数列知识点归纳
数列知识点总结大全

数列知识点总结大全一、数列的概念与定义1. 数列的概念:数列是按照一定规律排列的一组数的集合,数列中的每个数称为数列的项。
2. 数列的定义:数列可以用一个通项公式或者递推公式来表示,通项公式指明了数列的第n个项与n的关系,递推公式则指明了数列的第n+1项与第n项的关系。
二、常见的数列类型1. 等差数列:如果一个数列中任意相邻两项的差都相等,那么这个数列就是等差数列。
等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差。
2. 等比数列:如果一个数列中任意相邻两项的比值都相等,那么这个数列就是等比数列。
等比数列的通项公式为an=a1*r^(n-1),其中a1为首项,r为公比。
3. 调和数列:如果一个数列中任意相邻两项的倒数之差都相等,那么这个数列就是调和数列。
调和数列的通项公式为an=1/(1+d(n-1)),其中d为公差。
三、数列的性质1. 有限数列与无限数列:有限数列指数列中的项是有限个,无限数列指数列中的项是无限个。
2. 数列的奇偶性:如果数列的每一项的奇偶性相同,则称该数列为奇数列或偶数列。
3. 数列的首项和公差:首项指数列中的第一个元素,公差指等差数列中相邻两项之差。
4. 数列的前n项和:数列的前n项和可以用求和公式来表示,对于等差数列和等比数列有相应的公式。
5. 数列的递推公式:递推公式指明了数列的第n+1项与第n项的关系,可以通过递推公式求出数列的任意一项。
四、数列的应用1. 等差数列与等比数列的求和:等差数列和等比数列的前n项和在数学和物理问题中有广泛的应用,它们可以帮助我们简化复杂的计算。
2. 数学归纳法:数学归纳法是证明数学命题的一种方法,在数列中的应用尤其广泛。
3. 数列的模型应用:数列模型可以用来描述自然界和社会现象中的变化规律,比如人口增长、物种演化等。
五、数列的判断与证明1. 数列的判断:如何判断一个数列是等差数列、等比数列、调和数列等,需要根据数列的性质和通项公式进行分析。
数列的知识点公式归纳总结

数列的知识点公式归纳总结数列是数学中常见的概念,它是由一系列按照一定规律排列的数所组成的。
在数列中,每个数称为该数列的项,而数列中的规律通常通过一个公式来描述。
本文将对数列的知识点进行公式归纳总结,帮助读者更好地理解和掌握数列的概念。
一、等差数列等差数列是最常见且最简单的数列类型之一。
在等差数列中,每一项与它前一项之差都相等。
这个相等的差值称为公差,记作d。
等差数列的一般形式可以表示为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项。
1. 求等差数列的第n项公式等差数列的第n项公式可以通过递归关系式an = an-1 + d得到,其中an表示第n项,an-1表示第n-1项。
而首项a1和公差d是已知条件,则可将递归公式带入,得到等差数列的第n项公式。
2. 求等差数列的前n项和公式等差数列的前n项和公式可以通过求和公式Sn = n/2 * (a1 + an)得到,其中Sn表示前n项和。
该公式可通过将首项a1和第n项an代入得到。
二、等比数列等比数列也是常见的数列类型之一。
在等比数列中,每一项与它前一项的比值相等。
这个相等的比值称为公比,记作q。
等比数列的一般形式可以表示为:an = a1 * q^(n-1),其中an表示第n项,a1表示首项。
1. 求等比数列的第n项公式等比数列的第n项公式可以通过递归关系式an = an-1 * q得到,其中an表示第n项,an-1表示第n-1项。
而首项a1和公比q是已知条件,则可将递归公式带入,得到等比数列的第n项公式。
2. 求等比数列的前n项和公式等比数列的前n项和公式可以通过求和公式Sn = a1 * (1 - q^n) / (1 - q)得到,其中Sn表示前n项和。
该公式可通过将首项a1、公比q和第n项数代入得到。
三、斐波那契数列斐波那契数列是一种特殊的数列,它的前两项为1,从第三项开始,每一项都是前两项之和。
即F1 = 1,F2 = 1,Fn = Fn-1 + Fn-2(n≥3)。
数列单元知识点归纳总结

数列单元知识点归纳总结数列是数学中常见的概念,也是许多数学问题的基础。
在数学的学习中,了解数列的性质和相关概念是非常重要的。
本文将对数列单元的相关知识点进行归纳总结,供读者参考。
一、数列的基本概念数列是由一系列的数按照一定的规律排列所组成。
数列中的每个数叫做数列的项,用an表示。
数列用{an}或者(an)表示。
例如:{1, 3, 5, 7, 9, ...} 或者 (1, 3, 5, 7, 9, ...)二、数列的分类数列可以按照数值的性质和规律进行分类。
1. 等差数列等差数列是指数列中的每一项与它的前一项之差都相等。
差值称为公差,用d表示。
等差数列可以表示为:an = a1 + (n-1)d2. 等比数列等比数列是指数列中的每一项与它的前一项之比都相等。
比值称为公比,用q表示。
等比数列可以表示为:an = a1 * q^(n-1)3. 斐波那契数列斐波那契数列是指数列中的每一项都是其前两项之和。
斐波那契数列可以表示为:an = an-1 + an-2,其中a1 = 1,a2 = 14. 幂次数列幂次数列是指数列中的每一项都是以某个数为底的幂的结果。
幂次数列可以表示为:an = a ^ n,其中a为常数,n为自然数三、数列的性质和公式在数列的学习中,掌握一些常用的数列性质和公式是非常有帮助的。
1. 通项公式通项公式是指数列中的任意一项与其下标之间的关系式。
通过寻找数列的规律,可以求得通项公式,从而计算任意项的值。
2. 前n项和公式前n项和公式是指数列中前n项的和与n之间的关系式。
通过对数列进行求和,可以得到前n项和公式,从而计算任意项的和。
3. 数列的递推关系数列的递推关系是指数列中的每一项与它的前一项之间的关系式。
通过分析数列的递推关系,可以找到数列的规律,从而得到通项公式和前n项和公式。
四、数列的应用数列在数学中有着广泛的应用,特别是在数学建模和实际问题的解决中。
1. 应用于数学建模数列可以用来建立数学模型,描述和解决实际问题。
数列知识点总结

数列知识点总结数列是数学中的一个重要概念,它有着广泛的应用及运用场景。
本文将对数列的基本概念、常见数列以及数列的性质和应用进行总结和归纳。
一、基本概念数列是按特定顺序排列的数,通常用字母a、b、c等表示。
数列中的每个具体的数称作数列的项,用an表示第n项,n为项号。
数列可以是有限个数或者无穷个数。
二、等差数列等差数列是指数列的相邻两项之差固定的数列。
设a为首项,d为公差,则等差数列的通项公式为an = a + (n - 1)d。
其中,n为项号。
等差数列的性质如下:1. 公差d是等差数列的一个重要概念,它表示相邻两项之间的差值。
如果d>0,则数列递增;如果d<0,则数列递减。
2. 等差数列的前n项和Sn的计算公式为Sn = n/2 * (a + an)。
3. 若两个数列的公差相同,则称它们为等差数列。
三、等比数列等比数列是指数列的相邻两项之比固定的数列。
设a为首项,q为公比,则等比数列的通项公式为an = a * q^(n - 1)。
其中,n为项号。
等比数列的性质如下:1. 公比q是等比数列的一个重要概念,它表示相邻两项之间的比值。
如果|q|>1,则数列递增;如果|q|<1,则数列递减。
2. 等比数列的前n项和Sn的计算公式为Sn = a * (q^n - 1) / (q - 1)。
3. 若两个数列的公比相同,则称它们为等比数列。
四、等差数列与等比数列的联系与区别1. 等差数列的相邻两项之差固定,等比数列的相邻两项之比固定。
2. 等差数列的通项公式an = a + (n - 1)d,等比数列的通项公式an =a * q^(n - 1)。
3. 等差数列的前n项和Sn的计算公式为Sn = n/2 * (a + an),等比数列的前n项和Sn的计算公式为Sn = a * (q^n - 1) / (q - 1)。
五、特殊数列1. 斐波那契数列是指第一项和第二项均为1,从第三项开始,每一项都是前两项的和。
数学数列知识点总结归纳

数学数列知识点总结归纳数学中的数列是由一系列按照特定规律排列的数字组成的,它在数学领域中具有广泛的应用。
通过对数列的分析和研究,我们可以深入了解数学的抽象性质和逻辑思维方式。
本文将对数学数列的相关知识点进行总结归纳,帮助读者更好地理解和应用数列的概念。
一、数列的基本概念1. 数列的定义:数列是由一系列按照特定规律排列的数字组成的集合。
可以用数学符号表示为{an}或者(an),其中n为自然数,an表示数列中的第n个数。
2. 公式表示法:数列可以通过公式进行表示,公式中通常包含一个变量n,通过变化n的取值可以计算数列中各项的数值。
3. 数列的通项公式:通项公式是指能够通过n的取值直接计算出数列中第n个数的公式。
它是数列的重要性质,可以帮助我们方便地计算数列的各项数值。
二、数列的分类1. 从数列的性质分类a. 等差数列:等差数列中,每一项与它的前一项之差都是一个常数。
等差数列可以用通项公式an = a1 + (n-1)d表示,其中a1是首项,d是公差。
b. 等比数列:等比数列中,每一项与它的前一项的比值都是一个常数。
等比数列可以用通项公式an = a1 * r^(n-1)表示,其中a1是首项,r是公比。
c. 斐波那契数列:斐波那契数列中,每一项都是前两项的和,首几项通常为0、1或者1、1。
2. 从数列的规律分类a. 偶数数列:偶数数列中,每一项都是偶数。
b. 奇数数列:奇数数列中,每一项都是奇数。
c. 平方数列:平方数列中,每一项都是某个整数的平方。
d. 素数数列:素数数列中,每一项都是素数。
三、数列的性质和运算1. 数列的有界性:数列可能是有界的,也可能是无界的。
有界数列是指存在一个上界和下界,数列中的所有项都在这个范围内。
无界数列是指数列中的项没有上界或者下界。
2. 数列的递推公式:递推公式是指通过前一项或者前几项计算下一项的公式。
递推公式可以帮助我们求解数列中的任意一项。
3. 数列的求和:数列的求和是指将数列中的所有项进行相加的运算。
数学数列知识点归纳总结

数学数列知识点归纳总结一、数列的概念1.1 数列的定义数列是按照一定的顺序排列的一系列数的集合,通常用一对大括号{}表示,其中的每个数称为数列的项。
例如:{1, 2, 3, 4, 5, ...}就是一个数列,它包含了无穷多个项,每个项都是自然数。
1.2 数列的表示数列可以用不同的方式表示,常见的表示方法有公式法、图形表示法和文字描述法。
- 公式法:可以用一个通项公式来表示数列的每一项,例如:an = n^2表示数列{1, 4, 9, 16, ...}的通项公式。
- 图形表示法:可以用图形来表示数列,例如:等差数列可以用直线表示,等比数列可以用曲线表示。
- 文字描述法:可以用文字描述数列的规律,例如:数列{2, 4, 6, 8, ...}可以描述为“每一项都比前一项大2”。
1.3 数列的分类数列可以按照不同的规律进行分类,常见的分类有等差数列、等比数列和斐波那契数列等。
- 等差数列:数列中相邻两项的差等于一个常数,这个常数称为公差。
- 等比数列:数列中相邻两项的比等于一个常数,这个常数称为公比。
- 斐波那契数列:数列中每一项都是前两项之和,例如:1, 1, 2, 3, 5, 8, 13, ...1.4 数列的通项公式数列的通项公式是指数列中任意一项与项号之间的函数关系式,一般用an表示第n项的值,n表示项号。
如果一个数列存在通项公式,则可以利用通项公式计算数列的任意项的值。
1.5 数列的性质数列有许多重要的性质,例如数列的有界性、单调性、敛散性以及极限等。
- 有界性:如果数列的项有上界或下界,则称该数列是有界的。
- 单调性:如果数列的项都单调递增或单调递减,则称该数列是单调的。
- 敛散性:数列是否有极限,如果有极限则称该数列是收敛的,否则是发散的。
二、等差数列2.1 等差数列的定义等差数列是指数列中相邻两项的差等于一个常数的数列,这个常数称为公差。
例如:{2, 4, 6, 8, ...}就是一个等差数列,公差为2。
数列知识点总结和题型归纳

数列知识点总结和题型归纳一、数列的定义和性质数列是由一系列有序的数按照一定规律排列而成的序列。
数列中的每个数叫做数列的项,用an表示第n个项。
1. 等差数列等差数列是指一个数列中相邻两项之差都是相等的。
公差d是等差数列中相邻两项的差值。
2. 等比数列等比数列是指一个数列中相邻两项之比都是相等的。
公比q是等比数列中相邻两项的比值。
二、数列的通项公式和前n项和公式1. 等差数列的通项公式设等差数列的首项为a1,公差为d,则该等差数列的通项公式为an = a1 + (n-1)d。
2. 等差数列的前n项和公式设等差数列的首项为a1,公差为d,前n项和为Sn,则该等差数列的前n项和公式为Sn = n(a1 + an)/2。
3. 等比数列的通项公式设等比数列的首项为a1,公比为q,则该等比数列的通项公式为an = a1 * q^(n-1)。
4. 等比数列的前n项和公式设等比数列的首项为a1,公比为q,前n项和为Sn,则该等比数列的前n项和公式为Sn = a1 * (1 - q^n)/(1 - q)。
三、数列的常见题型1. 求等差数列的第n项已知等差数列的首项a1和公差d,求该等差数列的第n项an,则可以利用等差数列的通项公式an = a1 + (n-1)d进行计算。
2. 求等差数列的前n项和已知等差数列的首项a1、公差d和项数n,求该等差数列的前n项和Sn,则可以利用等差数列的前n项和公式Sn = n(a1 + an)/2进行计算。
3. 求等比数列的第n项已知等比数列的首项a1和公比q,求该等比数列的第n项an,则可以利用等比数列的通项公式an = a1 * q^(n-1)进行计算。
4. 求等比数列的前n项和已知等比数列的首项a1、公比q和项数n,求该等比数列的前n项和Sn,则可以利用等比数列的前n项和公式Sn = a1 * (1 - q^n)/(1 - q)进行计算。
四、数列的应用数列在数学中有广泛的应用,特别是在数学建模和实际问题的解决中常常用到。
《数列》知识点归纳

《数列》知识点归纳一、数列:(1)一般形式:n a a a ,,,21⋯ (2)通项公式:)(n f a n =(3)前n 项和:12n n S a a a =++⋯及数列的通项a n 与前n 项和S n 的关系:1121(1)(2)n n n n n Sn S a a a a S S n -=⎧=++⋯⇔=⎨-≥⎩ 二、等差数列: 1等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 2等差数列的判定方法:②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列3等差数列的通项公式:④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为d n a a n )1(1-+=该公式整理后是关于n 的一次函数 4等差数列的前n 项和:⑤2)(1n n a a n S += ⑥d n n na S n 2)1(1-+=对于公式2整理后是关于n 的没有常数项的二次函数 5等差中项:⑦如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2ba A +=或b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 5等差数列的性质:⑧等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+= ⑨对于等差数列{}n a ,若q p m n +=+,则p m n a a a a +=+也就是: =+=+=+--23121n n n a a a a a a⑩若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,kk S S 23-成等差数列如下图所示:kkk k k S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 6奇数项和与偶数项和的关系:⑾设数列{}n a 是等差数列,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和,则有如下性质:前n 项的和偶奇S S S n +=当n 为偶数时,d 2nS =-奇偶S ,其中d 为公差; 当n 为奇数时,则中偶奇a S =-S ,中奇a 21n S +=,中偶a 21n S -=,11S S -+=n n 偶奇,n =-+=-偶奇偶奇偶奇S S S S S S S n(其中中a 是等差数列的中间一项)7前n 项和与通项的关系:⑿若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为'12-n S ,则'1212--=n n n n b a三、等比数列1.等比数列的概念:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比常用字母q 表示(0≠q )2.等比中项:如果在a 与b 之间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项 也就是,如果是的等比中项,那么Gb a G =,即ab G =23.等比数列的判定方法:①定义法:对于数列{}n a ,若)0(1≠=+q q a a nn ,则数列{}n a 是等比数列②等比中项:对于数列{}n a ,若212++=n n n a a a ,则数列{}n a 是等比数列 4.等比数列的通项公式:如果等比数列{}n a 的首项是1a ,公比是q ,则等比数列的通项为11-=n n q a a 或n m n m a a q -=5.等比数列的前n 项和:○1)1(1)1(1≠--=q qq a S n n ○2)1(11≠--=q q q a a S n n ○3当1=q 时,1na S n =当1q ≠时,前n 项和必须..具备形式(1),(n n S A q A =-≠ 6.等比数列的性质:①等比数列任意两项间的关系:如果n a 是等比数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公比为q ,则有m n m n q a a -=② 对于等比数列{}n a ,若v u m n +=+,则v u m n a a a a ⋅=⋅也就是: =⋅=⋅=⋅--23121n n n a a a a a a 如图所示:nn a a n a a n n a a a a a a ⋅⋅---112,,,,,,12321③若数列{}n a 是等比数列,n S 是其前n 项的和,*N k ∈,那么只有当公比1q =-且k 为偶数时,k S ,k k S S -2,k k S S 23-不成等比数列如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 四、等差数列与等比数列的性质及其应用 1一般数列的通项a n 与前n 项和S n 的关系:a n =⎩⎨⎧≥-=-)2()1(11n S S n S n n2等差数列的通项公式:a n =a 1+(n-1)d a n =a m +(n--m )d (其中a 1为首项、a m 为已知的第m 项) 当d ≠0时,a n 是关于n 的一次式;当d=0时,a n 是一个常数3等差数列的前n 项和公式:S n =d n n na 2)1(1-+S n =2)(1n a a n + 当d ≠0时,S n 是关于n 的二次式且常数项为0;当d=0时(a 1≠0),S n =na 1是关于n 的正比例式4等差数列的通项a n 与前n 项和S n 的关系:a n =1212--n S n 5等差中项公式:A=2ba + (有唯一的值) 6等比数列的通项公式:a n = a 1 q n-1 a n = a m q n --m(其中a 1为首项、a m 为已知的第m 项,a n ≠0)7等比数列的前n 项和公式:当q=1时,S n =n a 1 (是关于n 的正比例式);当q≠1时,S n =qq a n --1)1(1 S n =q q a a n --118等比中项公式:G=ab ± (ab>0,有两个值)9等差数列{a n }的任意连续m 项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m - S 3m 、……仍为等差数列10等差数列{a n }中,若m+n=p+q ,则q p n m a a a a +=+11等比数列{a n }中,若m+n=p+q ,则q p n m a a a a ∙=∙12等比数列{a n }的任意连续m 项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m - S 3m 、……仍为等比数列(当m 为偶数且公比为-1的情况除外)13两个等差数列{a n }与{b n }的和差的数列{a n+b n }、{a n -b n }仍为等差数列14两个等比数列{a n }与{b n }的积、商、倒数的数列{a n ∙b n }、⎭⎬⎫⎩⎨⎧n n b a 、⎭⎬⎫⎩⎨⎧n b 1仍为等比数列15等差数列{a n }的任意等距离的项构成的数列仍为等差数列 16等比数列{a n }的任意等距离的项构成的数列仍为等比数列17三个数成等差的设法:a-d,a,a+d ;四个数成等差的设法:a-3d,a-d,,a+d,a+3d18三个数成等比的设法:a/q,a,aq ;四个数成等比的错误设法:a/q 3,a/q,aq,aq 3 (因为其公比为2q >0,对于公比为负的情况不能包括) 19{a n }为等差数列,则{}na c(c>0)是等比数列20{b n }(b n >0)是等比数列,则{log c b n } (c>0且c ≠1) 是等差数列五、数列的通项求法1、公式法:①d n a a n )1(1-+=或d m n a a m n )(-+=;②11-=n n q a a 或n mn m a a q-=2、观察法:1137153121,,,,...4816322n n n a ++-=3、裂项相消法:)11(1))((1CAn B An B C C An B An a n +-+-=++=4、利用n nS a 与的关系求(定义法):⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n 5、逐差求和法:1(),(2)n n a a f n n --=≥若,)2(12f a a =-则 , )3(23f a a =-,………, )(1n f a a n n =--1(2)(3)()n a a f f f n ⇒-=++⋯ 6、逐商求积法:)(1n g a a n n =-若,)2(12g a a =则,)3(23g a a =,………,)(1n g a a n n =-1(2)()n ag g n a ⇒=⋯7、构造等差、等比数列法:11();()1n n n n qp q x p x x pa a a a ++=+⇒-=-=- 11111111}1,1,{}21122,21221{}.211(),2()222n n nn n n n n n n n n a a a a a a a a b b a a a +++--==+-==-==-=-∴∴=--==-+1n n 1n n n 例:在数列{中,求数列的通项.解:(-2) 令 则是以-1为首项,为公比的等比数列由知 b b b b b111{}1133)323233)()323nn n n n n n n nn n a a a a a a a a a a a a a a a -=∙+⇒=∙+⇒-=-∴--=-∙⇒=-n+1n+1n+1n+1n+1n n+1n+1n+1n n+1n 1n 1511例2.已知=,=+(),求数列的通项.63212解:22223322(232{2}是以公比为,首项为(2-3)的等比数列.32(2六、数列求和的方法高考要求等差数列与等比数列的有限项求和总是有公式可求的,其它的数列的求和不总是可求的,但某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法 知识点归纳1等差数列的前n 项和公式法:S n =d n n na 2)1(1-+S n =2)(1n a a n + S n =d n n na n 2)1(-- 当d ≠0时,S n 是关于n 的二次式且常数项为0;当d=0时(a 1≠0),S n =na 1是关于n 的正比例式 2等比数列的前n 项和公式法:当q=1时,S n =n a 1 (是关于n 的正比例式);当q≠1时,S n =qq a n --1)1(1 S n =q q a a n --113拆项法求数列的和,如a n =2n+3n4错位相减法求和,如a n =(2n-1)2n(非常数列的等差数列与等比数列的积的形式)5裂项法求和:将数列的通项分成两个式子的代数和,即a n =f (n +1)-f (n ),然后累加时抵消中间的许多项 应掌握以下常见的裂项等)!1(1!1)!1(1,C C C ,ctg2ctg 2sin 1,!)!1(!,111)1(111+-=+-=-=-+=⋅+-=++-n n n ααn n n n n n n n rn r n n nα6倒序相加法求和,如a n =nnC 1007求数列{a n }的最大、最小项的方法:①a n+1-a n =……⎪⎩⎪⎨⎧<=>000 如a n = -2n 2+29n-3 ②⎪⎩⎪⎨⎧<=>=+1111 n n a a (a n >0) 如a n =n n n 10)1(9+ ③a n =f(n) 研究函数f(n)的增减性 如a n 1562+n n8等比、等差数列和的形式:{}Bn An S B An a a n n n +=⇔+=⇔2成等差数列 {}(1)(0)n n n a S A q A ≠⇔=-≠(q 1)成等比数列9无穷递缩等比数列的所有项和:{}1lim 1n n n a a S S q→∞⇔==-(|q|<1)成等比数列题型讲解例1 (分情况讨论)求和:)(*122221N n b ab b a b a b a a S n n n n n n n ∈++++++=---- 解:①当a=0或b=0时,)(n n n a b S = ②当a=b 时,n n a n S )1(+=;③当a ≠b 时,ba ba S n n n --=++11例2(分部求和法)已知等差数列{}n a 的首项为1,前10项的和为145,求.242n a a a +++ 解:首先由3145291010110=⇒=⨯⨯+=d da S 则12(1)32322n n na a n d n a =+-=-⇒=⋅-22423(222)2n na a a n ∴+++=+++-12(12)32322612n n n n +-=-=⋅--- 例3(分部求和法)求数列1,3+13,32+132,……,3n +13n 的各项的和 解:其和为:(1+3+ (3))+(13132++……+13n )=3121321n n +--+-=12(3n +1-3-n)例4(裂项求和法))(,32114321132112111*N n n∈+++++++++++++++ 解:)1(2211+=+⋯++=k k k a k ,])1n (n 1321211[2S n ++⋯+⋅+⋅=∴ 1211121113121211[2+=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-+⋯+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=n n n n n 例5(裂项求和法)已知数列{}n a 为等差数列,且公差不为0,首项也不为0,求和:∑=+ni i i a a 111解:首先考虑=∑=+ni i i a a 111∑=+-n i i i a a d 11)11(1 则∑=+ni i i a a 111=1111)11(1++=-n n a a n a a d 点评:已知数列{}n a 为等差数列,且公差不为0,首项也不为0,下列求和11nni i ===也可用裂项求和法例6(错位相减法)设a 为常数,求数列a ,2a 2,3a 3,…,na n ,…的前n 项和 解:①若a=0时,S n =0②若a=1,则S n =1+2+3+…+n=)1n (n 21- ③若a ≠1,a ≠0时,S n -aS n =a (1+a+…+a n-1-na n ),S n =]na a )1n (1[)a 1(a 1n n 2+++-- 例7(错位相减法)已知1,0≠>a a ,数列{}n a 是首项为a ,公比也为a 的等比数列,令)(lg N n a a b n n n ∈⋅=,求数列{}n b 的前n 项和n S解:,lg n n n n a a b n a a ==⋅232341(23)lg (23)lg n n n n S a a a na a aS a a a naa +∴=++++=++++……①……②①-②得:a na a a a S a n n n lg )()1(12+-+++=-[]nn a na n a a a S )1(1)1(lg 2-+--=∴ 点评:设数列{}n a 的等比数列,数列{}n b 是等差数列,则数列{}n n b a 的前n 项和n S 求解,均可用错位相减法例8(组合化归法)求和:)12)(1(532321++++⋅⋅+⋅⋅=n n n S n解:)1(3)2)(1(2)342)(1(+-++=-++=n n n n n n n n a n而连续自然数可表示为组合数的形式,于是,数列的求和便转化为组合数的 求和问题了213221326122)1(,6)2)(1(++++-=∴=+=++n n n n n C C a C n n C n n n )(6)(12212322323433+++++-+++=∴n n n C C C C C C S3243212333323444612)(6)(12++++-=+++-+++=n n n n CCC C C C C C12(3)(2)(1)6(2)(1)4!3!n n n n n n n nS +++++∴=-2(3)(2)(1)(2)(1)21(1)(2)2n n n nn n nn n n +++=-++=++ 点评:可转化为连续自然数乘积的数列求和问题,均可考虑组合化归法当然本题也可以将通项(1)(243)n a n n n =++-展开为n 的多项式,再用分部求和法例9(逆序相加法)设数列{}n a 是公差为d ,且首项为d a =0的等差数列,求和:nnn n n n C a C a C a S +++=+ 11001 解:因为nnn n n n C a C a C a S +++=+ 11001 00111n n n n n n n n C a C a C a S +++=--+ nn n n n n C a C a C a 0110+++=- 01101102()()()nn n n n n n nS a a C a a C a a C +-∴=++++++ 0100()()()2nn n n n n n a a C C C a a =++++=+ 110()2n n n S a a -+∴=+⋅点评:此类问题还可变换为探索题形:已知数列{}n a 的前n 项和n S 12)1(+-=nn ,是否存在等差数列{}n b 使得n n n n n n C b C b C b a +++= 2211对一切自然数n 都成立例10(递推法)已知数列{}n a 的前n 项和n S 与n a 满足:21,,-n n n S S a )2(≥n 成等比数列,且11=a ,求数列{}n a 的前n 项和n S 解:由题意:21(),2n n n S a S =-1n n n a S S -=-11111112(1)221.21n n n n n n S S S S S n -∴-=⇒=+-=-∴=- 点评:本题的常规方法是先求通项公式,然后求和,但逆向思维,直接求出数列{}n a 的前n 项和n S 的递推公式,是一种最佳解法小结:1等价转换思想是解决数列问题的基本思想方法,复杂的数列转化为等差、等比数列2 由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想,数学归纳法是这一思想的理论基础3错位相减”、“裂项相消”是数列求和最重要的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列知识点归纳(一)数列的概念 一.数列的概念1.数列是按一定顺序排列的一列数,记作,,,,321 n a a a a 简记{}n a .2.数列{}n a 的第n 项n a 与项数n 的关系若用一个公式)(n f a n =给出,则这个公式叫做这个数列的通项公式。
3.数列可以看做定义域为*N (或其子集)的函数,当自变量由小到大依次取值时对应的一列函数值,它的图像是一群孤立的点。
二、数列的表示方法数列的表示方法有:列举法、解析法(用通项公式表示)和递推法(用递推关系表示)。
三、数列的分类1. 按照数列的项数分:有穷数列、无穷数列。
2. 按照任何一项的绝对值是否不超过某一正数分:有界数列、无界数列。
3. 从函数角度考虑分:递增数列、递减数列、常数列、摆动数列。
递增数列的判断:比较f(n+1)与f(n)的大小 四、数列通项n a 与前n 项和n S 的关系 1.∑==++++=ni in n a a a a a S 1321 2.⎩⎨⎧≥-==-2111n S S n S a n n n(二)等差数列的相关知识点1.定义:)()(1∙+∈=-N n d a a n n 常数。
当d>0时,递增数列,d<0时,递减数列,d=0时,常数数列。
2.通项公式:d n a a n )1(1-+=d m n a m )(-+=q pn d a dn +=-+=)(1d =11--n a a n ,d =mn a a mn -- 是点列(n ,a n )所在直线的斜率. 3.前n 项的和:d n n na a a n S n n 2)1(2)(11-+=+=21()22d d n a n =+-Bn An +=2 {nS n}是等差数列。
4.等差中项:若a 、b 、c 等差数列,则b 为a 与c 的等差中项:2b=a+c 5、等差数列的判定方法(n ∈N*)(1)定义法: a n+1-a n =d 是常数 (2)等差中项法:212+++=n n n a a a (3)通项法:q pn a n += (4)前n 项和法:Bn An S n +=26.性质:设{a n }是等差数列,公差为d,则(1)m+n=p+q ,则a m +a n =a p +a q(2) a n ,a n+m ,a n+2m ……组成公差为md 的等差数列.(3) S n , S 2n -S n , S 3n -S 2n ……组成公差为n 2d 的等差数列. (4) 若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --=(5)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组10n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值.当100a d <>,,由10n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值.7.n n S a n d a ,,,,1知三求二, 可考虑统一转化为两个基本量;或利用数列性质, 8、巧设元:三数:d a a d a +-,,, 四数:d a d a d a d a 3,,,3-+-- 9、项数为偶数n 2的等差数列{}n a ,有nd S S =-奇偶 ,1+=n na a S S 偶奇项数为奇数12-n 的等差数列{}n a ,有)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇,1-=n n S S 偶奇. (三)等比数列(类比等差数列) 1、定义:1n na q a +=(q 为常数,0q ≠0,≠n a ), ,摆动数列当时时,数列递减且;且当时,数列递增且;且当0q 10100100101111<><<<><<<>>q a q a q a q a 2、通项公式:11-=n n q a a =(0,1≠q a )m n m n q a a -==3、前n 项和:()11(1)1(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩(要注意q 的讨论)A Aq n-=4、等比中项:x G y 、、成等比数列2G xy ⇒=,或G =),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S5、等比数列的判定方法(n ∈N*)(1)定义法: a n+1/a n =q 是常数 (2)等比中项法:221++∙=n n n a a a (3)通项法: n n cq a =(q c ,为非零常数). (4)前n 项和法: A Aq S nn -= 6、性质:{}n a 是等比数列(1)若m n p q +=+,则mn p q a a a a =··(2)a n ,a n+m ,a n+2m ……组成公比为 的等比数列.(3)232n n n n n S S S S S --,,……)0(≠n S 仍为等比数列,公比为nq . 7.n n S a n d a ,,,,1知三求二, 可考虑统一转化为两个基本量;或利用数列性质, 8、巧设元:三数:d a a d a ⋅,,/, 四数:d a d a d a d a 3,.,/,3/⋅⋅9.、.非零..常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列) 10、正数列{n a }成等比,则数列)1}({log >a a na 成等差数列;若数列{n a }成等差,则数列}{n aa 成等比数列; 11.会从函数角度理解和处理数列问题.(四)、求通项1、形如 a n+1-a n =f(n) 形式,求法:累加法2、形如a n+1=a n ·f(n), 求法:累乘法3、形如a n+1=Aa n +B (A B ≠0), 求法:构造法4、形如a an n nmka 1-=+ (k ≠0)形式,求法:m=1时求倒数;另外可能周期数列或构造法5、已知S n ,求a n例1:已知数列{a n }中,a 1=1,na n =a 1+2a 2+3a 3+……(n-1)a n-1(n ≥2),求a n例2:已知数列{a n }中,a 1=1,对所有n ≥2,都有a 1a 2a 3……a n =n 2,求a n (五)数列求和的常用方法: 1、公式法:(等差、等比数列直接用公式)常用公式:①1+2+3 …+n =()21+n n ②()()61213212222++=+++n n n n ③()2213213333⎥⎦⎤⎢⎣⎡+=++n n n 2.等差数列的绝对值的和① 当a 1>0,d<0时,若a k ≥0,a k+1<0,则: S=|a 1|+|a 2|+……|a k |+|a k+1|+……|a n |= ② 当a 1<0,d>0时,若a k ≤0,a k+1>0,则: S=|a 1|+|a 2|+……|a k |+|a k+1|+……|a n |=3、分组求和法:1357(1)(21)n n S n =-+-+-+-- (答:(1)n n -⋅)4、倒序相加法:求证:01235(21)(1)2n nn n n n C C C n C n +++++=+5.裂项相消求和,常见类型==∙-==++=++=+-=+++-aa C C Cnn mnm n m nn n n n n n n n n k n n 111log !11)2)(1(1)12)(12(1)(16.错位相减法:适用于{}n n b a 其中{ n a }是等差数列,{}n b 是各项不为0的等比数列。
.(六). 等比数列的前n 项和公式的常见应用题:⑴生产部门中有增长率的总产量问题. 例如,第一年产量为a ,年增长率为r ,则每年的产量成等比数列,公比为r +1. 其中第n 年产量为1)1(-+n r a ,且过n 年后总产量为:.)1(1])1([)1(...)1()1(12r r a a r a r a r a a n n +-+-=+++++++-⑵银行部门中按复利计算问题. 例如:一年中每月初到银行存a 元,利息为r ,每月利息按复利计算,则每月的a 元过n 个月后便成为n r a )1(+元. 因此,第二年年初可存款:)1(...)1()1()1(101112r a r a r a r a ++++++++=)1(1])1(1)[1(12r r r a +-+-+.⑶分期付款应用题:a 为分期付款方式贷款为a 元;m 为m 个月将款全部付清;r 为年利率.()()()()()()()()1111111 (1112)1-++=⇒-+=+⇒++++++=+--m mm mm m mr r ar x r r x r a x r x r x r x r a 。