上学期第三次月考数学试题(含答案解析)

山东省泰安市泰山区泰山区大津口中学2022-2023学年八年级上学期第三次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.观察下列图案,既是轴对称图形又是中心对称图形的共有()A .4个B .3个C .2个D .1个2.下列各式由左边到右边的变形,属于因式分解的是()A .a x y ax ay --()=B .22323y y y y +=-+-()C .22a b a b a b -+-()()=D .222442x xy y x y +--=()3.某交警在一个路口统计的某时段来往车辆的车速情况如下表:车速()km/h 5055606570车辆数/辆54821则上述车速的中位数和众数分别是()A .60,8B .60,60C .55,60D .55,84.若关于x 的分式方程1222x mx x-+=--无解,则m 的值为()A .2B .1C .0D .﹣15.已知a +b =0,a ≠b ,则化简b a(a +1)+ab (b +1)的值为()A .﹣2B .﹣1C .1D .26.若()2419x k x -++能用完全平方公式因式分解,则k 的值为()A .±6B .±12C .-13或11D .13或-117.如图,在ABC 中,75BAC ∠=︒,以点A 为旋转中心,将ABC 绕点A 逆时针旋转得到ADE V ,点B 、C 的对应点分别为D 、E ,连接CE ,若CE AB ∥,则CAD ∠的大小是()A .15°B .25°C .35°D .45°8.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件:①AD ∥BC ;②AD =BC ;③OA =OC ;④OB =OD从中任选两个条件,能使四边形ABCD 为平行四边形的选法有()A .3种B .4种C .5种D .6种9.如图,若将线段AB 平移至A 1B 1,则a+b 的值为()A .﹣3B .3C .﹣2D .010.如图,四边形ABCD 中.AC BC AD BC BD ⊥∥,,为ABC ∠的平分线,34BC AC ==,,E ,F 分别是BD AC ,的中点,则EF 的长为()A .1B .1.5C .2D .2.511.如图,在六边形ABCDEF 中,A B E F α∠+∠+∠+∠=,CP DP 、分别平分BCD CDE ∠∠、,则P ∠的度数为()A .11802α-B .11802α-C .12αD .13602α-12.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60︒得到线段BO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60︒得到;②点O 与O '的距离为4;③150AOB ∠=︒;④四边形AOBO ¢面积6=+⑤6AOC AOB S S +=△△)A .①③④⑤B .①②③④C .①②④⑤D .①②③④⑤二、填空题13.若32a +无意义,且分式11b b --的值等于零,那么a b =_____.14.一个多边形的内角和比四边形的内角和多720︒,并且这个多边形的各内角都相等,则这个多边形的每个外角等于__________︒.15.某市创建全国文明城市已经进入倒计时!该市一环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾设乙车单独清理全部垃圾的时间为x 小时,根据题意可列出方程为_______________________.16.已知关于的分式1222x kx x -+=--的解是非负数,则k 的取值范围是_______.17.如图,ABC 中,D 为AC 中点,E 为BC 上一点,连接DE ,且2ABC DEC ∠=∠,若7AB =,12CE =,则BC 的长度为______.18.如图,在□ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF =6cm ,BF =12cm ,∠FBM =∠CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F点时停止运动,点Q 也同时停止运动.当点P 运动_____秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.三、解答题19.因式分解:(1)()22214a a +-.(2)()()229622x x x y x y -+++20.(1)计算:22441(1)11x x x x x x-+-+÷--.(2)先化简,再求值;222444(2)11x x x x x x x-++++-÷--,其中3x =.(3)解方程:2216124x x x ++=---.21.在学校组织的“文明出行”知识竞赛中,8(1)和8(2)班参赛人数相同,成绩分为A B C 、、三个等级,其中相应等级的得分依次记为A 级100分、B 级90分、C 级80分,达到B 级以上(含B 级)为优秀,其中8(2)班有2人达到A 级,将两个班的成绩整理并绘制成如下的统计图,请解答下列问题:(1)求各班参赛人数,并补全条形统计图;(2)此次竞赛中8(2)班成绩为C 级的人数为人;(3)小明同学根据以上信息制作了如下统计表:平均数(分)中位数(分)方差8(1)班m90n8(2)班919029①分别求出m和n的值,并从优秀率和稳定性方面比较两个班的成绩;②请综合考虑“平均分”“优秀率”和“稳定性“三方面因素,你认为这两个班哪个班的成绩更好一些?22.某书店在图书批发中心选购A,B两种科普书,A种科普书每本进价比B种科普书每本进价多20元,若用2400元购进A种科普书的数量是用950元购进B种科普书数量的2倍.(1)求A,B两种科普书每本进价各是多少元;(2)该书店计划A种科普书每本售价为126元,B种科普书每本售价为86元,购进A种科普书的数量比购进B种科普书的数量的13还多4本,若A,B两种科普书全部售出,使总获利超过1560元,则至少购进B种科普书多少本?23.如图,在△AFC中,∠FAC=45°,FE⊥AC于点E,在EF上取一点B,连接AB、BC,使得AB=FC,过点A作AD⊥AF,且AD=BC,连接CD,求证:四边形ABCD 是平行四边形.24.如图,在ABC中,过点C作CD//AB,E是AC的中点,连接DE并延长,交AB 于点F,交CB的延长线于点G,连接AD,CF()1求证:四边形AFCD是平行四边形.()2若GB3=,BC6=,3BF2=,求AB的长.25.如图1,在Rt ABC ∆中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,请判断线段PM 与PN 的数量关系和位置关系,并说明理由.(2)探究证明:把ADE ∆绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN ∆的形状,并说明理由.参考答案:1.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】第一个图形是轴对称图形,不是中心对称图形;第二个图形是轴对称图形,也是中心对称图形;第三个图形是轴对称图形,也是中心对称图形;第四个图形不是轴对称图形,是中心对称图形.故既是轴对称图形又是中心对称图形的有2个.故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.D【分析】根据因式分解的定义判断即可得到答案.【详解】解:A、是整式的乘法,故A错误;B、没把多项式转化成几个整式乘积的形式,故B错误;C、是整式的乘法,故C错误;D、把多项式转化成几个整式乘积的形式,故D正确;故选:D.【点睛】本题考查因式分解的定义:把一个多项式写成几个整式的积的形式叫因式分解.3.B【分析】把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数.【详解】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是60,所以中位数是60,在这组数据中出现次数最多的是60,即众数是60.故选:B.【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.4.B【分析】先把分式方程化为整式方程,再解出整式方程,然后根据分式方程无解,可得2x =,再代入整式方程,即可求解.【详解】解:去分母得:124x x m -+-=-,解得∶3x m =-因为分式方程无解,所以20x -=,即2x =,把2x =代入整式方程得:23m =-,解得:1m =.故选:B .【点睛】本题主要考查了分式方程无解的问题,熟练掌握解分式方程的基本步骤是解题的关键.5.A【分析】根据题意可推得1a bb a==-,再将所求的式子化简即可得出答案.【详解】解:(1)(1)b aa b a b+++,b ab a a b=+++,()()b a a b a b=+++,又0,a b a b +=≠,,可得:1a bb a==-(1)(1)b aa b a b ∴+++,()()b a a b a b=+++,2=-故选:A .【点睛】本题考查分式的化简求值,理解1a bb a==-是解题的关键.6.C【分析】先找到平方项是24x 与9,由此得到另一项的值,由此计算得到k 的值即可.【详解】∵()2419x k k -++能用完全平方公式因式分解,∴平方项是24x 与9,∴()2419x k k -++=22(23)4129x x x ±=±+,∴()112k -+=±,∴k=-13或11,故选:C.【点睛】此题考查完全平方公式的变形计算,熟练掌握公式的计算方法及特点是解题的关键.7.D【分析】根据旋转的性质得AE =AC ,∠DAB =∠EAC ,再根据等腰三角形的性质得∠AEC =∠ACE ,然后根据平行线的性质得到∠ACE =∠CAB =75°,得出∠EAC =30°,于是得到结论.【详解】解:∵△ABC 绕点A 逆时针旋转到△ADE ,∴AE =AC ,∠DAB =∠EAC ,∴∠AEC =∠ACE ,∵CE ∥AB ,∴∠ACE =∠CAB =75°,∴∠AEC =∠ACE =75°,∴∠EAC =180°﹣2×75°=30°,∴∠CAD =∠EAD -∠EAC =75°-30°=45°,∴∠CAD =45°,故选:D .【点睛】本题主要考查旋转的性质,等腰三角形性质,平行线的性质定理,三角形内角和,角的和差,掌握三角形旋转后,对应边相等,对应角相等,等腰三角形性质,平行线的性质定理,三角形内角和,角的和差,是解题的关键.8.B【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【详解】①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;①③可证明△ADO ≌△CBO ,进而得到AD =CB ,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;①④可证明△ADO ≌△CBO ,进而得到AD =CB ,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD 为平行四边形.故选B .9.A【分析】根据点的平移规律即点A 平移到A 1得到平移的规律,再按此规律平移B 点得到B 1,从而得到B 1点的坐标,于是可求出a 、b 的值,然后计算a+b 即可.【详解】解:∵点A(0,1)向下平移2个单位,得到点A 1(a ,﹣1),点B(2,0)向左平移1个单位,得到点B 1(1,b),∴线段AB 向下平移2个单位,向左平移1个单位得到线段A 1B 1,∴A 1(﹣1,﹣1),B 1(1,﹣2),∴a =﹣1,b =﹣2,∴a+b =﹣1﹣2=﹣3.故选:A.【点睛】本题考查了直角坐标系中点的平移规律,解决本题的关键是熟知坐标平移规律上加下减、右加左减.10.A【分析】根据勾股定理得到5AB =,根据平行线的性质和角平分线的定义得到ABD ADB ∠=∠,求得5AB AD ==,如图:连接BF 并延长交AD 于G ,根据全等三角形的性质得到3BF FG AG BC ===,,求得52DG =-=3,再根据三角形中位线定理即可得到结论.【详解】解:∵AC BC ⊥,∴90ACB ∠=︒,∵34BC AC ==,,∴5AB =,∵AD BC ∥,∴ADB DBC ∠=∠,∵BD 为ABC ∠的平分线,∴ABD CBD ∠=∠,∴ABD ADB ∠=∠,∴5AB AD ==,如图:连接BF 并延长交AD 于G∵AD BC∥∴GAC BCA ∠∠=,∵F 是AC 的中点,∴AF CF =,∵AFG CFB ∠=∠,∴AAS AFG CFB ≅()V V ,∴3BF FG AG BC ===,,∴532DG =-=,∵E 是BD 的中点,∴112EF DG ==.故选:A .【点睛】本题主要考查了三角形的中位线定理、全等三角形的判定和性质、勾股定理等知识点,根据题意正确的作出辅助线是解题的关键.11.A【分析】由多边形内角和定理求出∠A+∠B+∠E+∠F+∠CDE+∠BCD =720°①,由角平分线定义得出∠BCP =∠DCP ,∠CDP =∠PDE ,根据三角形内角和定理得出∠P+∠PCD+∠PDE =180°,得出2∠P+∠BCD+∠CDE =360°②,由①和②即可求出结果.【详解】在六边形A BCDEF 中,∠A+∠B+∠E+∠F+∠CDE+∠BCD =(6-2)×180°=720°①,CP 、DP 分别平分∠BCD 、∠CDE ,∴∠BCP =∠DCP ,∠CDP =∠PDE ,∠P+∠PCD+∠PDE =180°,∴2(∠P+∠PCD+∠PDE)=360°,即2∠P+∠BCD+∠CDE =360°②,①-②得:∠A+∠B+∠E+∠F-2∠P =360°,即α-2∠P =360°,∴∠P=12α-180°,故选:A.【点睛】本题考查了多边形内角和定理、角平分线定义以及三角形内角和定理;熟记多边形内角和定理和三角形内角和定理是解题关键.12.D【分析】根据正三角形性质,得AB BC AC ==,60ABC ∠=︒;根据旋转的性质,得60OBO '∠=︒,BO BO '=,根据等边三角形的性质,可判断②,通过证明BO A BOC '△≌△,即可判断①;根据勾股定理逆定理,得90AOO '∠=︒,结合等边三角形OBO '△,可判断③;根据等腰三角形三线合一和勾股定理的性质,可计算得OBO S ' ,从而判断④;AOB 绕点A 逆时针旋转60︒得到AMC ,根据等腰三角形、勾股定理及其逆定理的性质计算,可判断⑤,即可得到答案.【详解】OO ',如下图:∵正ABC∴AB BC AC ==,60ABC ∠=︒∵线段BO 以点B 为旋转中心逆时针旋转60︒得到线段BO ',∴60OBO '∠=︒,BO BO '=∴OBO '△为等边三角形∴4OO OB '==,即②正确;∵60OBO ABO ABO ∠=∠+'∠='︒,60ABC ABO OBC ∠=∠+∠=︒∴ABO OBC∠=∠'BO A '△和BOC 中AB BC ABO OBC BO BO =⎧⎪∠=''=∠⎨⎪⎩∴BO A BOC'△≌△∴5O A OC '==,BO A '△可以由BOC 绕点B 逆时针旋转60︒得到,即①正确;∵4OO OB '==,3OA =∴222O A OO OA ''=+∴90AOO '∠=︒∵OBO '△为等边三角形∴60BOO '∠=︒∴150AOB AOO BOO ''∠=∠+∠=︒,即③正确;∵90AOO '∠=︒∴1134622AOO S AO OO '=⨯⨯'=⨯= 过点B 做BN OO ⊥',交OO '于点N∵OBO '△为等边三角形∴30BNO ∠=︒∴122ON OB ==∴BN ==∴11422OBO S OO BN ''=⨯=⨯⨯= ∴四边形AOBO ¢面积AOO OBO S S ''=+6=+∵正ABC∴AOB 绕点A 逆时针旋转60︒得到AMC ,如下图:∵60OAM ∠=︒,3AO AM ==,4MC OB ==,AOB AMCS S = ∴AOM 为等边三角形∴3OM AO AM ===过点A 做AG OM ⊥,交OM 于点G ,如下图:∵AOM 为等边三角形∴30OAG ∠=︒∴1322OG OM ==∴AG =∴11322AOM S AG OM =⨯=⨯ ∵4MC =,3OM =,5OC =∴222OC MC OM =+∴90OMC ∠=︒∴1134622OMC S OM MC =⨯=⨯⨯= ∴64AMC AOC AOM OMC S S S S +=+=+ ∴64AOB AOC AMC AOC S S S S +=+=+ ,即⑤正确;故选:D .【点睛】本题考查了等边三角形、旋转、全等三角形、勾股定理逆定理的知识;解题的关键是熟练掌握旋转、等边三角形、等腰三角形三线合一、勾股定理及其逆定理的性质,从而完成求解.13.2【分析】直接利用分式的值为零的条件“分子为0且分母不为0”分析得出答案.【详解】解:∵32a+无意义,∴a+2=0,∴a=﹣2∵分式11bb--的值等于零,∴|b|﹣1=0,b﹣1≠0,∴b=﹣1,∴ab=21--=2,故答案为2.【点睛】此题主要考查了分式的值为零的条件,正确解方程是解题关键.14.45【分析】首先由题意得出等量关系,即这个多边形的内角和比四边形的内角和多720°,由此列出方程解出边数,进一步可求出它每一个内角的度数.【详解】解:设这个多边形边数为n,则(n-2)•180=360+720,解得:n=8,∵这个多边形的每个内角都相等,∴它每一个外角也相等,度数为360°÷8=45°.故答案为:45.【点睛】本题主要考查多边形的内角和外角.解题的关键是根据题意列出方程从而解决问题.15.1.2 1.21 62x+=【分析】根据题意可以得到甲乙两车的工作效率分别是16和1x,从而可以得到相应的方程,本题得以解决.【详解】解:由题意可得,1.2 1.2162x+=,故答案是:1.2 1.21 62x+=.【点睛】本题考查由分式方程的应用-工程问题,解答本题的关键是明确工程问题的数量关系,找出题目中的等量关系,列出相应的方程.16.k≤3且k≠1【分析】求出分式方程的解,根据解是非负数求出k 的取值范围.【详解】解:去分母得:1+2(x ﹣2)=x ﹣k ,解得:x =3﹣k ,由题意得:3﹣k≥0,且3﹣k≠2,解得:k≤3且k≠1,∴k 的取值范围是k≤3且k≠1,故答案为:k≤3且k≠1.【点睛】本题考查的是分式方程的解法,根据方程的解得出不等式是解题的关键,易忽略分式方程的增根的情况,要注意.17.17【分析】取BC 的中点F ,连接DF ,由三角形中位线定理可得1722DF AB ==,DF ∥AB ,再由2ABC DEC ∠=∠可得△DFE 是等腰三角形,且EF =DF ,则CF 可求出来,从而可求得BC 的长度.【详解】如图,取BC 的中点F ,连接DF则BC =2CF∵D 点是AC 的中点∴DF 是△ABC 的中位线∴1722DF AB ==,DF ∥AB ∴∠CFD =∠ABC∵2ABC DEC∠=∠∴∠CFD =2∠DEC∵∠CFD =∠DEC +∠FDE∴∠DEC =∠FDE ∴72EF DF ==∴7171222CF CE EF =-=-=∴1722172BC CF==⨯=故答案为:17【点睛】本题考查了等腰三角形的判定,三角形中位线定理,取BC的中点F得到等腰△DEF 是关键.18.3或5【分析】由四边形ABCD是平行四边形得出:AD BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AD BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=12BC=12AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=5.故答案为3或5.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.19.(1)()()2211+-a a ;(2)()24x y -【分析】(1)利用平方差公式及完全平方公式分解即可;(2)利用完全平方公式分解因式即可.【详解】(1)原式()()221212a a a a =+++-()()2211a a =+-;(2)原式()()()2232•322x x x y x y +++=-()232x x y =--()222x y =-()24x y =-.【点睛】本题考查因式分解,熟练掌握完全平方公式以及平方差公式是解题的关键.20.(1)121x --;(2)12x -+,15-;(3)原方程无解【分析】(1)先算括号里的,再算除法,即可得;(2)先算括号里的,再算除法,得12x -+,将3x =代入,进行计算即可得;(3)方程两边同乘(2)(2)x x +-,计算得2x =,进行检验,当2x =时,(2)(2)0x x +-=,即原方程无解.【详解】解:(1)原式=22211(1)111(2)x x x x x x x x x ----⨯--+--=22111(21)x x x x --⨯--=121x --;(2)原式=222(242211()211)x x x x x x x x x x -+--+---+⨯--=2211(2)x x x x +-⨯-+=12x -+,当3x =时,原式11325=-=-+;(3)2216124x x x ++=---方程两边同乘(2)(2)x x +-,得2(2)(2)(2)16x x x +=+--,整理,得48x =解得:2x =,检验:当2x =时,(2)(2)0x x +-=,2x =是原方程的增根,所以,原方程无解.【点睛】本题考查了分式化简计算,解分式方程,解题的关键是掌握分式化简计算,解分式方程,并正确计算.21.(1)两班参赛均为10人;补图见解析(2)1(3)①91m =(分),49n =(分),②综合这三个方面看,8(2)班的成绩更好一些【分析】(1)由8(2)班有2人达到A 级与对应统计图A 级占比例可求8(2)参赛人数,又两班参赛人数相同,即可得出结论;(2)由8(2)班成绩统计图可知C 级的人数所占百分比为10%,将参赛总人数与之相乘即可;(3)平均分,优秀率等常见的衡量标准比较大小即可,方差则是衡量数据的波动情况的数据,方差的值越小成绩越稳定,由此判断即可.【详解】(1)解:∵8(2)班有2人达到A 级,且A 等级人数占被调查的人数的20%,∴8(2)班参赛的人数为220%10÷=(人),8(1)和8(2)班参赛人数相同,∴8(1)班参赛人数也是10人,则8(1)班C 等级人数为10352--=(人),补全图形如下:(2)此次竞赛中8(2)班成绩为C 级的人数为()10120%70%1⨯--=(人),故答案为:1;(3)①()110039058029110m =⨯⨯+⨯+⨯=,222110091390915809124910n ⎡⎤=⨯-⨯+-⨯+-⨯=⎣⎦()()(), 8(1)班的优秀率为35100%80%10+⨯=,8(2)班的优秀率为20%70%90%+=,∴从优秀率看8(2)班更好;8(1)班的方差大于8(2)班的方差,∴从稳定性看8(2)班的成绩更稳定;②从平均分看两个班级的平均成绩相同,而8(2)班的优秀率和成绩的稳定性都比8(1)班好,所以综合这三个方面看,8(2)班的成绩更好一些.【点睛】本题考查统计初步的知识:数据的统计与分析及简单运用,关键是掌握数据分析的方法,并能利用统计图表分析数据作出初步的决策判断.22.(1)A 种科普书每本的进价为96元,B 种科普书每本的进价为76元;(2)至少购进B 种科普书75本【分析】(1)设B 种科普书的进价为x 元/本,则A 种的进价为()20x +元/本,根据用2400元购进A 种科普书的数量是用950元购进B 种科普书数量的2倍列分式方程解答;(2)设购进B 种科普书m 本,则购进A 种科普书143m ⎛⎫+ ⎪⎝⎭本,根据总获利超过1560元列不等式解答.【详解】(1)解:设B 种科普书的进价为x 元/本,则A 种的进价为()20x +元/本,根据题意得:2400950220x x=⨯+,解得:76x =,经检验:76x =是所列分式方程的解,且符合题意,∴2096x +=,答:A 种科普书每本的进价为96元,B 种科普书每本的进价为76元;(2)设购进B 种科普书m 本,则购进A 种科普书143m ⎛⎫+ ⎪⎝⎭本,根据题意得:()()1126964867615603m m ⎛⎫-++-> ⎪⎝⎭,解得:72m >,∵m 为正整数,且143m +为正整数,∴m 为3的倍数,∴m 的最小值为75,答:至少购进B 种科普书75本.【点睛】此题考查了分式方程的实际应用,一元一次不等式的实际应用,正确理解题意列得方程或不等式是解题的关键.23.见解析【分析】证Rt △AEB ≌Rt △FEC (HL ),得BE =CE ,则∠CBE =∠BCE =45°,再证出∠BCE =∠CAD ,得BC ∥AD ,即可证出四边形ABCD 是平行四边形.【详解】解:证明:∵FE ⊥AC ,∴∠FEA =∠FEC =90°,∵∠FAC =45°,∴△AEF 是等腰直角三角形,∴AE =EF ,∠AFE =∠FAE =45°,在Rt △AEB 和Rt △FEC 中,AB FC AE FE=⎧⎨=⎩,∴Rt △AEB ≌Rt △FEC (HL ),∴BE =CE ,∴∠CBE =∠BCE =45°,∵AD ⊥AF ,∴∠FAD =90°,∴∠CAD =90°-45°=45°,∴∠BCE =∠CAD ,∴BC ∥AD ,又∵BC =AD ,∴四边形ABCD 是平行四边形.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明Rt △AEB ≌Rt △FEC 是解题的关键.24.()1证明见解析;()2AB 6=.【分析】()1由E 是AC 的中点知AE CE =,由AB //CD 知AFE CDE ∠∠=,据此根据“AAS”即可证AEF ≌CED ,从而得AF CD =,结合AB //CD 即可得证;()2证GBF ∽GCD 得GB BF GC CD =,据此求得9CD 2=,由AF CD =及AB AF BF =+可得答案.【详解】()1E 是AC 的中点,AE CE ∴=,AB //CD ,AFE CDE ∠∠∴=,在AEF 和CED 中,AFE CDE AEF CED AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,AEF ∴ ≌()CED AAS ,AF CD ∴=,又AB //CD ,即AF //CD ,∴四边形AFCD 是平行四边形;()2AB //CD ,GBF ∴ ∽GCD ,GB BF GC CD ∴=,即33236CD=+,解得:9CD 2=, 四边形AFCD 是平行四边形,9AF CD 2∴==,93AB AF BF 622∴=+=+=.【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握相关的性质及定理是解题的关键.25.(1)PM PN =,PM PN ⊥,理由见解析;(2)PMN ∆是等腰直角三角形,理由见解析【分析】(1)利用三角形的中位线得出12PM CE =,12PN BD =,进而判断出BD CE =,即可得出结论,再利用三角形的中位线得出PM CE ∥,得出DPM DCA ∠=∠,最后用互余即可得出结论;(2)先判断出ABD ACE ∆∆≌,得出BD CE =,同(1)的方法得出12PM CE =,12PN BD =,即可得出PM PN =,同(1)的方法即可得出结论.【详解】(1)解: PM PN =,PM PN ⊥理由如下:∵点P ,N 是DC ,BC 的中点,∴PN BD ∥,12PN BD =,,∵点P ,M 是DC ,DE 的中点,∴PM CE ∥,12PM CE =,,∵AB AC =,AD AE =,∴BD CE =,∴PM PN =,∵PN BD ∥,∴DPN ADC ∠=∠,∵PM CE ∥,∴DPM DCA ∠=∠,∵90BAC ∠=︒,∴90ADC ACD ∠+∠=︒,∴90MPN DPM DPN DCA ADC ∠=∠+∠=∠+∠=︒,∴PM PN ⊥;(2)解:PMN ∆是等腰直角三角形,理由如下:由旋转知,BAD CAE ∠=∠,在ABD ∆和ACE ∆中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ∆∆≌,,∴ABD ACE ∠∠=,BD CE =,利用三角形的中位线得,12PM CE =,12PN BD =,,∴PM PN =,∴PMN ∆是等腰三角形,同(1)的方法得,PM CE ∥,∴DPM DCE ∠=∠,同(1)的方法得,PN BD ∥,∴PNC DBC ∠=∠,∵DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,∴MPN DPM DPN DCE DCB DBC BCE DBC∠=∠+∠=∠+∠+∠=∠+∠ACB ACE DBC ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠+∠=∠+∠,∵90BAC ∠=︒,∴90ACB ABC ∠+∠=︒,∴90MPN ∠︒=,∴PMN ∆是等腰直角三角形.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用这些性质解决问题是解题的关键.。
江苏省南通市崇川区南通田家炳中学2022-2023学年八年级下学期3月月考数学试题

江苏省南通市崇川区南通田家炳中学2022-2023学年八年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是( )A .30°B .45°C .60°D .75°2.下列图象中,表示y 是x 的函数的个数有( )A .1个B .2个C .3个D .4个3.如图,要使平行四边形ABCD 成为矩形,需添加的条件是( )A .B .C .D .AB BC =AC BD ⊥AC BD =12∠=∠4.下列式子中,表示是的正比例函数的是( )y x A .B .C .D .2y x 2y x =3xy =23y x=5.如图,在平行四边形中,平分,交边于E ,平分,ABCD AE BAD ∠CD BF ABC ∠交边于F ,,,则的长为( )CD 8AD =10AB =EFA .2B .4C .5D .66.如图,矩形沿对角线折叠,已知长,宽,那么折叠后ABCD BD 8cm BC =6cm AB =重合部分的面积是( )A .B .C .D .248cm 224cm 218.75cm 218cm 7.如图,正方形中,点P 和H 分别在边上,且,,ABCD AD AB 、BP CH =15AB =,则BE 的长是( )8BH =A .B .5C .7D .158120178.如图,在中,,,,分别是角平分线和中线,过点C ABC 8AB =5AC =AD AE 作于点F ,连接,则线段的长为( )CF AD ⊥EF EFA .B .3C .4D .1329.如图(折线ABCDE )描述了一辆汽车在某一直路上行驶的过程中,汽车离出发地的距离s (千米)与行驶时间t (小时)之间的变量关系.根据图中提供的信息,给出下列说法:①汽车共行驶了100千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中(含停留过程)的平均速度为千米/时;④汽车出发后3小时至4.5小4009时之间,其行驶的速度在逐渐减小.其中正确的有( )A .1个B .2个C .3个D .4个10.如图,正方形的边长为4,点M 为边上一动点,将沿直线翻ABCD DC BCM BM 折,使得点C 落在同一平面内的点处,连接并延长交正方形一边于点N .当C 'DC 'ABCD 时,的长为( )BN DM =CMA .B .2或8-28-C .2D .2或2二、填空题11.函数中自变量x 的取值范围是__.13y x =-12.将直线向上平移1个单位长度,可得直线的表达式为________.22y x =--y =13.菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.14.如图,在菱形ABCD 中,点E 是CD 上一点,连接AE 交对角线BD 于点F ,连接CF ,若∠AED =50°,则∠BCF =__________度.15.关于x 的一次函数的图象经过第一、二、四象限,则a 的取值范围()1y a x a =-+是________.16.若一次函数的图象与一次函数的图象的交点坐标为,则y x a =-+y x b =+(),8m ________.a b +=17.如图,在四边形中,与不平行,M ,N 分别是,的中点,ABCD AB CD AD BC ,,则的长度的取值范围是________.10AB =6CD =MN18.如图,菱形中,,,E ,F 分别是边和对角线上ABCD 60ABC ∠=︒8AB =BC BD 的点,且,则的最小值为________.BE DF =AE AF +三、解答题19.已知y 与成正比例,当时,,求:3x -6x =18y =(1)y 与x 的函数解析式;(2)当时,求x 的值.12y =20.如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E 、F 在AC 上,且AF =CE .求证:BE =DF .21.一次函数的图象由直线向下平移得到,且过点.()0y kx b k =+≠3y x =()1,2A (1)求一次函数的解析式;(2)求直线与坐标轴围成的三角形的面积.y kx b =+22.如图,菱形的对角线相交于点是的中点,点在ABCD AC BD 、O E ,AD F G 、边上,,.CD EF CD ⊥OG ∥E F(1)求证:四边形是矩形;OEFG (2)若,求的长.=5=4FG EF ,CG 23.模型建立:如图1,等腰直角三角形中,,,直线经ABC 90ACB ∠=︒CB CA =ED 过点,过作于,过作于.C A AD ED ⊥D B BE ED ⊥E(1)求证:;BEC CDA ≌(2)模型应用:已知直线:与轴交于点.将直线绕着点逆时针旋转1l 443y x =--y A 1l A 至,如图2,求的函数解析式;45︒2l 2l 24.已知正方形ABCD ,点F 是射线DC 上一动点(不与C ,D 重合).连接AF 并延长交直线BC 于点E ,交BD 于H ,连接CH ,过点C 作CG ⊥HC 交AE 于点G .(1)若点F 在边CD 上,如图1.①证明:∠DAH =∠DCH ;②猜想:△GFC 的形状并说明理由.(2)取DF 中点M ,连接MG .若MG =2.5,正方形边长为4,求BE 的长.25.如图,在平面直角坐标系中,直线:分别与x 轴,y 轴交于点B ,C .直1l 142y x =-+线:.2L 13y x =(1)直接写出点B ,C 的坐标:B ________;C ________.(2)若D 是直线上的点,且的面积为6,求直线的函数表达式;2L COD △CD (3)在(2)的条件下,且当点D 在第一象限时,设P 是射线上的点,在平面内存在CD 点Q .使以O ,C ,P ,Q 为顶点的四边形是菱形,请直接求点Q 的坐标.26.在平面直角坐标系xOy 中,对于两点A ,B ,给出如下定义:以线段AB 为边的正方形称为点A ,B 的“确定正方形”.如图为点A ,B 的“确定正方形”的示意图.(1)如果点M 的坐标为(0,1),点N 的坐标为(3,1),那么点M ,N 的“确定正方形”的面积为___________;(2)已知点O 的坐标为(0,0),点C 为直线上一动点,当点O ,C 的“确定y x b =+正方形”的面积最小,且最小面积为2时,求b 的值.(3)已知点E 在以边长为2的正方形的边上,且该正方形的边与两坐标轴平行,对角线交点为P (m ,0),点F 在直线上,若要使所有点E ,F 的“确定正方形”2y x =--的面积都不小于2,直接写出m 的取值范围.参考答案:1.B【分析】首先设平行四边形中两个内角分别为x °,3x °,由平行四边形的邻角互补,即可得x +3x =180,继而求得答案.【详解】解:设平行四边形中两个内角分别为x °,3x °,则x +3x =180,解得:x =45°,∴其中较小的内角是45°.故选:B .【点睛】此题考查了平行四边形的性质.注意平行四边形的邻角互补.2.B【分析】根据函数的定义:设在某变化过程中有两个变量x 、y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫做自变量,据此判断即可.【详解】解:属于函数的有故y 是x 的函数的个数有2个,故选:B .【点睛】本题考查了函数的定义,熟记定义是本题的关键.3.C【分析】根据矩形的判定定理逐一判断即可.【详解】解:A.添加,可判断平行四边形ABCD 为菱形,不符合题意;AB BC =B.添加,可判断平行四边形ABCD 为菱形,不符合题意;AC BD ⊥C.添加,可判断平行四边形ABCD 为矩形,符合题意;AC BD =D.添加,可判断平行四边形ABCD 为菱形,不符合题意;12∠=∠故选:C .【点睛】本题考查了矩形的判定定理,注意:矩形的判定定理有:①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形.4.C【分析】根据正比例函数的定义求解即可.【详解】解:A 、是二次函数,故此选项错误;2y x =B 、比例函数,故此选项错误;2y x =反C 、是正比例函数,故此选项正确;3x y =D 、不是函数,故此选项错误;23y x =故选C .【点睛】此题主要考查了正比例函数的定义,关键是掌握正比例函数的关系式.5.D【分析】,根据平行四边形的性质,得到,,得到,再结合平分AB CD =AB CD ∥DEA EAB ∠=∠AE ,证明,同理可得,即可得到,即可解答.BAD ∠DA DE =CF CB =EF ED FC DC =+-【详解】解:四边形是平行四边形,ABCD ,,,AB CD ∴∥10AB CD ==8AD BD ==,,DEA EAB ∴∠=∠CFB ABF ∠=∠平分,平分,AE BAD ∠BF ABC ∠,,BAE DAE DEA ∴∠=∠=∠CFB ABF FBC ∠=∠=∠,,8DA DE ∴==8CB CF ==.88106EF DE CF DC ∴=+-=+-=故选:D .【点睛】本题考查了平行四边形的性质,角平分线的性质,等角对等边,熟练运用性质解题是解答的关键.6.C【分析】由矩形的性质易得,那么可用表示出,利用的三边关DE BE =DE C E 'Rt C DE '△系即可求得长,然后三角形面积公式求解即可.DE 【详解】解:∵四边形是矩形,ABCD∴,AD CB ∥∴,ADB DBC ∠=∠∵C BD DBC '∠=∠∴,ADB EBD ∠=∠∴,DE BE =∴,8C E DE '=-∵,6C D AB '==∴,()22268DE DE +-=∴,254DE =∴.()2118.75cm 2BDE S DE CD =⨯=△故选:C .【点睛】本题考查了矩形的性质,折叠的性质,解决此类问题,应利用折叠找到相应的直角三角形,利用勾股定理求得所需线段长度.7.D【分析】由正方形的性质可得,再根据全等三角形的性质可得90AB BC A ABC =∠=∠=︒,,利用余角性质可得,再利用三角形面积法可得答案.ABP BCH ∠=∠90BEC ∠=︒【详解】解:∵四边形是正方形,ABCD ∴,90AB BC A ABC =∠=∠=︒,∵,BP CH =∴,()Rt ABP Rt BCH HL ≌∴,ABP BCH ∠=∠∵,9090BCH BHC ABP PBC ∠+∠=︒∠+∠=︒,∴,90BCE CBE ∠+∠=︒∴,BE CH ⊥∵,158AB BC BH ===,17,CH ∴==11,22CH BE BH BC ∴⋅=⋅即1117158,22BE ⨯=⨯⨯120.17BE ∴=故选: D.【点睛】此题考查的是正方形的性质、全等三角形的判定与性质,掌握其性质定理是解决此题的关键.8.A【分析】延长交于G ,根据等腰三角形的判定和性质得到,,CF AB 4AG AC ==FG CF =进而求出,根据三角形中位线定理计算即可.BG 【详解】解:延长交于G ,CF AB∵为的角平分线,,AD ABC CG AD ⊥∴是等腰三角形,ACG ∴,,5AG AC ==FG CF =∴,BG AB AG =-=-=853∵为的中线,AE ABC ∴是的中位线,EF BCG ∴,1322EF BG ==故选:A .【点睛】本题考查的是三角形的中位线定理、等腰三角形的判定与性质,正确作出辅助线是解题的关键.9.B【分析】根据图象可以得到首先从出发点匀速行驶1.5小时,走了80千米,然后在第1.5小时到2小时时停止运动,从2小时到3小时,继续沿原来的方向走了1小时,走了20千米到达目的地,然后匀速返回出发点,在距出发4.5小时是返回,据此即可判断.【详解】解:①汽车从出发地到目的地走了100千米,又回到出发地因而共行驶了200千米,故①错误;②汽车在行驶途中停留了2−1.5=0.5(小时),故②正确;③汽车在整个行驶过程中的平均速度为:200÷4.5=(千米/时),故③正确;4009④汽车出发后3小时至4.5小时之间行驶的速度不变,故④错误.综上所述,正确的有②③,共2个,故B 正确.故选:B .【点睛】本题主要考查了利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决,需注意计算单位的统一.10.B【分析】分两种情形:如图1中,当时,连接交于.如图2中,当BN DM =CC 'BM J BN DM =时,过点作于.分别求解即可.C 'C T CD '⊥T 【详解】解:如图1中,当时,连接交于.BN DM =CC 'BM J,,BN DM = BN DM ∥四边形是平行四边形,∴BNDM ,BM DN ∴ ,,由折叠知,,,BMC NDM ∴∠=∠BMC DC M ∠'=∠'MC MC '=BMC BMC ∠=∠',NDM DC M ∴∠=∠',MC MD ∴'=.122CM DM CD ∴===如图2中,当时,过点作于.BN DM =C 'C T CD '⊥T,,CB CD = BN DM =,CN CM MC ∴=='在和中,BCM DCN ,CB CD BCM DCN CM CN =⎧⎪∠=∠⎨⎪=⎩,(SAS)BCM DCN ∴ ≌,CDN CBM ∴∠=∠,,90CBM BCC ∠+∠'=︒ 90BCC C CD ∠'+∠'=︒,CBM C CD ∴∠=∠','C CD CDN ∴∠=∠,C D C C ∴'=',C T CD '⊥ ,2DT TC ∴==,C T CN ' ∥,DC C N ∴'=',12C T CN ∴'=设,则,,C T x '=2CN CM MC x =='=TM,22x ∴=4x ∴=-8CM ∴=-综上所述,的值为2或CM 8-故选B .【点睛】本题考查翻折变换,正方形的性质,平行四边形的判定和性质,全等三角形的判定和性质,三角形中位线定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考填空题中的压轴题.11.x≠3【详解】根据题意得x ﹣3≠0,解得x≠3.故答案为x≠3.12.##21x --12x--【分析】根据一次函数图象的平移规则,上加下减,求解即可.【详解】解:将直线向上平移1个单位长度,可得直线的表达式为22y x =--;22121y x x =--+=--故答案为:.21x --【点睛】本题考查一次函数图象的平移.熟练掌握一次函数图象的平移规则,上加下减,是解题的关键.13.20【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】解:如图,根据题意得AO=×8=4,BO=×6=3,1212∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,AC ⊥BD .∴△AOB 是直角三角形.∴.5AB ===∴此菱形的周长为:5×4=20故答案为:20.14.50【分析】根据题意,先通过菱形的性质求证,可得,再根据ADF CDF ≅ DAF DCF ∠=∠三角形内角和定理及同旁内角的关系进行角度的求解即可.【详解】∵四边形ABCD 是菱形∴,,ADF CDF ∠=∠AD CD =//AD CB在与中ADF △CDF AD CD ADF CDFDF DF =⎧⎪∠=∠⎨⎪=⎩∴()ADF CDF SAS ≅ ∴DAF DCF∠=∠∵//AD CB∴180ADE DCF FCB ∠+∠+∠=︒∵180ADE DAF AED ∠+∠+∠=︒∴BCF AED∠=∠∵50AED ∠=︒∴,50BCF ∠=︒故答案为:50.【点睛】本题主要考查了菱形的性质,三角形全等的判断及性质,平行线的性质,三角形内角和定理等,熟练掌握相关几何综合求解方法是解决本题的关键.15.01a <<【分析】利用一次函数图象所经过的象限确定k 、b 的范围,从而求出a 的范围.【详解】解:∵一次函数的图象经过第一、二、四象限,()1y a x a =-+∴,解得:,100a a -<⎧⎨>⎩01a <<故答案为:.01a <<【点睛】本题考查一次函数图象与系数的关系,熟记相关知识是解题的关键.16.16【分析】根据一次函数与一次函数的图象的交点坐标为,所以y x a =-+y x b =+(),8m (),8m 可以满足两个一次函数关系式,利用待定系数法把代入,再把两个关系式相加即可.(),8m 【详解】解:∵一次函数与一次函数的图象的交点坐标为,y x a =-+y x b =+(),8m∴,88m a m b -+=+=,∴,88m a m b -+++=+∴.16a b +=故答案为:16.【点睛】此题主要考查了两条直线相交问题,关键是把握凡是图象经过的点都能满足解析式.17.28MN <<【分析】连接,取的中点为E ,连接,,结合题中条件可得,BD BD EM EN 152EM AB ==,根据三角形三边之间的关系,即可解答.132EN CD ==【详解】解:如图,连接,取的中点为E ,连接,,BD BD EM EN M ,N 分别是,的中点,AD BC ,,∴152EM AB ==132EN CD ==在中,,EMN EM EN MN EM EN -<<+即.28MN <<故答案为:.28MN <<【点睛】本题考查了三角形的中位线,三角形三边之间的关系,作出正确的辅助线是解题的关键.18.【分析】如图,的下方作,使得,连接,.证明BC 30CBT ∠=︒BT AD =ET AT ,推出,,根据求解即可.()SAS ADF TBE ∆≅∆AF ET =AE AF AE ET +=+AE ET AT +≥【详解】解:如图,的下方作,使得,连接,.BC 30CBT ∠=︒BT AD =ET AT四边形是菱形,,ABCD 60ABC ∠=︒,,60ADC ABC ∴∠=∠=︒1302ADF ADC ∠=∠=︒,,,AD BT = 30ADF TBE ∠=∠=︒DF BE =,()SAS ADF TBE ∴∆≅∆,AF ET ∴=,,603090ABT ABC CBT ∠=∠+∠=︒+︒=︒ 2AB AD BT ===AT ∴=,AE AF AE ET ∴+=+,AE ET AT +≥AE AF ∴+≥的最小值为AE AF ∴+故答案为【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、两点之间线段最短等知识点,正确添加常用辅助线、构造全等三角形是解答本题的关键.19.(1)618y x =-(2)5【分析】(1)设,将,代入求解即可得到答案;()()30y k x k =-≠6x =18y =(2)将代入解析式求解即可得到答案;12y =【详解】(1)解:设()()30y k x k =-≠由题意,得()6318k -=∴6k =∴;()63618y x x =-=-(2)解:当时,有12y =61812x -=解得:;5x =【点睛】本题考查待定系数法求解析式与已知函数值求自变量的值,解题的关键根据题意设出解析式.20.证明见解析.【分析】根据平行四边形的性质可得OA =OC ,OD =OB ,再由全等三角形的判定证△BEO ≌△DFO 即可;【详解】证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OD =OB ,∵AF =CE ,∴AF -OA =CE -OC ,即OF =OE ,在△BEO 和△DFO 中,,OB OD BOE DOF OE OF =⎧⎪∠=∠⎨⎪=⎩∴△BEO ≌△DFO (SAS ),∴BE =DF .【点睛】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(1)31y x =-(2)16【分析】(1)根据平移可得,再将代入函数解析式,求出b 的值即可.3k =()1,2A 3y x b =+(2)先求出函数图象与x 、y 轴的交点坐标,根据三角形面积公式即可求解.【详解】(1)∵一次函数的图象由直线向下平移得到,()0y kx b k =+≠3y x =∴3k =∴函数解析式为:3y x b=+∵过点()1,2A ∴,312b ⨯+=∴1b =-∴所求函数的解析式为:31y x =-(2)在中31y x =-令,得0x =1y =-即图象与y 轴交点为()0,1-令,得0y =13x =即图象与x 轴交点为1,03⎛⎫ ⎪⎝⎭∴1111236S =⨯⨯=【点睛】本题考查了利用待定系数法求一次函数解析式、两点法确定函数图像;关键在于解出k 、b 值以及正确运用三角形面积公式求解.22.(1)见解析;(2)2.【分析】(1)证是的中位线,得,再由,得四边形是OE ACD OE CD ∥OG EF ∥OEFG 平行四边形,然后证出,即可得出结论;=90EFG ∠︒(2)由矩形的性质得,再由菱形的性质得,然后求出=OE FG =AD CD AC BD ⊥,,由勾股定理得,即可求解.1====22OE AD DE CD AD OE ,=3DF 【详解】(1)证明:∵四边形是菱形,ABCD ,=OA OC ∴是的中点,E AD 是的中位线,OE ∴ACD ,OE CD ∴∥,OG EF ∥ ∴四边形是平行四边形,OEFG ,EF CD ⊥,=90EFG ∴∠︒∴平行四边形是矩形;OEFG (2)解:由(1)得:四边形是矩形,OEFG ,==5OE FG ∴∵四边形是菱形,ABCD ,=AD CD AC BD ∴⊥,,=90AOD ∴∠︒是的中点,E AD ∴,1===5==2=102OE AD DE CD AD OE ,在中,,Rt DEF △3DF ==.10532CG CD FG DF ∴=--=--=【点睛】本题考查了菱形的性质,三角形中位线定理,矩形的判定和性质,平行四边形的判定与性质,直角三角形斜边上的中线性质,勾股定理等知识;熟练掌握三角形中位线定理,证明四边形为矩形是解题的关键.OEFG 23.(1)见解析(2)147y x =--【分析】(1)根据直角三角形的性质推出,再由等腰三角形的性质,即可12∠=∠BC CA =推出;()AAS BEC CDA ≌(2)过点作于点,交直线于点,过点作轴于点,由旋转的B BM AB ⊥B 2l M M MN x ⊥N 性质得,易知为等腰直角三角形,由(1)可知:,由45BAM ∠=︒ABM ABO BMN ≌△△全等的性质得到点的坐标,再利用待定系数法求解即可.M 【详解】(1)证明:,,AD ED ⊥BE ED ⊥,∴90E D ∠=∠=︒,∴1+3=90∠∠︒又,90ACB ∠=︒,∴2390∠+∠=︒,∴12∠=∠在和中BEC CDA ,12E D BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩.∴()AAS BEC CDA ≌(2)解:如图2,过点作于点,交直线于点,过点作轴于点B BM AB ⊥B 2l M M MN x ⊥,N 由条件知,45BAM ∠=︒为等腰直角三角形,ABM ∴ 由(1)可知:,ABO BMN ≌△△,,∴MN BO =NB OA =∵直线:,1l 443y x =--,,∴()0,4A -()3,0B -,,,∴3MN BO ==4BN OA ==7ON =,∴()7,3M --设:,2l ()0y kx b k =+≠,∴374k b b-=-+⎧⎨-=⎩,,∴17k =-4b =-:.∴2l 147y x =--【点睛】此题考查一次函数综合题,等腰直角三角形,全等三角形的判定与性质,解题的关键在于正确作出辅助线.24.(1)①证明见解析;②△GFC 是等腰三角形,理由见解析;(2)BE 的长为1或7.【分析】(1)①根据正方形的性质可得AD =CD ,∠ADH =∠CDH ,利用SAS 可证明△ADH ≌△CDH ,即可得∠DAH =∠DCH ;②由正方形的性质可得∠DAH +∠AFD =90°,由CG ⊥HC 可得∠DCH +∠FCG =90°,根据∠AFD =∠CFG ,可得∠CFG =∠FCG ,即可证明CG =FG ,可得△GFC 是等腰三角形;(2)当点F 在线段CD 上时,连接DE ,根据正方形的性质及角的和差关系可得∠E =∠GCE ,即可证明CG =EG ,由△GFC 是等腰三角形可得CG =GF ,可得点G 为EF 中点,即可证明GM 是△FDE 的中位线,根据中位线的性质可求出DE 的长,利用勾股定理可求出CE 的长,进而根据BE =BC +CE 即可求出BE 的长;当点F 在DC 延长线上时,连接DE ,同理可得MG 为△FDE 的中位线,可求出DE 的长,利用勾股定理可求出CE 的长,根据BE =BC -CE 即可求出BE 的长.【详解】(1)①∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠ADB =∠CDB =45°,在△ADH 和△CDH 中,,AD CD ADH CDH DH DH =⎧⎪∠=∠⎨⎪=⎩∴△ADH ≌△CDH ,∴∠DAH =∠DCH .②△GFC 是等腰三角形,理由如下:∵四边形ABCD 是正方形,CG ⊥HC ,∴∠ADF =∠HCG =90°,∴∠DAH +∠AFD =DCH +∠DCG =90°,∵∠DAH =∠DCH ,∠HFD =∠CFG ,∴∠CFG =∠GCF ,∴CF =CG ,∴△GFC 是等腰三角形.(2)如图,当点F 在线段CD 上时,连接DE ,∵四边形ABCD 是正方形,∴∠CEF +∠CFG =90°,∠GCE +∠GCF =90°,∵∠CFG =∠GCF ,∴∠CEF =∠GCE ,∴CG=EG,∵CG=FG,∴FG=EG,∵点M是DF的中点,∴GM是△DFE的中位线,∵GM=2.5,∴DE=2GM=5,∵正方形ABCD的边长为4,∴CE=3,=∴BE=BC+CE=4+3=7.如图,当点F在DC的延长线上时,连接DE,同理可得:MG为△DFE的中位线,∴DE=2GM=5,∴CE,∴BE=BC-CE=4-3=1,综上所述:BE 的长为1或7.【点睛】本题考查正方形的性质、全等三角形的判定与性质及三角形中位线的性质,熟练掌握相关性质及判定定理是解题关键.25.(1);()8,0()0,4(2)或4y x =-+543y x =+(3)或或()2,2Q -()4,4(-【分析】(1)将代入解析式,求得点B 坐标;将代入解析式,求得点C 坐标;0x =0y =(2)设,可得即为以为底边上的高,列方程,即可解答.1,3D x x ⎛⎫ ⎪⎝⎭x COD △CO (3)分两种情况讨论,即为边或为对角线两种情况讨论,由菱形的性质和两点距离OC OC 公式可求解.【详解】(1)解:直线:分别与x 轴,y 轴交于点B ,C , 1l 142y x =-+将代入,可得,0x =1l 10442y =-⨯+=,()0,4C ∴将代入,可得,0y =1l 1042x =-+解得,8x =.()8,0B ∴(2)解:D 是直线上的点,2L ,∴1,3D x x ⎛⎫ ⎪⎝⎭由条件得,,1462x ⋅⋅=∴,3x =∴,3x =±∴或,()3,1D ()3,1--设CD 的解析式为:4y kx =+①当时,()3,1D ,∴341k +=,∴1k =-对应的解析式为∴4y x =-+②当时,()3,1D --,∴341k -+=-,∴53k =对应的解析式为∴543y x =+综上,直线CD 的解析式为或.4y x =-+543y x =+(3)解:当点D 在第一象限时,直线的解析式为,CD 4y x =-+设点,()(),40P a a a -+≥①当以为边时,OC若四边形为菱形时:,可得方程:OCPQ 4OC CP ==4=解得,1a =2a =-,()4P ∴-,,4PQ OC == PQ OC ∥;(Q ∴-若四边形为菱形时:,可得方程:OCQP 4OC PO ==4=解得,(舍去),14a =20a =,()4,0P ∴同理可得;()4,4Q ②当以为对角线时,OC 与互相垂直平分,OC PQ P 点的纵坐标为2,即,,∴42a -+=2a =,()2,2P ∴.()2,2Q ∴-综上所述,点Q 的坐标为或或.()2,2-()4,4(-【点睛】本题是一次函数综合题,考查了一次函数的性质,待定系数法求解析式,菱形的性质,两点距离公式,利用分类讨论思想解决问题是本题的关键.26.(1)9;(2)OC ⊥直线于点C ;① ;② ;(3)y x b =+2b =2b =±6, 2.m m ≤-≥【分析】(1)求出线段MN 的长度,根据正方形的面积公式即可求出答案;(2)根据面积求出OC ⊥直线于点C ,再分情况分别OC =y x b =+求出b ;(3)分两种情况:当点E 在直线y=-x-2是上方和下方时,分别求出点P 的坐标,由此得到答案.【详解】解:(1)∵M(0,1),N (3,1),∴MN ∥x 轴,MN=3,∴点M ,N 的“确定正方形”的面积为,339⨯=故答案为:9;(2)∵点O ,C 的“确定正方形”面积为2,∴OC =∵点O ,C 的“确定正方形”面积最小,∴OC ⊥直线于点C .y x b =+① 当b>0时,如图可知OM =ON ,△MON 为等腰直角三角形,可求OC NC MC ===∴ 2.b =② 当时,同理可求0b < 2.b =-∴ 2.b =±(3)如图2中,当正方形ABCD 在直线y=-x-2的下方时,延长DB 交直线y=-x-2于H ,∴BH ⊥直线y=-x-2,当时,点E 、F 的“确定正方形”的面积的最小值是2,此时P (-6,0);如图3中,当正方形ABCD 在直线y=-x-2的上方时,延长DB 交直线y=-x-2于H ,∴BH ⊥直线y=-x-2,当时,点E 、F 的“确定正方形”的面积的最小值是2,此时P (2,0),观察图象可知:当或时,所有点E 、F 的“确定正方形”的面积都不小于26m ≤-2m ≥【点睛】此题是一次函数的综合题,考查一次函数的性质,正方形的性质,正确理解题中的正方形的特点画出图象求解是解题的关键.。
最新人教版八年级数学上册第三次月考试题

人教版八年级数学上册第三次月考试题一、单项选择题:(本大题共10个小题,每小题3分,共30分.)1.小颖用民度为奇数的三根木棒搭一个三角形,其中两根木棒的长度分别为7cm和3cm,则第三根木棒的长度是()A.7cm B.8cm C.11cm D.13cin2.下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.3.如果等腰三角形的一个角是80°,那么它的顶角是()A.80°或50°B.50°或20°C.50°D.80°或20°4.下列计算正确的是()A.a3+a3=a6B.a3•a3=a9C.(a3)3=a9D.(3a3)3=9a35.如图所示的是用4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为144,小正方形的面积为4,若分别用x、y(x>y)表示小长方形的长和宽,则下列关系式中错误的是()A.x2+y2=100 B.x﹣y=2 C.x+y=12 D.xy=356.若关于x的分式方程无解,则m的值是()A.m=2或m =6 B.m=2 C .m=6 D.m=2或m=﹣6 7.“绿水青山就是金山银山”,为了加大深圳城市森林覆盖率,市政府决定在2019年3月12日植树节前植树2000棵,在植树400棵后,为了加快任务进程,采用新设备,植树效率比原来提升了25%,结果比原计划提前5天完成所有计划,设原计划每天植树x 棵,依题意可列方程()A.﹣=5B.﹣=5C.﹣=5D.﹣=58.如图,点D在AB上,点E在AC上,AB=AC添加下列一个条件后,还不能证明△ABE≌△ACD的是()A.AD=AE B.BD=CE C.∠B=∠C D.BE=CD9.如图,在△ABC中,∠CAB=90°,∠ABC=60°,BD平分∠ABC,若CD=6,则AD的长为()A.2 B.3 C.4 D.4.510.如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B .相交C.垂直D.平行、相交或垂直二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:x3﹣2x2+x=.12.当x=1时,分式无意义;当x=2时,分式的值为零,则a+b=.13.若a﹣b=1,ab=2,那么a+b的值为.14.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=度.15.繁昌到南京大约150千米,由于开通了高铁,动车的的平均速度是汽车的2.5倍,这样乘动车到南京比坐汽车就要节省1.2小时,设汽车的平均速度为x千米/时,根据题意列出方程.16.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连接EF交AP于点G.给出以下四个结论,其中正确的结论是.①AE=CF,②AP=EF,③△EPF是等腰直角三角形,④四边形AEPF的面积是△ABC面积的一半.三、解答题(本大题共7小题,共52分.解答应写明文字说明和运算步骤)17.(10分)计算(1)4(a﹣b)2﹣(2a+b)(2a﹣b).(2)先化简,再求值(a+2﹣)÷,其中a=1(3)解方程:﹣1=18.(6分)给出下列等式:21﹣20=20,22﹣21=21,23﹣22=22,24﹣23=23,……(1)探索上面式子的规律,试写出第n个等式,并证明其成立.(2)运用上述规律计算20+21+22+…+22017+22018值.19.(6分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,(1)尺规作图:作△ABC的角平分线AE,交CD于点F(不写作法,保留作图痕迹);(2)求证:△CEF为等腰三角形.20.(6分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上求作一点P,使△PAC的周长最小,并直接写出P的坐标.21.(6分)为缓解市区至通州沿线的通勤压力,北京市政府利用现有国铁线路富余能力,通过线路及站台改造,开通了“京通号”城际动车组,每班动车组预定运送乘客1200人,为提高运输效率,“京通号”车组对动车车厢进行了改装,使得每节车厢乘坐的人数比改装前多了,运送预定数量的乘客所需要的车厢数比改装前减少了4节,求改装后每节车厢可以搭载的乘客人数.22.(8分)如图,在平面直角坐标系中,等腰直角△ABC,AB⊥BC,AB=BC,点C在第一象限.已知点A(m,0),B(0,n)(n>m>0),点P在线段OB上,且OP=OA.(1)点C的坐标为(用含m,n的式子表示)(2)求证:CP⊥AP.23.(10分在等腰三角形ABC中,∠ABC=90度,D是AC边上的动点,连结BD,E、F分别是AB、BC上的点,且DE⊥DF.、(1)如图1,若D为AC边上的中点.(1)填空:∠C=,∠DBC=;(2)求证:△BDE≌△CDF.(3)如图2,D从点C出发,点E在PD上,以每秒1个单位的速度向终点A运动,过点B 作BP∥AC,且PB=AC=4,点E在PD上,设点D运动的时间为t秒(0≤1≤4)在点D运动的过程中,图中能否出现全等三角形?若能,请直接写出t的值以及所对应的全等三角形的对数,若不能,请说明理由.人教版八年级期中考试数学试题一、选择题(每小题4分,共40分)1.下列学习用具图标中,是轴对称图形的是()A.B.C .D.2.如图,∠A=20°,∠B=30°,∠C=50°,求∠ADB的度数()A.50°B.100°C.70°D.80°3.如图,点B是线段AC上的一点,点D和点E在直线AC的上方,且AE∥BD.若∠C=70°,BC=BD,则∠A的度数为()A .30°B.40°C.45°D.50°4.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三边的中垂线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点5.如图,AD是△ABC中∠BAC的角平分线,DE ⊥AB于点E,S△ABC=18,DE=3,AB=8,则AC长是()A.3B.4C.6D.56.等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm 7.用尺规作图,不能作出唯一直角三角形的是()A.已知两条直角边B.已知两个锐角C.已知一直角边和直角边所对的一锐角D.已知斜边和一直角边8.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°9.三个等边三角形的摆放位置如图所示,若∠1+∠2=120°,则∠3的度数为()A.90°B.60°C.45°D.30°10.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR =PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是()A.①②B.①②③C.①②④D.①②③④二、填空题(每小题5分,共20分)11.若多边形的每个内角都相等,每个内角与相邻外角的差为100°,则这个多边形的边数为.12.如图,在等腰三角形ABC中,AB=AC,∠BAC=120°,分别以点C,A为圆心、大于CA 的长为半径画弧两弧交于点M,N,作直线MN分别交CB,CA于点E,F,则线段BE与线段EC的数量关系是.13.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=度.14.在等腰△ABC中,AB=AC,∠BAC=20°,点D在直线BC上,且CD=AC,连接AD,则∠ADC的度数为.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)在等边三角形ABC中,AD是BC边上的高,E为AC的中点,P为AD上一动点,若AD=12,试求PC+PE的最小值.16.(8分)如图,在Rt△ABC中,∠ACB=90°,D是AB上的一点,BD=BC,过点D作AB的垂线交AC于点E,CD交BE于点F.求证:BE垂直平分CD.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.18.(8分)如图,在△ABC中,∠ABC=110°,∠A=40°.(1)作△ABC的角平分线BE(点E在AC上;用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求∠BEC的度数.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,AB∥CD,O为∠BAC、∠DCA的平分线的交点,OE⊥AC于E,且OE =2,求AB与CD之间的距离.20.(10分)如图所示,(1)写出顶点C的坐标;(2)作△ABC关于y轴对称的△A1B1C1,并写出B1的坐标;(3)若点A2(a,b)与点A关于x轴对称,求a﹣b的值.六、(本题满分12分)21.(12分)如图,在△ABC和ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.七、(本题满分12分)22.(12分)如图,在等腰△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=36°时,求∠DEF的度数.八、(本题满分14分)23.(14分)如图1,在Rt△ABC中,∠C=90°,∠A=30°,点D是AB中点,(1)点E为边AC上一点,连接CD,DE,以DE为边在DE的左侧作等边三角形DEF,连接BF.(i)求证:△BCD为等边三角形;(ii)随着点E位置的变化,∠DBF的度数是否变化?若不变化,求出∠DBF的度数;(2)DP⊥AB交AC于点P,点E为线段AP上一点,连结BE,作∠BEQ=60°,如图2所示,EQ交PD延长线于Q,探究线段PE,PQ与AP之间的数量关系,并证明.。
八年级下第三次月考数学试卷(解析版)

八年级(下)第三次月考数学试卷一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.132.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B 3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.24.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.245.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.89.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=310.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为cm时.这三条线段能组成一个直角三角形.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB=.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是.15.梯形中位线长6cm.下底长8cm.则上底的长为cm.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为度.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.2017-2018学年广东省东莞市中堂星晨学校八年级(下)第三次月考数学试卷参考答案与试题解析一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.13【分析】由勾股定理的逆定理.只要验证两小边的平方和是否等于最长边的平方.即可解答.【解答】解:A、82+152=172.能构成直角三角形.不符合题意;B、1.52+22≠32.不能构成直角三角形.符合题意;C、62+82=102.能构成直角三角形.不符合题意;D、52+122=132.能构成直角三角形.不符合题意;故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形.已知三角形三边的长.只要利用勾股定理的逆定理加以判断即可.2.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B【分析】根据题目提供的三角形的三边长.计算它们的平方.满足a2+b2=c2.哪一个是斜边.其所对的角就是直角.【解答】解:∵AB2=()2=2.BC2=()2=5.AC2=()2=3.∴AB2+AC2=BC2.∴BC边是斜边.∴∠A=90°.故选A.【点评】本题考查了利用勾股定理的逆定理判定直角三角形.本题没有让学生直接判定直角三角形.而是创新的求哪一个角是直角.是一道不错的好题.3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.2【分析】根据勾股定理进行逐一计算即可.【解答】解:∵AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.∴AC===;AD===;AE===2.故选D.【点评】本题考查了利用勾股定理解直角三角形的能力.即:直角三角形两直角边的平方和等于斜边的平方.4.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.24【分析】过点A作AE⊥BC于E.根据含30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半可求出AE的长.利用平行四边形的面积根据即可求出其面积.【解答】解:过点A作AE⊥BC于E.∵直角△ABE中.∠B=30°.∴AE=AB=×4=2∴平行四边形ABCD面积=BCAE=6×2=12.故选:B.【点评】本题考查了平行四边形的性质以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半.5.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【分析】根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.【解答】解:A、四个角相等的四边形是矩形.为真命题.故A选项不符合题意;B、对角线相等的平行四边形是矩形.为真命题.故B选项不符合题意;C、对角线垂直的平行四边形是菱形.为假命题.故C选项符合题意;D、对角线垂直的平行四边形是菱形.为真命题.故D选项不符合题意.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题.错误的命题称为假命题;经过推理论证的真命题称为定理.6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°【分析】过点D作DE∥BC.可知△ADE是等边三角形.从而得到∠C=60°.【解答】解:如图.过点D作DE∥BC.交AB于点E.∴DE=CB=AD.∵AD=AE.∴△ADE是等边三角形.所以∠A=60°.故选:D.【点评】此题考查等腰梯形的性质及梯形中常见的辅助线的作法.7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W【分析】根据重心的定义得出AE是△ABC边BC的中线.CH是△ABC边BA的中线.即可得出答案.【解答】解:∵D、E、F三点将BC分成四等分.∴BE=CE.∴AE是△ABC边BC的中线.∵H为AB中点.∴CH是△ABC边BA的中线.∴交点即是重心.故选:C.【点评】此题主要考查了重心的定义.掌握三角形的重心的定义找出AE是△ABC边BC的中线.CH是△ABC边BA的中线是解决问题的关键.8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.8【分析】根据AB=AC=10.CD=2得出AD的长.再由BD⊥AC可知△ABD是直角三角形.根据勾股定理求出BD的长即可.【解答】解:∵AB=AC=10.CD=2.∴AD=10﹣2=8.∵BD⊥AC.∴BD===6.故选C.【点评】本题考查的是勾股定理.熟知在任何一个直角三角形中.两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=3【分析】将原方程的常数项﹣3变号后移项到方程右边.然后方程两边都加上1.方程左边利用完全平方公式变形后.即可得到结果.【解答】解:x2﹣2x﹣3=0.移项得:x2﹣2x=3.两边加上1得:x2﹣2x+1=4.变形得:(x﹣1)2=4.则原方程利用配方法变形为(x﹣1)2=4.故选B.【点评】此题考查了利用配方法解一元二次方程.利用此方法的步骤为:1、将二次项系数化为“1”;2、将常数项移项到方程右边;3、方程两边都加上一次项系数一半的平方.方程左边利用完全平方公式变形.方程右边为非负常数;4、开方转化为两个一元一次方程来求解.10.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.【分析】根据正方形的性质把不规则图形的面积可以看成是规则图形的面积的和或差.从而可得到图中阴影部分面积最大的图形.【解答】解:不规则图形的面积可以看成是规则图形的面积的和或差.根据正方形的性质计算得.图中阴影部分面积最大的是第四选项.故选D.【点评】此题主要考查学生对正方形的性质的理解及运用.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为5或cm时.这三条线段能组成一个直角三角形.【分析】本题从边的方面考查三角形形成的条件.涉及分类讨论的思考方法.即:由于“两边长分别为3和5.要使这个三角形是直角三角形.”指代不明.因此.要讨论第三边是直角边和斜边的情形.【解答】解:当第三边是直角边时.根据勾股定理.第三边的长==5.三角形的边长分别为3.4.5能构成三角形;当第三边是斜边时.根据勾股定理.第三边的长==.三角形的边长分别为3..亦能构成三角形;综合以上两种情况.第三边的长应为5或.故答案为5或.【点评】本题考查了勾股定理的逆定理.解题时注意三角形形成的条件:任意两边之和>第三边.任意两边之差<第三边.当题目指代不明时.一定要分情况讨论.把符合条件的保留下来.不符合的舍去.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=20.【分析】依据勾股定理求解即可.【解答】解:∵Rt△ABC中.∠C=90°.∴b==20.故答案为:20.【点评】本题主要考查的是勾股定理的应用.掌握勾股定理是解题的关键.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB= 9.【分析】如图:由四边形ABCD是平行四边形.可得AB=CD.BC=AD.OA=OC.OB=OD;又由△OAB的周长比△OBC的周长大3.可得AB﹣BC=3.又因为▱ABCD的周长是30.所以AB+BC=10;解方程组即可求得.【解答】解:∵四边形ABCD是平行四边形.∴AB=CD.BC=AD.OA=OC.OB=OD;又∵△OAB的周长比△OBC的周长大3.∴AB+OA+OB﹣(BC+OB+OC)=3∴AB﹣BC=3.又∵▱ABCD的周长是30.∴AB+BC=15.∴AB=9.故答案为9.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.对角线互相平分.解题时要注意利用方程思想与数形结合思想求解.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是5.【分析】首先连接EF交AC于O.由矩形ABCD中.四边形EGFH是菱形.易证得△CFO≌△AOE(AAS).即可得OA=OC.然后由勾股定理求得AC的长.继而求得OA的长.又由△AOE ∽△ABC.利用相似三角形的对应边成比例.即可求得答案.【解答】解:连接EF交AC于O.∵四边形EGFH是菱形.∴EF⊥AC.OE=OF.∵四边形ABCD是矩形.∴∠B=∠D=90°.AB∥CD.∴∠ACD=∠CAB.在△CFO与△AOE中..∴△CFO≌△AOE(AAS).∴AO=CO.∵AC==4.∴AO=AC=2.∵∠CAB=∠CAB.∠AOE=∠B=90°.∴△AOE∽△ABC.∴.∴.∴AE=5.故答案为5.【点评】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.15.梯形中位线长6cm.下底长8cm.则上底的长为4cm.【分析】根据“梯形中位线的长等于上底与下底和的一半”可求得其上底.【解答】解:由已知得.下底=2×6﹣8=4(cm).故答案为:4.【点评】此题主要考查了梯形中位线定理的数量关系:梯形中位线的长等于上底与下底和的一半.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为230度.【分析】三角形纸片中.剪去其中一个50°的角后变成四边形.则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【解答】解:根据三角形的内角和定理得:四边形除去∠1.∠2后的两角的度数为180°﹣50°=130°.则根据四边形的内角和定理得:∠1+∠2=360°﹣130°=230°.【点评】主要考查了四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.【分析】连接BD.根据已知分别求得△ABD的面积与△BDC的面积.即可求四边形ABCD的面积.【解答】解:连接BD.∵AB=3cm.AD=4cm.∠A=90°∴BD=5cm.S△ABD=×3×4=6cm2又∵BD=5cm.BC=13cm.CD=12cm∴BD2+CD2=BC2∴∠BDC=90°∴S△BDC=×5×12=30cm2∴S四边形ABCD=S△ABD+S△BDC=6+30=36cm2.【点评】此题主要考查勾股定理和逆定理的应用.还涉及了三角形的面积计算.连接BD.是关键的一步.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)【分析】先作线段AC=b.再过点C作AC的垂线.接着以点A为圆心.a为半径画弧交此垂线于B.则△ABC为所求.【解答】解:如图.△ABC为所求作的直角三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图.一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质.结合几何图形的基本性质把复杂作图拆解成基本作图.逐步操作.也19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.【分析】先证明△ADE≌△FCE.得出AD=CF.再根据平行四边形的性质可知AD=BC.继而即可得出结论.【解答】解:∵四边形ABCD为平行四边形.∵AD∥BC.∴∠ADE=∠FCE.∵E是CD的中点.∴DE=CE.在△ADE和△FCE中.∵.∴△ADE≌△FCE.∴AD=CF.又∵AD=BC.∴BC=CF.【点评】本题考查平行四边形的性质及全等三角形的判定与性质.解题关键是找出△ADE与△FCE全等的条件.难度一般.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.【分析】欲证明OE=OF.只需证得△ODE≌△OCF即可.【解答】证明:如图.∵四边形ABCD是矩形.∴∠ADC=∠BCD=90°.AC=BD.OD=BD.OC=AC.∴OD=OC.∴∠ODC=∠OCD.∴∠ADC﹣∠ODC=∠BCD﹣∠OCD.即∠EDO=∠FCO.在△ODE与△OCF中..∴△ODE≌△OCF(SAS).∴OE=OF.【点评】本题考查了全等三角形的判定与性质.矩形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时.关键是选择恰当的判定条件.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.【分析】作DE⊥BCTVE.则∠DEB=90°.由含30°角的直角三角形的性质得出DE=BD.BC=2DC=4.求出BD=DC=6.DE=3.由等腰梯形的性质得出∠ABD=∠ADB.得出AD=AB=2.即可求出梯形ABCD的面积.【解答】解:如图所示:作DE⊥BCTVE.则∠DEB=90°.∵∠DBC=30°.∠BDC=90°.∴∠C=60°.DE=BD.BC=2DC=4.BD=DC=6.∴DE=3.∵AD∥BC.AB=DC.∴∠ABC=∠C=60°.∠ADB=∠BDC=30°.∴∠ABD=30°=∠ADB.∴AD=AB=2.∴梯形ABCD的面积=(AD+BC)×DE=(2+4)×3=9.【点评】本题考查了等腰梯形的性质、含30°角的直角三角形的性质、梯形面积的计算;熟练掌握等腰梯形的性质.由含30°角的直角三角形的性质求出BC和DE是解决问题的关键.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.【分析】首先证明△AEB≌△CFD可得AB=CD.再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.【解答】证明:∵AB∥CD.∴∠DCA=∠BAC.∵DF∥BE.∴∠DFA=∠BEC.∴∠AEB=∠DFC.在△AEB和△CFD中.∴△AEB≌△CFD(ASA).∴AB=CD.∵AB∥CD.∴四边形ABCD为平行四边形.【点评】此题主要考查了平行四边形的判定.关键是掌握一组对边平行且相等的四边形是平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半.得CD=AD.根据直角三角形的两个锐角互余.得∠A=60°.从而判定△ACD是等边三角形.再根据等腰三角形的三线合一的性质即可证明;(2)结合(1)中的结论.求得CD=2.DE=1.只需根据勾股定理求得CE的长即可.【解答】(1)证明:∵∠ACB=90°.CD是AB边上的中线.∴CD=AD=DB.∵∠B=30°.∴∠A=60°.∴△ACD是等边三角形.∵CE是斜边AB上的高.∴AE=ED.(2)解:由(1)得AC=CD=AD=2ED.又AC=2.∴CD=2.ED=1.∴.∴△CDE的周长=.【点评】此题综合运用了直角三角形的性质、等边三角形的判定和性质以及勾股定理.直角三角形斜边上的中线等于斜边的一半;直角三角形的两个锐角互余.有一个角是60°的等腰三角形是等边三角形.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.【分析】(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形.进而利用垂直平分线的性质得出BE=ED.即可得出答案.【解答】(1)证明:∵在▱ABCD中.O为对角线BD的中点.∴BO=DO.∠EDB=∠FBO.在△EOD和△FOB中.∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时.四边形BFDE为菱形.理由:∵△DOE≌△BOF.∴OE=OF.又∵OB=OD∴四边形EBFD是平行四边形.∵∠EOD=90°.∴EF⊥BD.∴四边形BFDE为菱形.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识.得出BE=DE是解题关键.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.(1)由正方形ABCD.得BC=CD.∠BCD=∠DCE=90°.又CG=CE.所以△BCG≌△DCE 【分析】(SAS).(2)由(1)得BG=DE.又由旋转的性质知AE′=CE=CG.所以BE′=DG.从而证得四边形E′BGD 为平行四边形.【解答】(1)证明:∵四边形ABCD是正方形.∴BC=CD.∠BCD=90°.∵∠BCD+∠DCE=180°.∴∠BCD=∠DCE=90°.又∵CG=CE.∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′.∴CE=AE′.∵CE=CG.∴CG=AE′.∵四边形ABCD是正方形.∴BE′∥DG.AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.【点评】本题考查了正方形的性质、全等三角形的判定与性质及平行四边形的判定等知识的综合应用.以及考生观察、分析图形的能力.f;lf2-9;。
人教版八年级下册数学第三次月考试题含答案
人教版八年级下册数学第三次月考试卷一、单选题1.下列各式中,运算正确的是()A =﹣2B C 4D .22.下列四组线段中,能组成直角三角形的是()A .a=1,b=2,c=3B .a=4,b=2,c=3C .a=4,b=2,c=5D .a=4,b=5,c=33.函数y=2x ﹣5的图象经过()A .第一、三、四象限B .第一、二、四象限C .第二、三、四象限D .第一、二、三象限4.要得到函数y =2x +3的图象,只需将函数y =2x 的图象()A .向左平移3个单位B .向右平移3个单位C .向下平移3个单位D .向上平移3个单位5.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知∠AOD=120°,AB=2,则AC 的长为()A .2B .4C .6D .86.已知()()12223,,2,P y P y -是一次函数1y x =--的图象上的两个点,则12,y y 的大小关系是A .12y y =B .12y y <C .12>y y D .不能确定7.如图,已知:函数y =3x +b 和y =ax ﹣3的图象交于点P (﹣2,﹣5),则根据图象可得不等式3x +b >ax ﹣3的解集是()A .x >﹣5B .x >﹣2C .x >﹣3D .x <﹣285﹣x ,则x 的取值范围是()A .为任意实数B .0≤x≤5C .x≥5D .x≤59.在△ABC 中,AB=15,AC=13,高AD=12,则BC 等于()A .14B .4C .14或4D .9或510.设max 表示两个数中的最大值,例如:max{0,2}2=,max{12,8}12=,则关于x 的函数max{3,21}y x x =+可表示为()A .3y x =B .21y x =+C .3(1)21(1)x x y x x <⎧=⎨+≥⎩D .21(1)3(1)x x y x x +<⎧=⎨≥⎩二、填空题11x 的取值范围是______.12.计算.13.如图,A ,B 两点被池塘隔开,在A ,B 外选一点C ,连接AC 和BC ,并分别找出AC 和BC 的中点M ,N ,如果测得MM=20m ,那么A ,B 两点间的距离是_____.14.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为__.15.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.16.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x =a ﹣b 的解是x =3;④当x >3时,y 1<y 2中.则正确的序号有_____.三、解答题17.计算(1271245;(212753533.18.如图所示的一块地,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.19.画出y =2x ﹣4的图象,确定x 取何值时,(1)y >0;(2)y <﹣4.20.如图,一次函数y =ax +b 的图象与正比例函数y =kx 的图象交于点M .(1)求正比例函数和一次函数的解析式;(2)求△MOP的面积.21.如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.22.小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件)购买总费用(元) A B第一次2155第二次1365根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.23.如图1,点E在正方形AOCD的边AD上,点H在边AO上,AH=DE.(1)求证:DH⊥CE;(2)如图2,EF ⊥CE ,FH ⊥AO ,垂足为点H ,T 为FC 的中点.①求证:FH =AH ;②FO =5,TO =E 的坐标.24.如图(1),在平面直角坐标系中,直线y x m =-+交y 轴于点A ,交x 轴于点B ,点C 坐标为,02m ⎛⎫⎪⎝⎭,作点C 关于直线AB 的对称点F ,连接BF 和OF ,OF 交AC 于点E ,交AB于点M .(1)求证:OF AC ⊥.(2)如图(2),连接CF 交AB 于点H ,求证:32AH CF =.(3)如图(3),若2m =,G 为x 轴负半轴上一动点,连接MG ,过点M 作GM 的垂线交FB 的延长线于点D ,GB-BD 的值是否为定值?若是,求其值;若不是,求其取值范围.参考答案1.C 【分析】根据二次根式的性质对A 进行判断;根据二次根式的加减法法则对B 、D 进行判断;根据二次根式的乘法法则对C 进行判断.【详解】解:A =2,故原题计算错误;B=,故原题计算错误;C 4,故原题计算正确;D 、2和故选:C .【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式的性质及加减法运算法则是解题关键.2.D 【详解】试题分析:A .∵2221253+=≠,∴不能构成直角三角形,故本选项错误;B .∵22223134+=≠,∴不能构成直角三角形,故本选项错误;C .∵22224205+=≠,∴不能构成直角三角形,故本选项错误;D .∵22234255+==,∴能构成直角三角形,故本选项正确.故选D .考点:勾股定理的逆定理.3.A 【分析】先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.【详解】∵一次函数y=2x-5中,k=2>0,∴此函数图象经过一、三象限,∵b=-5<0,∴此函数图象与y 轴负半轴相交,∴此一次函数的图象经过一、三、四象限,不经过第二象限.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一、三象限,当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.4.D【分析】平移后相当于x不变y增加了3个单位,由此可得出答案.【详解】解:由题意得x值不变y增加3个单位应向上平移3个单位.故选D.【点睛】本题考查一次函数图象的几何变换,注意平移k值不变的性质.5.B【分析】已知四边形ABCD是矩形,∠AOD=120°,AB=2,根据矩形的性质可证得△AOB是等边三角形,则OA=OB=AB=2,AC=2OA=4.【详解】∵四边形ABCD是矩形∴AC=BD,OA=OC,OB=OD∴OA=OB∵∠AOD=120°∴∠AOB=60°∴△AOB是等边三角形∴OA=OB=AB=2∴AC=2OA=4故选:B【点睛】本题考查了矩形的基本性质,等边三角形的判定和性质.6.C根据()()12223,,2,P y P y -是一次函数y=-x-1的图象上的两个点,由-3<2,结合一次函数y=-x-1在定义域内是单调递减函数,判断出12,y y 的大小关系即可.【详解】∵()()12223,,2,P y P y -是一次函数y=−x−1的图象上的两个点,且−3<2,∴12>y y .故选C 【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于结合一次函数y=-x-1在定义域内是单调递减函数7.B 【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:∵函数y =3x +b 和y =ax ﹣3的图象交于点P (﹣2,﹣5),则根据图象可得不等式3x +b >ax ﹣3的解集是x >﹣2,故选B .【点睛】本题主要考查了根据两直线的交点坐标解不等式,解题的关键在于能够熟练掌握相关知识进行求解.8.D 【分析】根据二次根式的性质得出5-x≥0,求出即可.【详解】|5|5x x ==-=-,∴5-x≥0,解得:x≤5,故选D .本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.9.C【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD-B D.【详解】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2-AD2=152-122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2-AD2=132-122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2-AD2=152-122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2-AD2=132-122=25,∴CD=5,∴BC的长为DC-BD=9-5=4.故BC长为14或4.【点睛】本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10.D 【分析】由于3x 与21x +的大小不能确定,故应分两种情况进行讨论.【详解】当321x x ≥+,即1x ≥时,{}3,213y max x x x =+=;当321x x <+,即1x <时,{}3,2121y max x x x =+=+.故选D .【点睛】本题考查的是一次函数的性质,解答此题时要注意进行分类讨论.11.x≥-2【详解】分析:根据二次根式有意义的条件:被开方数为非负数,列不等式求解即可.详解:∵x+2≥0∴x≥-2.故答案为x≥-2.点睛:此题主要考查了二次根式有意义的条件,明确被开方数为非负数是解题关键.12.【详解】分析:先把各根式化简,然后进行合并即可得到结果.详解:原式=点睛:本题主要考查二次根式的加减,比较简单.13.40m .【分析】根据三角形中位线定理:三角形的中位线平行第三边,且等于第三边的一半,那么第三边应等于中位线长的2倍.【详解】解:∵M,N分别是AC,BC的中点,∴MN是△ABC的中位线,∴MN=12AB,∴AB=2MN=2×20=40(m).【点睛】本题考查三角形中位线定理.14.110°.【详解】根据平行四边形的性质可得AB∥CD,根据平行线的性质可得∠1=∠CAB=20°,因BE⊥AB,可得∠EBA=90°,所以∠2=∠EBA+∠CAB=90°+20°=110°.15.【分析】首先由对边分别平行可判断四边形ABCD为平行四边形,连接AC和BD,过A点分别作DC和BC的垂线,垂足分别为F和E,通过证明△ADF≌△ABC来证明四边形ABCD为菱形,从而得到AC与BD相互垂直平分,再利用勾股定理求得BD长度.【详解】解:连接AC和BD,其交点为O,过A点分别作DC和BC的垂线,垂足分别为F和E,∵AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴∠ADF=∠ABE,∵两纸条宽度相同,∴AF=AE,∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ADF ≌△ABE ,∴AD=AB ,∴四边形ABCD 为菱形,∴AC 与BD 相互垂直平分,∴BD==故本题答案为:【点睛】本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.16.①③④【分析】根据y 1=kx +b 和y 2=x +a 的图象可知:k <0,a <0,所以当x >3时,相应的x 的值,y 1图象均低于y 2的图象.【详解】解:根据图示及数据可知:①k <0正确;②a <0,原来的说法错误;③方程kx +b =x +a 的解是x =3,正确;④当x >3时,y 1<y 2正确.故答案为:①③④.【点睛】本题主要考查了一次函数的图象性质,准确分析是解题的关键.17.(1;(2)1【分析】(1)根据二次根式的加减法可以解答本题;(2)根据二次根式的乘法、平方差公式可以解答本题.【详解】解:(1=+;(2()53-=3﹣2=1.【点睛】本题主要考查二次根式的运算,熟练掌握二次根式的运算法则是解题的关键.18.224m【分析】根据勾股定理求得AC的长,再根据勾股定理的逆定理判定ABC∆为直角三角形,从而不难求得这块地的面积.【详解】解:连接AC.4mAD=,3mCD=,AD DC⊥5mAC∴=22212513+=ACB∴∆为直角三角形21151230m22ACBS AC BC∆∴=⨯⨯=⨯⨯=,211436m22ACDS AD CD∆=⋅=⨯⨯=,∴这块地的面积230624m ACB ACD S S ∆∆=-=-=.【点睛】本题考查了学生对勾股定理及其逆定理的理解及运用能力,解题的关键是掌握勾股定理的知识.19.图见解析;(1)2x >;(2)0x <【分析】求出函数图象与两坐标轴的交点,利用两点法作出图象即可;(1)根据函数图象在x 轴上方的部分,y >0,直接写出即可;(2)根据函数图象在y 轴左方的部分,y <﹣4,直接写出即可.【详解】解:当x =0时,y =﹣4;当y =0时,2x ﹣4=0,解得x =2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)当x >2时,y >0;(2)当x <0时y <﹣4.【点睛】本题主要考查了一次函数的图象性质,准确计算是解题的关键.20.(1),22y x y x ==-;(2)1【分析】(1)将(1,0),(0,﹣2)代入y =ax +b 解出一次函数的解析式,然后将x =2代入求得M 的纵坐标,再代入正比例函数y =kx 解出即可;(2)利用三角形的面积公式计算即可.【详解】解:(1)一次函数y=ax+b的图象经过点(1,0),(0,﹣2),∴2a bb+=⎧⎨=-⎩,解得22ab=⎧⎨=-⎩,故一次函数的解析式为:y=2x﹣2,将x=2代入y=2x﹣2得,y=2,∴M(2,2),将M(2,2)代入y=kx,解得:k=1,所以正比例函数解析式为:y=x;(2)由(1)可知:OP=1,M(2,2)∴△MOP的面积为112=1 2⨯⨯.【点睛】本题主要考查求一次函数解析式,关键是根据待定系数法求解函数表达式,然后根据点的坐标得到线段的长,进而求解面积.21.(1)证明见解析;(2)【分析】(1)由平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(2)解直角三角形求出BC=2.OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=12BC=1,求出OE=2OF=2,求出菱形的面积即可.【详解】()1证明:CE//OD,DE//OC,∴四边形OCED是平行四边形,矩形ABCD,AC BD∴=,1OC AC2=,1OD BD2=,OC OD∴=,∴四边形OCED是菱形;()2在矩形ABCD中,ABC90∠=,BAC30∠= ,AC4=,BC 2∴=,AB DC ∴==连接OE ,交CD 于点F ,四边形OCED 为菱形,F ∴为CD 中点,O 为BD 中点,1OF BC 12∴==,OE 2OF 2∴==,OCED 11S OE CD 222∴=⨯⨯=⨯⨯=菱形【点睛】本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.22.(1)A 种商品的单价为20元,B 种商品的单价为15元;(2)当a=8时所花钱数最少,即购买A 商品8件,B 商品4件.【分析】(1)列二元一次方程组,用代入法或加减法解方程即可;(2)将题目转化为一元一次不等式,利用一元一次不等式解即可.【详解】解:(1)设A 种商品的单价为x 元,B 种商品的单价为y 元,根据题意可得:255365x y x y +=⎧⎨+=⎩,解得:2015x y =⎧⎨=⎩,答:A 种商品的单价为20元,B 种商品的单价为15元;(2)设第三次购买商品A 种a 件,则购买B 种商品()12a -件,根据题意可得:()212a a - ,得:812a,()2015125180m a a a =+-=+ ∴当8a =时所花钱数最少,即购买A 商品8件,B 商品4件.【点睛】本题考查了二元一次方程组的解法以及不等式的相关知识,解题的关键是掌握消元思想与解二元一次方程组的方法步骤.23.(1)见解析;(2)①见解析;②()4,7E .【分析】(1)证明△HAD ≌△EDC (SAS ),可得∠ADH =∠DCE ,从而得结论;(2)①如图2,作辅助线,构建三角形全等,证明△GFE ≌△DEC (AAS ),得EG =DC =AD ,根据等式的性质可得FH =AG =DE =AH ;②作辅助线,构建直角三角形,设AG =x ,AE =y ,则ED =FG =OM =x ,则GD =MC =2x +y ,得△OTN 是等腰直角三角形,则ON =TN =2,由此可得x 和y 的值,可得结论.【详解】证明:(1)∵四边形ABCD 是正方形,∴AD =CD ,∠DAH =∠EDC =90°,∵AH =DE ,∴△HAD ≌△EDC (SAS ),∴∠ADH =∠DCE ,∵∠ADH +∠HDC =∠DCE +∠HDC =90°,∴∴∠DFC =90°,∴CE ⊥DH ;(2)①如图2,过F 作FG ⊥AD ,交DA 的延长线于G ,∵FH⊥AO,∴∠G=∠GAH=∠AHF=90°,∴四边形AGFH是矩形,∴FG=AH=DE,∵∠G=∠D=90°,∠GEF=∠DCE,∴△GFE≌△DEC(AAS),∴EG=DC=AD,∴EG﹣AE=AD﹣AE,∴AG=DE=FH=AH;②如图3所示,延长GF交x轴于M,过T作TN⊥OC于N,∴FM⊥MC,∴TN∥FM,∵T是FC的中点,∴N是MC的中点,∴TN=12 FM,设AG=x,AE=y,则ED=FG=OM=x,∴GD=MC=2x+y,∵N是MC的中点,∴MN =12MC =x +12y =OM +ON ,∴ON =12y ,∵TN =12FM =12y ,∴ON =TN ,∵∠ONT =90°,OT =,∴ON =TN =2,∴FM =2TN =4,Rt △FMO 中,OF =5,∴OM =3,∴GM =FM +GF =4+3=7,∴E (4,7).【点睛】本题主要考查正方形的性质、全等三角形的性质与判定及等腰三角形的性质,关键是根据正方形的性质得到三角形的全等,然后根据题意得到线段的长进而转换为点的坐标.24.(1)见解析;(2)见解析;(3)是,43【分析】(1)先求出A ,B 的坐标,再通过对称得到FB=BC 且垂直x 轴,从而证Rt △OAC ≌Rt △FOB ,得到OF ⊥AC .(2)利用勾股定理和等腰直角三角形的性质分别求出BA ,BF ,BH 即可.(3)过M 点作MN ⊥x 轴于N 点,MH ⊥DF 于H 点,证明直角△MEN ≌直角△MDH .【详解】(1)证明 由y x m =-+得(0,),A m (,0)B m ,,OA OB ∴=45OAB OBA ︒∠=∠=.C F ,关于AB 对称,,BC BF ∴=45OBA ABF ︒∠=∠=,90FBO ︒∴∠=.又,0,2m C ⎛⎫⎪⎝⎭ OC BC BF ∴==.Rt Rt ,OAC BOF ∴≅ FOB OAC ∴∠=∠.90,OAC ACO ︒∠+∠= 90FOB ACO ︒∴∠+∠=,90OEC ︒∴∠=,即OF AC ⊥.(2)证明: 在Rt BCF 中,2mBC BF ==,,CF ∴=BH =,在Rt OAB 中,,OA OB m ==AB ∴=,,44AH m m ∴=32AH CF ∴=.(3)解:GB-BD 的值是定值,定值等于43.2,m = ∴直线AB 的解析式为2y x =-+,点F 的坐标为(2,1),直线OF 的解析式为12y x =.解方程组212y x y x =-+⎧⎪⎨=⎪⎩得4323x y ⎧=⎪⎪⎨⎪=⎪⎩,42,33M ⎛⎫∴ ⎪⎝⎭.过点M 作MN x ⊥轴于点N ,MH DF ⊥于点H,如图90,FBO ︒∠= 45,OBA ︒∠=21∴四边形MNBH 是正方形,2,3MN BH MH ∴===,MN BH ∥NMD MDH ∴∠=∠.又,GM MD ⊥ 18090MGN MNG GMN GMN ︒︒∴∠=-∠-∠=-∠,90NMD GMD GMN GMN ︒∠=∠-∠=-∠,MGN NMD MDH ∴∠=∠=∠.在MGN 和MDH 中,MGN MDH MNG MHD MN MH ∠=∠⎧⎪∠=∠⎨⎪=⎩,,MGN MDH ∴≅ GN DH ∴=.GB BD GN BN BD ∴-=+-DH BH BD =+-423BH ==.综上所述,GB-BD 的值为定值43.【点睛】本题主要考查了一次函数的性质,能求与X 轴Y 轴的交点坐标;解题关键是学会构建三角形全等,掌握全等三角形的性质;合理使用勾股定理进行计算.。
人教版(五四学制)2022-2023学年八年级数学上册第三次月考测试题(附答案) (2)
2022-2023学年八年级数学上册第三次月考测试题(附答案)一、选择题(共30分)1.在,﹣,,,,中,分式有()A.2个B.3个C.4个D.5个2.下列计算正确的是()A.a2•a3=a6B.(﹣a﹣1b﹣3)﹣2=﹣a2b6C.(a﹣b)4=﹣(b﹣a)4D.3a﹣3=3.下列因式分解正确的是()A.a2﹣2=(a+4)(a﹣4)B.25x2﹣1=(5x﹣1)(1﹣5x)C.4﹣12x+9x2=(﹣3x+2)2D.x2﹣27=(x﹣3)(x﹣9)4.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±205.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm6.如果把分式中的x、y都扩大到原来的5倍,则分式的值()A.扩大到原来的25倍B.扩大到原来的5倍C.不变D.缩小到原来的7.甲、乙两人同时从A地出发,骑自行车行30千米到B地,甲比乙每小时少走3千米,结果乙先到40分钟.若设乙每小时走x千米,则可列方程()A.B.﹣=C.﹣=D.﹣=8.如图四边形ABCD中,∠A=58°,∠C=100°,连接BD,E是AD上一点,连接BE,∠EBD=36°.若点A,C分别在线段BE,BD的中垂线上,则∠ADC的度数为()A.75°B.65°C.63°D.61°9.当n是整数时,两个连续奇数的平方差(2n+1)2﹣(2n﹣1)2是_____的倍数.()A.3B.5C.7D.810.下列说法正确的是()A.任何数的0次幂都等于1B.等腰三角形是关于一条边上的中线成轴对称的图形C.等腰三角形两腰上的高相等D.如果三角形一条边上的中线等于这条边的一半,则这个三角形是等腰直角三角形二、填空题(共30分)11.﹣0.00000015用科学记数法表示为.12.分解因式3x(m+n)﹣6y(m+n)=.13.当x为时,分式的值为0.14.分式,的最简公分母是.15.若a+b=7,ab=12,则a2﹣ab+b2的值是.16.已知=3,则的值为.17.A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg所用的时间与B型机器人搬运600kg所用时间相等,两种机器人每小时分别搬运多少化工原料?若设A型机器人每小时搬运xkg,可列方程:.18.如图,在△ABC中,∠ABC=50°,∠ACB=80°,延长CB至D,使DB=BA,延长BC至E,使CE=AC,则∠DAE=.19.△ABC中,AB的垂直平分线与∠ACB的外角平分线交于点D,DE垂直直线BC于E,若AC=7,CE=2,则BC的长是.20.如图,在△ABC中,点D在边BC上,点E在边AC上,AB=AE,连接AD,DE,过点A作AF⊥BC于点F,若∠BAC=∠ADE=60°,BD=5,DE=3,则BF的长是.三、解答题(共60分)21.计算.(1)(2m2n﹣2)2•3m﹣3n3;(2)÷(a﹣).22.解下列方程:(1)﹣=﹣2(2)﹣=123.先化简,再求值:÷•,其中x=.24.如图,BF⊥AC于F,CE⊥AB于E,BF交CE于点D,BD=CD,连接AD.(1)求证:AD平分∠BAC;(2)当BD=AD,∠BAD=30°时,直接写出图中度数是120°的角.25.哈工大图书馆新进一批图书,张强和李明两位图书员负责整理图书,已知张强3小时清点完这批图书的一半,李明加入清点另一半图书的工作,两人合作1.2小时清点完另一半图书;(1)如果李明单独清点这批图书需要几小时?(2)经过一段时间,这批图书破损严重,哈工大图书馆决定在致知书店购买甲、乙两种图书共120本进行补充,该书店每本甲种图书的售价为25元,进价20元;每本乙种图书的售价为40元,进价30元.如果此批图书全部售出后所得利润不低于950元,那么该书店至少需要卖出乙种图书多少本?26.在等边三角形ABC中,D为直线BC上一点,连接AD,在射线BC上取一点E,使AD =DE,连接AE,在射线AC上取点F,连接EF.(1)如图1,当点D在BC边上,∠CAD=2∠FEC时,求∠AEF的度数;(2)在(1)的条件下,求证:AD=AF;(3)在(1)的条件下,如图2,若点D在BC延长线上,过点A作AK⊥EF交EF的延长线于点K,过点F作BE的平行线交AK于点H,连接DH,若FH=2,DH=4,求线段AF的长度.27.如图,在平面直角坐标系中,点A(t,0)为x轴负半轴上一动点,等腰△ABC的底边AC在x轴上,AB=BC,∠ACB=30°,点B(t+3,)在第一象限.(1)如图1,求点C的坐标;(用含t的代数式表示)(2)如图2,在y轴负半轴上分别取点D和点E,连接BD,CD,BE,BE与CD交于点F,若BD=DE=AB,请猜想∠BFC的度数是否发生变化?若变化,请说明理由;若不变,请求出∠BFC的度数;(3)如图3,在(2)的条件下,过点D作DG∥BE交x轴于点G,连接AD,若AD=DF,OA=OG,请求出点A的坐标.参考答案一、选择题(共30分)1.解:在,﹣,,,,中,,,,的分母中含有字母,是分式,共有4个.故选:C.2.解:A.根据同底数幂的乘法,a2•a3=a5,那么A错误,故A不符合题意.B.根据积的乘方与幂的乘方,(﹣a﹣1b﹣3)﹣2=(﹣1)﹣2a2b6=a2b6,那么B错误,故B不符合题意.C.根据乘方的定义,(a﹣b)4=[﹣(b﹣a)]4=(b﹣a)4,那么C错误,故C不符合题意.D.根据负整数指数幂,,那么D正确,故D符合题意.故选:D.3.解:A.根据平方差公式,,那么A错误,故A不符合题意.B.根据平方差公式,25x2﹣1=(5x+1)(5x﹣1),那么B错误,故B不符合题意.C.根据完全平方公式,4﹣12x+9x2=(﹣3x+2)2,那么C正确,故C符合题意.D.根据平方差公式,,那么D错误,故D不符合题意.故选:C.4.解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.5.解:∵CD是斜边AB上的高,∴∠ADC=90°,∵∠A=60°,∠ACB=90°,∴∠B=180°﹣∠ACB﹣∠A=30°,∠ACD=180°﹣∠ADC﹣∠A=30°,∵AD=3cm,∴AC=2AD=6cm,∴AB=2AC=12cm,6.解:===•,所以如果把分式中的x、y都扩大到原来的5倍,那么分式的值缩小原来的,故选:D.7.解:设乙每小时走x千米,则甲每小时走(x﹣3)千米,由题意得:﹣=,故选:A.8.解:∵点A,C分别在线段BE,BD的中垂线上,∴AE=AB,BC=DC.∵∠A=58°,∠C=100°,∴∠ABE==61°,∠CBD==40°.∵∠EBD=36°,∴∠ABC=∠ABE+∠EBD+∠CBD=61°+36°+40°=137°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=360°﹣58°﹣100°﹣137°=65°.故选:B.9.解:∵(2n+1)2﹣(2n﹣1)2=[(2n+1)+(2n﹣1)][(2n+1)﹣(2n﹣1)]=4n×2=8n.又∵n是整数,∴(2n+1)2﹣(2n﹣1)2是8的倍数.故选:D.10.解:A.任何非零数的0次幂都等于1,原说法错误,故本选项不合题意;B.等腰三角形是关于底边上的中线所在的直线成轴对称的图形,原说法错误,故本选项不合题意;C.等腰三角形两腰上的高相等,说法正确,故本选项符合题意;D.如果三角形一条边上的中线等于这条边的一半,则这个三角形是直角三角形,原说法错误,故本选项不合题意;二、填空题(共30分)11.解:﹣0.00000015=﹣1.5×10﹣7.故答案为:﹣1.5×10﹣7.12.解:原式=3(m+n)(x﹣2y),故答案为:3(m+n)(x﹣2y)13.解:∵3x﹣6=0,∴x=2,当x=2时,2x+1≠0.∴当x=2时,分式的值是0.故答案为2.14.解:分式,的最简公分母是6x2y3.故答案为:6x2y3.15.解:∵a+b=7,ab=12,∴原式=(a+b)2﹣3ab=49﹣36=13,故答案为:1316.解:∵﹣==3,∴y﹣x=3xy,即x﹣y=﹣3xy,则====.故答案为:17.解:设A种机器人每小时搬运x千克化工原料,则B种机器人每小时搬运(x﹣30)千克化工原料,由题意得,故答案为:.18.解:∵∠ABC=50°,DB=BA,∴∠D=∠DAB=∠ABC=25°;同理可得∠CAE=∠ACB=40°;∵在△ABC中,∠ABC=50°,∠ACB=80°,∴∠BAC=50°,∴∠DAE=∠DAB+∠BAC+∠CAE=115°,故答案为:115°19.解:如图,当点E在BC上时.过点D作DF⊥AC,交AC的延长线于F,连接AD=BD,∵AB的垂直平分线与∠ACB的外角平分线交于点D,∴AD=BD,DE=DF,在Rt△ADF和Rt△BDE中,,∴Rt△ADF≌Rt△BDE(HL),∴BE=AF,同理可得CE=CF,∴AF=7+2=9,∴BC=BE+CE=9+2=11,当点E在BC的延长线上时,如图,同理可得AF=BE=AC﹣CF=7﹣2=5,∴BC=BE﹣CE=5﹣2=3,综上:BC=11或3,故答案为:11或3.20.解:延长DE至点G,使DE=AD,∵∠ADE=60°,∴△ADG是等边三角形,∴∠DAG=∠BAC=60°,AG=AD,∴∠BAD=∠EAG,在△BAD和△EAG中,,∴△BAD≌△EAG(SAS),∴BD=EG=5,∠ADB=∠G=60°,∴AD=DG=8,∵∠DAF=30°,∴DF=AD=4,∴BF=1,故答案为:1.三、解答题(共60分)21.解:(1)原式=4m4n﹣4•3m﹣3n3=12mn﹣1=;(2)原式=÷=•=•==.22.解:(1)化为整式方程得:3=x=﹣2x+4,解得:x=,经检验x=是分式方程的解,所以原方程的解是:x=;(2)化为整式方程得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1不是分式方程的解,所以原方程无解.23.解:••=,当x=时,原式==.24.(1)证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠DFC=90°,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴DE=DF,又∵BF⊥AC,CE⊥AB,∴AD平分∠BAC;(2)解:∵BD=AD,∠BAD=30°,∴∠BAD=∠B=30°,∵AD平分∠BAC,∴∠BAD=∠CAD=30°,∵BD=CD=AD,∴∠DAC=∠C=30°,∵BF⊥AC,CE⊥AB,∴∠ADF=∠CDF=∠ADE=∠BDE=60°,∴∠ADB=∠EDF=∠ADC=120°.25.解:(1)设李明单独清点这批图书需要x小时,根据题意得:+=,解得x=4,经检验,x=4是原方程的解,也符合题意,∴x=4,答:李明单独清点这批图书需要4小时;(2)设书店卖出乙种图书m本,根据题意得(25﹣20)(120﹣m)+(40﹣30)m≥950,解得m≥70,答:该书店至少需要卖出乙种图书70本.26.(1)解:∵AD=DE,∴∠AED=∠EAD,设∠CEF=α,∠AEF=β,∵∠CAD=2∠FEC=2α,∵AD=DE,∴∠AED=∠EAD=β﹣α,∴∠EAC=2α+β﹣α=α+β,∵△ABC是等边三角形,∴∠ACB=60°=∠CAE+∠AEC=2β,∴β=30°,∴∠AEF=30°;(2)证明:延长EF交∠CDA的角平分线于点M,连接DF,AM,∵MD=MD,∠EDM=∠ADM,ED=AD,∴△EDM≌△ADM(SAS),∴∠EMD=∠AMD,EM=AM,∴∠AEM=∠EAM=30°,∴∠EMA=∠EMD=∠AMD=120°,∵∠EAF+∠DEF=30°,∠EAF+∠F AM=30°,∴∠F AM=∠DEF,∴∠F AM=∠MAD,∴△F AM≌△DAM(ASA),∴AF=AD;(3)如图2中,延长DH交EF于点Q,延长FH交AB的延长线于点J,连接DJ,交AK于点T,连接AQ.∵FJ∥CB,∴∠AJF=∠ABC=60°,∠AFJ=∠ACB=60°,∵∠CAB=60°,∴△AFJ是等边三角形,∴FJ=AF=AJ,∵AD=AF=DE,∴DE=FJ,DE∥FJ,∴四边形DEFJ是平行四边形,∴QE∥DJ,∵AK⊥FQ,∴AK⊥DJ,∵AD=AJ,∴AK垂直平分线段DJ,∴HD=JH,∴∠HDJ=∠HJD,∵FQ∥DJ,∴∠HFQ=∠HJD,∠HQF=∠HDJ,∴∠HFQ=∠HQF,∴HF=HQ=2,∴DQ=DH+HQ=4+2=6,∴AF=AQ,∴∠F AK=∠KAQ,∵AD=AJ,AT⊥DJ,∴∠DAT=∠JAT,∴△DAF=∠QAJ,∴∠DAQ=∠CAB=60°∴△ADQ是等边三角形,∴AD=DQ=6,∴AF=AD=6.27.解:(1)如图1,过B作BD⊥x轴于点M,∵B(t+3,),A(t,0),∴AM=(t+3)﹣t=3,∵AB=BC,∴CM﹣AM=3,∴OC=OM+CM=t+3+3=t+6,∴C(t+6,0);(2)如图2,连接AD,设∠DAC=α,∴∠BAD=∠DAC+∠BAC=α+30°,∵AB=BD=DE,∴∠BDA=∠BAD=α+30°,∠DEB=∠DBE,∵∠ADO=90°﹣∠DAC=90°﹣α,∴∠ODB=∠BDA﹣∠ODA=(α+30°)﹣(90°﹣α)=2α﹣60°,∵∠DEB+∠DBE=∠ODB,∴2∠DBE=2α﹣60°,∴∠DBE=α﹣30°,∵BD=BC=AB,∠CBD=∠ABC﹣∠ABD=120°﹣(120°﹣2α)=2α,∴∠BDC=∠BCD==90°﹣α,∴∠BFC=∠DBE+∠BDC=(α+30°)+(90°﹣α)=60°;(3)如图3,延长AD交BE于Q,作BR⊥y轴于R,作BW⊥AC于W,由(2)知:∠ADB=α+30°,∠BDC=90°﹣α,∠BFC=60°,∴∠ADC=∠ADB+∠BDC=120°,∠DFQ=∠BFC=60°,∴∠FDQ=180°﹣∠ADC=60°,∴△DFQ是等边三角形,∴DF=DQ,∵AD=DF,∴AD=DQ,∵DG∥BE,∴=1,∠ODG=∠DEB,∴GT=AG,∵BW∥OE,∴∠TBW=∠DEB,∴∠ODG=∠TBW,∵∠BWT=∠DOG=90°,∴△BWT∽△DOG,∴,设OG=2a,则OA=5a,∴GT=AG=7a,∴AT=GT+AG=14a,OT=OG+GT=9a,∵AW=3,∴WT=AW﹣AT=3﹣14a,∴,∴OD=,∴OE=DE+OD=2+,ER=OE+OR=3+,∵OT∥BR,∴△EOT∽△ERB,∴,∵BR=OW﹣OA=3﹣5a,∴=,化简得,490a2﹣189a+18=0,∴(14a﹣3)•(35a﹣6)=0,∴a1=,a2=,当a=时,AT=14a=3=AW,不符合题意,故舍去,∴a=,∴OA=5a=,∴A(﹣,0).。
2014-2015学年八年级下第三次月考数学试卷含答案解析
2014~2015学年度八年级下学期第三次月考数学试卷一、选择题(每题3分,共30分)1.函数y=中,自变x的取值范围是()A.x≥﹣1 B.x>2 C.x>﹣1且x≠2 D.x≠22.在下列式子中:①②③④⑤⑥⑦,分式有()A.2个B.3个C.4个D.5个3.若点A(﹣3,a)与点B(b,4)关于原点对称,则()A.a=4,b=3 B.a=﹣4,b=﹣3 C.a=﹣4,b=3 D.a=4,b=﹣24.在同一直角坐标系内,函数y=3x和的图象大致是()A.B.C.D.5.若正方形的对角线长为2cm,则这个正方形的面积为()A.4cm2 B.2cm2 C.D.6.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()A.B.C.D.7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.58.下列说法正确的是()A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线平分且相等的四边形是正方形9.若函数y=(2m﹣1)+m+3是一次函数,且y随x的增大而减小,则m的值为()A.±1 B.1 C.﹣1 D.﹣310.一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集是()A.x>﹣2 B.x>0 C.x<﹣2 D.x<0二、填空题(每小题3分,共30分)11.已知正方形的边长为5,其周长为.12.用科学记数法表示0.000000125,结果为.13.若点P(3m﹣1,﹣4)在第四象限,则m的取值范围是.14.对于函数y=,当y=2时,x=.15.直线y=﹣x+1向下平移2个单位,得直线.16.如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为.17.已知一菱形的两对角线长分别为12cm、16cm,则此菱形的面积是.18.若关于x的方程产生增根,则m=.19.如图,已知一次函数y=ax+b和正比例函数y=kx的图象交于点P,则根据图象可得二元一次方程组的解是.20.平行四边形的两条邻边的比为2:1,周长为60cm,则这个四边形较短的边长为.三、解答题(共8小题,满分60分)21.计算:(﹣1)3+0﹣()﹣2.22.解方程:23.化简:24.如图,∠1=∠2,AB=CD,求证:BC=AD.25.在▱ABCD中,E、F分别在DC、AB上,且DE=BF,四边形AFCE是平行四边形吗?说说你的理由.26.甲、乙二人分别加工1500个零件.由于乙采用新技术,在同一时间内,乙加工的零件数是甲加工零件数的3倍,因此,乙比甲少用20小时加工完,问他们每小时各加工多少个零件?27.如图,直线y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.28.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM 的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=时,四边形MENF是正方形(只写结论,不需证明).2014~2015学年度八年级下学期第三次月考数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.函数y=中,自变x的取值范围是()A.x≥﹣1 B.x>2 C.x>﹣1且x≠2 D.x≠2【考点】函数自变量的取值范围.【分析】根据分式的意义,分母不等于0,可以求出x的范围.【解答】解:根据题题意得:x﹣2≠0,解得:x≠2.故选D.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.在下列式子中:①②③④⑤⑥⑦,分式有()A.2个B.3个C.4个D.5个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:①④⑤的分母中均不含有字母,因此它们是整式,而不是分式.②③⑥⑦分母中含有字母,因此是分式.故选C.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.3.若点A(﹣3,a)与点B(b,4)关于原点对称,则()A.a=4,b=3 B.a=﹣4,b=﹣3 C.a=﹣4,b=3 D.a=4,b=﹣2【考点】关于原点对称的点的坐标.【分析】直接利用两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y),进而得出答案.【解答】解:∵点A(﹣3,a)与点B(b,4)关于原点对称,∴b=3,a=﹣4,故选:C.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.4.在同一直角坐标系内,函数y=3x和的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】已知一次函数、反比例函数解析式,可根据图象的基本性质,直接判断.【解答】解:∵一次函数解析式y=3x中的3>0,∴该直线经过第一、三象限.故C、D选项错误;∵反比例函数中的﹣2<0,∴该双曲线位于第二、四象限.故B选项错误.故选A.【点评】本题考查了一次函数的图象、反比例函数的图象.解题时,需要熟记各种函数中比例系数k的几何意义,难易程度适中.5.若正方形的对角线长为2cm,则这个正方形的面积为()A.4cm2 B.2cm2 C.D.【考点】正方形的性质.【分析】由正方形是菱形的特殊情况,根据菱形的面积等于对角线积的一半求解即可求得答案.【解答】解:∵正方形的对角线长为2cm,∴这个正方形的面积为:×2×2=2(cm2).故选B.【点评】此题考查了正方形的性质.注意理解正方形是菱形的特殊情况,结合菱形的性质求解是关键.6.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()A.B.C.D.【考点】剪纸问题.【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.【解答】解:根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.故选C.【点评】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.5【考点】菱形的性质;等边三角形的判定与性质.【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.【点评】本题考查了菱形的性质和等边三角形的判定.8.下列说法正确的是()A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线平分且相等的四边形是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】利用平行四边形的判定定理、菱形的判定定理、矩形的判定定理、正方形的判定定理逐一判断后即可确定本题的答案.【解答】解:A、两条对角线相等的四边形是平行四边形,错误,不符合题意;B、两条对角线相等且互相垂直的四边形是矩形,错误,不符合题意;C、两条对角线互相垂直平分的四边形是菱形,正确,符合题意;D、两条对角线平分且相等的四边形是正方形,错误,不符合题意;故选C.【点评】本题考查了平行四边形的判定定理、菱形的判定定理、矩形的判定定理、正方形的判定定理,属于基础题,难度不大.9.若函数y=(2m﹣1)+m+3是一次函数,且y随x的增大而减小,则m的值为()A.±1 B.1 C.﹣1 D.﹣3【考点】一次函数的定义.【分析】依据一次函数的定义可知:2m﹣1≠0,2﹣m2=1,从而可求得m的值,然后根据一次函数的性质可知确定出m的值.【解答】解:∵函数y=(2m﹣1)+m+3是一次函数,∴2m﹣1≠0,2﹣m2=1.解得:m=±1.∵y随x的增大而减小,∴k<0.∴m=﹣1.故选:C.【点评】本题主要考查的是一元一次方程的定义和性质,由一元一次方程的定义求得m=±1是解题的关键.10.一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集是()A.x>﹣2 B.x>0 C.x<﹣2 D.x<0【考点】一次函数与一元一次不等式.【专题】压轴题;数形结合.【分析】由图象可知kx+b=0的解为x=﹣2,所以kx+b>0的解集也可观察出来.【解答】解:从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(﹣2,0),并且函数值y随x的增大而增大,因而则不等式kx+b>0的解集是x>﹣2.故选A.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.二、填空题(每小题3分,共30分)11.已知正方形的边长为5,其周长为20.【考点】正方形的性质.【分析】利用正方形的性质:四条边都相等直接列式计算即可.【解答】解:5×4=20所以正方形的边长为5,其周长为20.故答案为:20.【点评】此题考查正方形的性质,掌握正方形的四条边都相等以及周长的计算方法是解决问题的关键.12.用科学记数法表示0.000000125,结果为 1.25×10﹣7.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000125=1.25×10﹣7.故答案为:1.25×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.若点P(3m﹣1,﹣4)在第四象限,则m的取值范围是m>.【考点】点的坐标.【分析】根据第四象限的点的横坐标是正数,列出不等式求解即可.【解答】解:∵点P(3m﹣1,﹣4)在第四象限,∴3m﹣1>0,解得m>.故答案为:m>.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.对于函数y=,当y=2时,x= 1.5.【考点】函数值.【分析】将y=2代入函数的解析式得:=2,然后解这个分式方程即可.【解答】解:将y=2代入得:=2,方程两边同时乘以(x+3)得:6x=2x+6.解得:x=1.5.当x=1.5时,最简公分母不为0,∴x=1.5是分式方程的解.∴当y=2时,x=1.5.故答案为:1.5.【点评】本题主要考查的是函数值、解分式的方程的应用,根据函数值y=2得到关于x的分式方程是解题的关键.15.直线y=﹣x+1向下平移2个单位,得直线y=x﹣1.【考点】一次函数图象与几何变换.【专题】计算题.【分析】原常数项为1,上下平移直线解析式只改变常数项,让常数项减2即可得到平移后的常数项,也就得到平移后的直线解析式.【解答】解:∵向下平移2个单位,∴新函数的k=﹣1,b=1﹣2=﹣1,∴得到的直线所对应的函数解析式是:y=x﹣1.故答案为:y=x﹣1.【点评】本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后k不变这一性质.16.如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为28.【考点】平移的性质.【专题】计算题.【分析】运用平移个观点,五个小矩形的上边之和等于AD,下边之和等于BC,同理,它们的左边之和等于AB,右边之和等于CD,可知五个小矩形的周长之和为矩形ABCD的周长.【解答】解:由勾股定理,得AB==6,将五个小矩形的所有上边平移至AD,所有下边平移至BC,所有左边平移至AB,所有右边平移至CD,∴五个小矩形的周长之和=2(AB+BC)=2×(6+8)=28.故答案为:28.【点评】本题考查了平移的性质的运用.关键是运用平移的观点,将小矩形的四边平移,与大矩形的周长进行比较.17.已知一菱形的两对角线长分别为12cm、16cm,则此菱形的面积是96cm2.【考点】菱形的性质.【分析】由菱形的两对角线长分别为12cm、16cm,根据菱形的面积等于对角线积的一半,即可求得答案.【解答】解:∵菱形的两对角线长分别为12cm、16cm,∴此菱形的面积是:×12×16=96(cm2).故答案为:96cm2.【点评】此题考查了菱形的性质.注意熟记定理是解此题的关键.18.若关于x的方程产生增根,则m=2.【考点】分式方程的增根.【专题】计算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x﹣1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x﹣1),得x+2=m+1∵原方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.【点评】增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.19.如图,已知一次函数y=ax+b和正比例函数y=kx的图象交于点P,则根据图象可得二元一次方程组的解是.【考点】一次函数与二元一次方程(组).【分析】根据一次函数y=ax+b和正比例y=kx的图象可知,点P就是一次函数y=ax+b和正比例y=kx 的交点,即二元一次方程组的解.【解答】解:根据题意可知,二元一次方程组的解就是一次函数y=ax+b和正比例y=kx的图象的交点P的坐标,由一次函数y=ax+b和正比例y=kx的图象,得二元一次方程组的解是.故答案为:.【点评】此题很简单,解答此题的关键是熟知方程组的解与一次函数y=ax+b和正比例y=kx的图象交点P之间的联系,考查了学生对题意的理解能力.20.平行四边形的两条邻边的比为2:1,周长为60cm,则这个四边形较短的边长为10cm.【考点】平行四边形的性质.【分析】设平行四边形的两条邻边的分别为2x,x,再由周长为60cm求出x的值即可.【解答】解:设平行四边形的两条邻边的分别为2x,x,∵平行四边形的周长为60cm,∴2(2x+x)=60cm,解得x=10cm.故答案为:10cm.【点评】本题考查的是平行四边形的性质,熟知行四边形的对边相等是解答此题的关键.三、解答题(共8小题,满分60分)21.计算:(﹣1)3+0﹣()﹣2.【考点】实数的运算;零指数幂;负整数指数幂.【分析】直接利用零指数幂的性质以及负整数指数幂的性质化简进而求出答案.【解答】解:(﹣1)3+0﹣()﹣2=﹣1+1﹣=﹣4.【点评】此题主要考查了实数有关运算,正确根据相关性质化简各数是解题关键.22.解方程:【考点】解分式方程.【专题】计算题.【分析】本题的最简公分母是(x﹣3)(x﹣2).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.注意检验.【解答】解:方程两边都乘(x﹣3)(x﹣2),得2(x﹣2)=3(x﹣3),2x﹣4=3x﹣9,解得x=5.经检验x=5是原方程的根.∴原方程的解是x=5.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.23.化简:【考点】分式的乘除法.【分析】在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.【解答】解:原式=÷=•=x.【点评】分式的乘除混合运算一般是统一为乘法运算,分子分母因式分解,进行约分.24.如图,∠1=∠2,AB=CD,求证:BC=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】欲证BC=AD,可利用“两边和它们的夹角对应相等的两个三角形全等”证△BAC≌△DCA,然后由全等三角形对应边相等得出.【解答】证明:在△BAC和△DCA中∴△BAC≌△DCA(SAS).∴BC=AD.【点评】考查了全等三角形的判定与性质;这是判定两个三角形全等的“边角边”方法的简单运用.25.在▱ABCD中,E、F分别在DC、AB上,且DE=BF,四边形AFCE是平行四边形吗?说说你的理由.【考点】平行四边形的判定与性质.【分析】可由已知求证AF=CE,又有AF∥CE,根据一组对边平行且相等的四边形是平行四边形,可得四边形AFCE是平行四边形.【解答】答:四边形AFCE是平行四边形.证明如下:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵BF=DE,∴AF=CE.∵在四边形AFCE中,AF∥CE,∴四边形AFCE是平行四边形.【点评】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.26.甲、乙二人分别加工1500个零件.由于乙采用新技术,在同一时间内,乙加工的零件数是甲加工零件数的3倍,因此,乙比甲少用20小时加工完,问他们每小时各加工多少个零件?【考点】分式方程的应用.【专题】应用题.【分析】设甲每小时加工x个,则乙每小时加工3x个,分别表示出甲乙二人完成1500个零件所用的时间,然后以时间为等量关系,甲所用时间=乙所用时间+20,列出方程,解出x的值即可.【解答】解:设甲每小时加工x个,则乙每小时加工3x个,由题意得,,解得,x=50,检验:当x=50时,3x=3×50≠0,所以x=50是原分式方程的根,并且符合题意,答:甲每小时加工50个,乙每小时加工150个.【点评】列分式方程解应用题与列一元一次方程解应用题的方法与步骤基本相同,不同点是,解分式方程必须要验根.一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意.原方程的增根和不符合题意的根都应舍去.27.如图,直线y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.【考点】反比例函数与一次函数的交点问题.【专题】数形结合;待定系数法.【分析】根据A的坐标为(﹣2,4),先求出k′=﹣8,再根据反比例函数求出B点坐标,从而利用待定系数法求一次函数的解析式为y=x+6,求出直线与x轴的交点坐标后,即可求出S△AOC= CO•y A=×6×4=12.【解答】解:(1)∵点A(﹣2,4)在反比例函数图象上∴4=∴k′=﹣8,∴反比例函数解析式为y=;(2)∵B点的横坐标为﹣4,∴y=﹣,∴y=2,∴B(﹣4,2)∵点A(﹣2,4)、点B(﹣4,2)在直线y=kx+b上∴4=﹣2k+b2=﹣4k+b解得k=1b=6∴直线AB为y=x+6与x轴的交点坐标C(﹣6,0)∴S△AOC=CO•y A=×6×4=12.【点评】主要考查了用待定系数法求函数解析式和反比例函数中k的几何意义,这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.28.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM 的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=2:1时,四边形MENF是正方形(只写结论,不需证明).【考点】矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的判定.【分析】(1)根据矩形的性质可得AB=CD,∠A=∠D=90°,再根据M是AD的中点,可得AM=DM,然后再利用SAS证明△ABM≌△DCM;(2)四边形MENF是菱形.首先根据中位线的性质可证明NE∥MF,NE=MF,可得四边形MENF 是平行四边形,再根据△ABM≌△DCM可得BM=CM进而得ME=MF,从而得到四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形,证明∠EMF=90°根据有一个角为直角的菱形是正方形得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)解:当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.故答案为:2:1.【点评】此题主要考查了矩形的性质,以及菱形的判定和正方形的判定,关键是掌握菱形和正方形的判定方法.。
吉林省长春市名校调研2015-2016学年八年级上第三次月考数学试卷含答案解析
2015-2016学年吉林省长春市名校调研八年级(上)第三次月考数学试卷一、选择题(每小题3分,共24分)1.下列实数中属于无理数的是( )A.B.C.D.2.设三角形的三边长分别等于下列各组数,能构成直角三角形的是( )A.1,2,3 B.4,5,6 C.6,8,10 D.7,12,133.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,是( )A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧4.分解因式2x3+18x﹣12x2的结果正确的是( )A.2x(x+3)2B.2x(x﹣3)2C.2x(x2﹣9)D.2x(x+3)(x﹣3)5.若x+y=3且xy=1,则代数式(2﹣x)(2﹣y)的值等于( )A.2 B.1 C.0 D.﹣16.下列判断中错误的是( )A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等7.如图将4个长、宽分别均为a,b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是( )A.a2+2ab+b2=(a+b)2B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2D.(a+b)(a﹣b)=a2﹣b28.如图,有一长、宽、高分别为12cm,4cm,3cm的木箱,在它里面放一根细木条(木条的粗细忽略不计)要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是( )A.13cm B.14cm C.15cm D.16cm二、填空题(每小题3分,共18分)9.计算:(6x2﹣xy)÷2x=__________.10.等腰三角形的两边长分别是3和7,则其周长为__________.11.命题“等腰三角形的两个底角相等”的逆命题是__________.12.若3×27m=316,则m的值是__________.13.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是__________.14.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为__________cm.三、解答题(本大题共10小题,共78分)15.计算:.16.计算:a2(a﹣1)+(a﹣5)(a+7)17.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).18.如图,AB=DE,AC=DF,BF=EC,△ABC和△DEF全等吗?请说明理由.19.如图,有一斜坡AB长170m,坡顶离地面的高度BC为80m,求此斜坡的水平距离AC 的长度.20.先化简,再求值:(3x+2)(3x﹣2)﹣(3﹣5x)(x﹣1)﹣(2x﹣1)2,其中x=﹣2.21.如图,在△ABC中,AB=AC,∠A=α.(1)直接写出∠ABC的大小(用含α的式子表示);(2)以点B为圆心、BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若α=30°,求∠BDE的度数.22.如图,△ABC是等边三角形,P为BC上一动点(不与B、C重合),以AP为边作等边△APE,连接CE.(1)求证:AB∥CE;(2)是否存在点P,使得AE⊥CE?若存在,指出点P的位置并证明你的结论;若不存,请说明理由.23.如图,已知△ABC的面积为16,BC=8.现将△ABC沿直线BC向右平移a(a<8)个单位到△DEF的位置.(1)求△ABC的BC边上的高;(2)连结AE、AD,设AB=5.①求线段DF的长;②当△ADE是等腰三角形时,求a的值.24.如图,已知△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,点D为AB 边上一点.(1)求证:△ACE≌△BCD;(2)求证:△ADE是直角三角形;(3)已知△ADE的面积为30cm2,DE=13cm,求AB的长.2015-2016学年吉林省长春市名校调研八年级(上)第三次月考数学试卷一、选择题(每小题3分,共24分)1.下列实数中属于无理数的是( )A.B.C.D.【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:=3,=﹣,无理数为:.故选B.【点评】本题考查了无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.设三角形的三边长分别等于下列各组数,能构成直角三角形的是( )A.1,2,3 B.4,5,6 C.6,8,10 D.7,12,13【考点】勾股数.【分析】判断是否可以作为直角三角形的三边长,则判断两小边的平方和是否等于最长边的平方即可.【解答】解:A、12+22≠32,不是直角三角形,故此选项错误;B、42+52≠62,不是直角三角形,故此选项错误;C、62+82=102,是直角三角形,故此选项正确;D、72+122≠132,不是直角三角形,故此选项错误.故选:C.【点评】此题主要考查了勾股定理逆定理,关键是掌握勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.3.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,是( )A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧【考点】作图—基本作图.【专题】作图题.【分析】根据同位角相等两直线平行,要想得到CN∥OA,只要作出∠BCN=∠AOB即可,然后再根据作一个角等于已知角的作法解答.【解答】解:根据题意,所作出的是∠BCN=∠AOB,根据作一个角等于已知角的作法,是以点E为圆心,DM为半径的弧.故选D.【点评】本题考查了基本作图,根据题意,判断出题目实质是作一个角等于已知角是解题的关键.4.分解因式2x3+18x﹣12x2的结果正确的是( )A.2x(x+3)2B.2x(x﹣3)2C.2x(x2﹣9)D.2x(x+3)(x﹣3)【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取2x,再利用完全平方公式分解即可.【解答】解:原式=2x(x2﹣6x+9)=2x(x﹣3)2.故选B.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5.若x+y=3且xy=1,则代数式(2﹣x)(2﹣y)的值等于( )A.2 B.1 C.0 D.﹣1【考点】整式的混合运算—化简求值.【分析】先算乘法,再变形,最后整体代入求出即可.【解答】解:∵x+y=3,xy=1,∴(2﹣x)(2﹣y)=4﹣2y﹣2x+xy=4﹣2(x+y)+xy=4﹣2×3+1=﹣1,故选D.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键,用了整体代入得思想,难度适中.6.下列判断中错误的是( )A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等【考点】全等三角形的判定.【分析】要判断选项的正误一定要结合三角形全等的判定方法对选项逐一验证,其中B满足SSA是不能判定三角形全等的,SSA不能作为三角形全等的判定方法使用.【解答】解:∵两个三角形全等的一般方法有:SSS、SAS、AAS、ASA,HL.∴A、是AAS或ASA;可以判定三角形全等,故A选项正确.B、是SSA;是不能判定三角形全等的.故B选项错误.C、利用SSS;可以判定三角形全等.故C选项正确.D、利用SSS.可以判定三角形全等.故D选项正确.故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图将4个长、宽分别均为a,b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是( )A.a2+2ab+b2=(a+b)2B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2D.(a+b)(a﹣b)=a2﹣b2【考点】完全平方公式的几何背景.【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.【解答】解:∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.故选C.【点评】考查了完全平方公式的几何背景,能够正确找到大正方形和小正方形的边长是难点.解决问题的关键是读懂题意,找到所求的量的等量关系.8.如图,有一长、宽、高分别为12cm,4cm,3cm的木箱,在它里面放一根细木条(木条的粗细忽略不计)要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是( )A.13cm B.14cm C.15cm D.16cm【考点】勾股定理的应用.【分析】要判断能否放进去,关键是求得该木箱中的最长线段的长度,即AD的长,通过比较它们的大小作出判断.【解答】解:如图,连接AC、AD.在Rt△ABC中,有AC2=AB2+BC2=160,在Rt△ACD中,有AD2=AC2+CD2=169,∵AD==13cm,∴能放进去的木棒的最大长度为13.故选:A.【点评】此题主要考查了勾股定理的应用,解题的关键是求出木箱内木棒的最大长度.二、填空题(每小题3分,共18分)9.计算:(6x2﹣xy)÷2x=.【考点】整式的除法.【分析】我们应该利用多项式除以单项式的法则,用多项式的每一项除以单项式,再把所得的商相加即可.【解答】解:(6x2﹣xy)÷2x=.故答案为:.【点评】本题主要考查的是多项式除以单项式,我们根据多项式除以单项式的法则,用多项式的每一项除以单项,在把所得的商相加即可,解决此类问题的关键是掌握运算法则.10.等腰三角形的两边长分别是3和7,则其周长为17.【考点】等腰三角形的性质.【专题】分类讨论.【分析】因为边为3和7,没明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:分两种情况:当3为底时,其它两边都为7,3、7、7可以构成三角形,周长为17;当3为腰时,其它两边为3和7,3+3=6<7,所以不能构成三角形,故舍去,所以等腰三角形的周长为17.故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.11.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【考点】命题与定理.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.【点评】根据逆命题的概念来回答:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.12.若3×27m=316,则m的值是5.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方和积的乘方、同底数幂的乘法法则求解.【解答】解:3×27m=3×33m=33m+1,则3m+1=16,解得:m=5.故答案为:5.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.13.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是15.【考点】角平分线的性质.【分析】过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【解答】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是×DE×BC=×10×3=15,故答案为:15.【点评】本题考查了角平分线性质和三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.14.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为6cm.【考点】线段垂直平分线的性质.【专题】数形结合.【分析】根据中垂线的性质,可得DC=DB,继而可确定△ABD的周长.【解答】解:∵l垂直平分BC,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=6cm.故答案为:6.【点评】本题考查了线段垂直平分线的性质,注意掌握线段垂直平分线上任意一点,到线段两端点的距离相等.三、解答题(本大题共10小题,共78分)15.计算:.【考点】实数的运算.【专题】计算题.【分析】原式第一项利用立方根定义计算,第二项利用绝对值的代数意义化简,最后一项利用平方根定义计算即可得到结果.【解答】解:原式=﹣2﹣3+1=﹣4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.计算:a2(a﹣1)+(a﹣5)(a+7)【考点】整式的混合运算.【分析】先算乘除,再算加减即可.【解答】解:原式=a3﹣a2+(a2+7a﹣5a﹣35)=a3﹣a2+a2+7a﹣5a﹣35=a3+2a﹣35.【点评】本题考查的是整式的混合运算,熟知整式混合运算的法则是解答此题的关键.17.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).【考点】作图—应用与设计作图.【专题】作图题.【分析】(1)利用网格结构,过点A的竖直线与过点B的水平线相交于点C,连接即可,或过点A的水平线与过点B的竖直线相交于点C,连接即可;(2)根据网格结构,作出BD=AB或AB=AD,连接即可得解.【解答】解:(1)如图1,①、②,画一个即可;(2)如图2,①、②,画一个即可.【点评】本题考查了应用与设计作图,(1)中作直角三角形时根据网格的直角作图即可,比较简单,(2)中根据网格结构作出与AB相等的线段是解题的关键,灵活性较强.18.如图,AB=DE,AC=DF,BF=EC,△ABC和△DEF全等吗?请说明理由.【考点】全等三角形的判定.【分析】求出BC=EF,根据全等三角形的判定定理SSS推出即可.【解答】解:全等,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SSS).【点评】本题考查了全等三角形的判定定理的应用,能正确运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.19.如图,有一斜坡AB长170m,坡顶离地面的高度BC为80m,求此斜坡的水平距离AC 的长度.【考点】解直角三角形的应用-坡度坡角问题.【分析】在Rt△ABC中,依据勾股定理求解即可.【解答】解:在Rt△ABC中,由勾股定理得:AC===150m.【点评】本题主要考查的是勾股定理的应用,掌握勾股定理是解题的关键.20.先化简,再求值:(3x+2)(3x﹣2)﹣(3﹣5x)(x﹣1)﹣(2x﹣1)2,其中x=﹣2.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用平方差公式,完全平方公式,多项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=9x2﹣4﹣3x+3+5x2﹣5x﹣4x2+4x﹣1=10x2﹣4x﹣2,当x=﹣2时,原式=40+8﹣2=46.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,在△ABC中,AB=AC,∠A=α.(1)直接写出∠ABC的大小(用含α的式子表示);(2)以点B为圆心、BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若α=30°,求∠BDE的度数.【考点】等腰三角形的性质.【分析】(1)根据三角形内角和定理和等腰三角形两底角相等的性质即可求得∠ABC的大小;(2)根据等腰三角形两底角相等求出∠BCD=∠BDC,再求出∠CBD,然后根据∠ABD=∠ABC﹣∠CBD,求得∠ABD,再根据三角形内角和定理和等腰三角形两底角相等的性质计算即可得解.【解答】解:(1)∠ABC的大小为×(180°﹣α)=90°﹣α;(2)∵AB=AC,∴∠ABC=∠C=90°﹣α=90°﹣×30°=75°,由题意得:BC=BD=BE,由BC=BD得∠BDC=∠C=75°,∴∠CBD=180°﹣75°﹣75°=30°,∴∠ABD=∠ABC﹣∠CBD=75°﹣30°=45°,由BD=BE得.故∠BDE的度数是67.5°.【点评】本题考查了三角形内角和定理、等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.22.如图,△ABC是等边三角形,P为BC上一动点(不与B、C重合),以AP为边作等边△APE,连接CE.(1)求证:AB∥CE;(2)是否存在点P,使得AE⊥CE?若存在,指出点P的位置并证明你的结论;若不存,请说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形的性质得出角相等、边相等,证出△A BP≌△ACE(SAS),得出对应角相等,证出∠BAC=∠ACF,从而证出结论.(2)由△ABP≌△ACE得出∠APB=∠AEC=90°,再由等边三角形的性质得出P为BC的中点.【解答】证明:(1)∵△ABC、△APE是等边三角形,∴∠BAC=∠PAE=∠B=60°,AB=AC,AF=AE,∴∠BAP=∠CAE,在△ABF和△ACE中,∴△ABP≌△ACE(SAS),∴∠B=∠ACP=60°,∴∠BAC=∠ACF,∴AB∥CE;(2)存在点P使得AE⊥CE.此时P为BC的中点;理由如下:∵AE⊥CE,∴∠AEC=90°,由(1)得:△ABP≌△A CE,∴∠APB=∠AEC=90°,∴AP⊥BC,∵AB=AC,∴P为BC的中点.∴存在点P,使得AE⊥CE.【点评】本题考查了等边三角形的性质以及全等三角形的判定与性质;由等边三角形证明三角形全等是关键.23.如图,已知△ABC的面积为16,BC=8.现将△ABC沿直线BC向右平移a(a<8)个单位到△DEF的位置.(1)求△ABC的BC边上的高;(2)连结AE、AD,设AB=5.①求线段DF的长;②当△ADE是等腰三角形时,求a的值.【考点】等腰三角形的判定与性质;勾股定理;平移的性质.【分析】(1)如图1过点A作AM⊥BC于点M,由三角形的面积公式求得△ABC的BC边上的高是8;(2)①在R t△AMB中,由勾股定理求得BM===3,得到CM=BC ﹣BM=8﹣3=5,在R t△AMC中,由勾股定理求得AC===,得到DF=AC=;②如图2当△ADE是等腰三角形时,分三种情况讨论:当AD=DE时,a=5,当AE=DE时,因为AB=DE,得到AB=AE,BE=2BM=6,求得a=6;当AE=AD时,在R t△AME中,AM=4,AE=a,ME=a﹣3,由勾股定理得:42+(a﹣3)2=a2,解得:a=,【解答】解:(1)如图1过点A作AM⊥BC于点M,∵△ABC的面积为16,BC=8,∴×8×AM=8,∴AM=4,∴△ABC的BC边上的高是8;(2)①在R t△AMB中,BM===3,∴CM=BC﹣BM=8﹣3=5,∴在R t△AMC中,AC===,∴DF=AC=,②如图2当△ADE是等腰三角形时,有三种情况:当AD=DE时,a=5,当AE=DE时,又∵AB=DE,∴AB=AE,∴BE=2BM=6,∴a=6;当AE=AD时,在R t△AME中,AM=4,AE=a,ME=a﹣3,由勾股定理得:42+(a﹣3)2=a2,解得:a=,综上所述,当△ADE是等腰三角形时,a的值为5或6或.【点评】本题考查了等腰三角形的判定和性质,平移的性质,勾股定理得应用,特别是(2)②要分类讨论否则容易漏解.24.如图,已知△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,点D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:△ADE是直角三角形;(3)已知△ADE的面积为30cm2,DE=13cm,求AB的长.【考点】全等三角形的判定与性质;勾股定理;等腰直角三角形.【分析】(1)由于△ABC和△ECD都是等腰直角三角形,那么∠B=∠BAC=45°,AC=BC,CE=CD,∠ACB=∠DCE=90°,结合等式性质易证∠1=∠2,那么利用SAS可证△ACE≌△BCD;(2)由(1)证得△ACE≌△BCD,△ABC和△ECD都是等腰直角三角形,于是可得∠CAE=∠B=45°,易求∠EAD=90°;求得结论;(3)由△ADE的面积为30,利用面积公式得到AD•AE=60,解直角三角形得到AD+AE=17,根据BD=AE,求得AB=AD+BD=AD+AE=17cm.【解答】解:(1)证明:∵△A BC和△ECD都是等腰直角三角形,∴∠B=∠BAC=45°,AC=BC,CE=CD,∠ACB=∠DCE=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,即∠1=∠2,在△ACE和△BCD中,∴△ACE≌△BCD;(2)由(1)证得△ACE≌△BCD,△ABC和△ECD都是等腰直角三角形,∴∠CAE=∠B=45°,∴∠EAD=∠EAC+∠CAB=45°+45°=90°,∴△ADE是直角三角形;(3)解:由题意得:AD•AE=30,即AD•AE=60,在R t△ADE中,由勾股定理得:AD2+AE2=DE2=132=169,∴(AD+AE)2=AD2+AE2+2AD•AE=289,∴AD+AE=17,由(1)得:△ACE≌△BCD,∴BD=AE,∴AB=AD+BD=AD+AE=17cm.【点评】本题考查了全等三角形的判定和性质、等腰直角三角形的性质、勾股定理,解题的关键是证明△ACE≌△BCD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
峨山县2014-2015学年下学期八年级第三次月考数学试题
(全卷共三个大题,24个小题,满分100分,考试时间120分钟)
一、选择题(共8个小题,每小题3分,满分24分)
1.在圆面积公式2R S π=,R 是半径,则变量是( )
A .S ,π
B .S ,R
C .S ,R ,π
D .π,R 2.下列函数中,是正比例函数的是( ) A .
x y 8-= B .x
y 8-=
C .652
+=x y D .15.0--=x y 3.在函数1
1
-=
x y 中,自变量x 的取值范围是( ) A .x ≤1
B .x ≥1
C .x <1
D .x >1
4.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间t (时)的函数关系的图象是( )
5.下列函数中,y 随x 的增大而减少的函数是( ) A .82+=x y B .x y
42+-= C .82+-=x y D .x y 4=
6. P 1(1x ,1y ),P 2(2x ,2y )是正比例函数x y 2
1
-=图象上的两点,下列判断中,正确的是( ) A .21y y >
B .21y y <
A .
B .
C .
D .
C .当21x x <时,21y y <
D .当21x x <时,21y y >
7.已知一次函数b kx y +=的图象如图所示,则k 、b 的符号是(
)
A
.
0<
k
,
0<b B .0>k ,0<b
C .0<k
,0>b D .0>k
,0>b
8.均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h 随时间t 的变化规律如图
所示,则这个瓶子的形状是下列的( )
二、填空题(共7个小题,每小题3分,满分21分)
910.请写出一个图形经过一、三象限的正比例函数的解析式 . 11.一次函数
42+-=x y 的图象与y 轴的交点坐标是 .
12.如图,是一个正比例函数的图象,把该图象向左平移一个单位长度,得到的函数图象的解析式为 .
1314.如图,直线
m 是一次函数b kx y +=的图象,则k 的值是
.
第7题图
A .
B .
C .
D .
第8题图
第12题图
)1(4≤+=x x y
)1(4>+-=x x y
输入
x
输出
y
第13题图
15.如图,是某工程队在“村村通”工程中修筑的公路长度y (米)与时间x (天)之
间的关系图象.根据图象提供的信息,可知该公路的长度是 米.
三、解答题 (共9个小题,满分55分)
16.(本小题6分)如图是某出租车单程收费y (元)与行驶路程x (千米)之间的函数关系图象,根据图象回答下列问题:
(3)求出收费y (元)与行使x (千米)(x ≥3)之间的函数关系式.
17.(本小题6分)已知,一次函数3+=kx y
的图象经过点A (1,4)
. 第15题图
第16题图
(2)试判断点B (-1,5)、C (0,3)、D (2,1)是否在这个一次函数的图象上.
18.(本小题6分)下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.其中x 表示时间,y 表示张强离家的距离.根据图象回答下列问题:
(1)体育场离张强家 千米;张强从家去体育场用了 分; (2)体育场离文具店 千米,张强在文具店停留了 分; (3)请计算:张强从文具店回家的平均速度是多少?
19.(本小题6分)已知正比例函数kx y
的图象经过点P (1,2)
,如图所示. 第17题图
第18题图
(2)将这个正比例函数的图象向右平移4个单位,求出平移后的直线的解析式.
第19题图
(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;
(2)求x、y之间的函数关系式;
(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?
21.(本小题6分)在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)的关系如图所示.请根据图象所提供的信息解答下列问题:
(1)甲、乙两根蜡烛燃烧前的高度分别是 ,从点燃到燃尽所用的时间分别是 ;
(2)分别求甲、乙两根蜡烛燃烧时y 与x 之间的函数关系式;
(3)当x 为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等(不考虑都燃尽时的情况).
22.(本小题6分)已知一次函数221
-=x y 和442+-=x y .
(1)同一坐标系中,画出这两个一次函数的图象; (2)求出两个函数图象和y 轴围成的三角形的面积; (3)根据图象,写出使21y y >时x 的取值范围.
23.(本小题6分)在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学
习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:
第21题图
第22题图
(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:① ; ② ;③ ;④ ; (2)如果点C 的坐标为(1,3),那么不等式11b x k b kx +≥+的解集是 .
24.(本小题7分)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价
第23题图
参考答案一、选择题(共8个小题,每小题3分,满分24分)
二、填空题(共7个小题,每小题3分,满分21分) 9.2 10.x y = 11.(0,4) 12.22--=x y 13.2 14.2=k 15.504
三、解答题 (共9个小题,满分55分)
16.解:(1)11元;……2分(2)①行驶路程小于或等于3千米时,收费是5元;……3分②超过3千米后每千米收费1.2元;……4分(3)y=1.2x+1.4.……6分 17.解:(1)一次函数的解析式是:y=x+3;……3分
(2)当x=-1时,y=2,即点B (-1,5)不在该一次函数图象上;当x=0时,y=3,即点C (0,3)在该一次函数图象上;当x=2时,y=5,即点D (2,1)是不在该一次函数的图象上.…6分 18.解:(1)2.5千米; 15分;…2分(2)1千米; 20分;…4分(3)
70
3
千米/分.…6分 19.解:(1)正比例解析式为y=2x ;……3分(2)平移后直线解析式为y=2x-8.……6分
20.解:(1)如图,这些点在一次函数的图象上;……2分
(2)y=2x-10.……4分(x 是一些不连续的值.一般情况下,x 取16、16.5、
17、17.5、26、26.5、27等);
(3)y=44时,x=27.答:此人的鞋长为27cm .……6分
(3)当x >1时,y 1>y 2.……6分
23.解:(1)根据观察:①0=+b kx ;②⎩⎨⎧+=+=1
1b x k y b
kx y ;③0>+b kx ;④0<+b kx .……
4分
(2)如果C 点的坐标为(1,3),那么当1≤x 时,不等式11b x k b kx +≥+才成立.……6分
∵x 为整数,∴x=10,11,12.即商场有三种方案可供选择:方案1:购空调10台,购彩电20台;方案2:购空调11台,购彩电19台;方案3:购空调12台,购彩电18台;……5分 (3)∵y=300x+12000,k=300>0,∴y 随x 的增大而增大,即当x=12时,y 有最大值,
y 最大=300×12+12000=15600元.故选择方案3:购空调12台,购彩电18台时,商场获利最大,最大利润是15600元.……7分。