二向量与矩阵的运算
向量与矩阵的基本运算与性质

向量与矩阵的基本运算与性质向量与矩阵是线性代数的基础概念,它们在数学和物理领域中扮演着重要的角色。
本文将介绍向量与矩阵的基本运算以及它们的性质。
一、向量向量是具有大小和方向的量,通常表示为一个有序的实数列表或箭头。
向量可以用于表示力、速度、加速度等概念。
在线性代数中,向量通常表示为一个列向量或行向量。
1. 向量的表示向量可以用单个变量加上一个箭头表示,例如a→。
在文本中,向量通常以粗体字母表示,例如a。
2. 向量的加法向量的加法是指对应位置上的元素相加得到新的向量。
设有两个n 维向量a=(a1,a2,...,aa)和a=(a1,a2,...,aa),则它们的和为:a+a=(a1+a1,a2+a2,...,aa+aa)3. 向量的数量乘法向量的数量乘法是指将向量的每个元素与一个实数相乘得到新的向量。
设有一个n维向量a=(a1,a2,...,aa)和实数a,则其数量乘积为:aa=(aa1,aa2,...,aaa)4. 向量的点积向量的点积,也称为内积或数量积,是两个向量对应位置上的元素相乘再相加的结果。
设有两个n维向量a=(a1,a2,...,aa)和a=(a1,a2,...,aa),则它们的点积为:a·a=a1a1+a2a2+...+aaaa二、矩阵矩阵是一个二维数组,通常用于表示一组数据或线性变换。
矩阵由行和列组成,行表示矩阵的水平方向,列表示矩阵的垂直方向。
1. 矩阵的表示矩阵通常以大写字母表示,例如a、a。
一个m行n列的矩阵可以表示为:a=⎡⎢⎢⎢⎢⎢⎣a11 a12 ⋯a1a a21 a22 ⋯a2a⋮⋮⋱⋮aa1 aa2 ⋯aaa⎤⎥⎥⎥⎥⎥⎦2. 矩阵的加法矩阵的加法是指对应位置上的元素相加得到新的矩阵。
设有两个m 行n列的矩阵a和a,则它们的和为:a+a=⎡⎢⎢⎢⎢⎢⎣a11+a11 a12+a12 ⋯a1a+a1a a21+a21a22+a22 ⋯a2a+a2a⋮⋮⋱⋮aa1+aa1 aa2+aa2 ⋯aaa+aaa⎤⎥⎥⎥⎥⎥⎦3. 矩阵的数量乘法矩阵的数量乘法是指将矩阵的每个元素与一个实数相乘得到新的矩阵。
线性代数中的矩阵与向量之运算技巧

线性代数中的矩阵与向量之运算技巧矩阵和向量是线性代数中最基础的概念之一。
了解它们的运算技巧是学好线性代数的前提。
本文将介绍一些常用的矩阵和向量运算技巧。
一、矩阵基本运算1. 加减法运算对于两个相同大小的矩阵A和B,它们的和(A+B)和差(A-B)分别对应位置上的元素相加减得到。
例如:A = [[1,2],[3,4]]B = [[-1,3],[4,-2]]则 A+B = [[0,5],[7,2]],A-B = [[2,-1],[-1,6]]2. 数乘运算对于数k和一个矩阵A,它们的积(kA)就是把A的每个元素都乘以k得到。
例如:A = [[1,2],[3,4]]k = 2则 kA = [[2,4],[6,8]]3. 矩阵乘法对于两个矩阵A和B,若A的列数等于B的行数,则它们可以相乘得到一个新的矩阵C。
C的每个元素都是A的一行与B的一列对应元素的乘积之和。
例如:A = [[1,2,3],[4,5,6]]B = [[-1,3],[2,-4],[5,1]]则 AB = [[18,-8],[39,9]]注意:矩阵乘法不满足交换律,即A×B ≠ B×A。
二、向量基本运算1. 加减法运算对于两个相同长度的向量v和w,它们的和(v+w)和差(v-w)分别对应位上的元素相加减得到。
例如:v = [1,2,3]w = [-1,4,2]则 v+w = [0,6,5],v-w = [2,-2,1]2. 数乘运算对于数k和一个向量v,它们的积(kv)就是把v的每个元素都乘以k得到。
例如:v = [1,2,3]k = 2则 kv = [2,4,6]3. 点积运算对于两个长度相同的向量v和w,它们的点积(v·w)是将两个向量对应位置元素的乘积相加得到的一个数。
例如:v = [1,2,3]w = [-1,4,2]则 v·w = 9本文介绍的是矩阵和向量的基本运算技巧,仅是线性代数的冰山一角,线性代数是一门内涵丰富的课程,需要大家认真研究,深入理解。
向量乘矩阵求导

向量乘矩阵求导全文共四篇示例,供读者参考第一篇示例:向量乘矩阵求导是矩阵微积分中的重要知识点,它在许多领域都有着广泛的应用。
在此篇文章中,我们将探讨向量乘矩阵求导的基本原理和具体计算方法,帮助读者更好地理解这一概念。
一、向量与矩阵的乘法在矩阵乘法中,两个矩阵相乘的定义是,如果矩阵A是一个m×n 的矩阵,矩阵B是一个n×p的矩阵,那么矩阵A乘以矩阵B得到的结果是一个m×p的矩阵。
具体来说,矩阵乘法的计算方法是将矩阵A的每一行与矩阵B的每一列进行点乘,然后将结果相加得到新矩阵的每个元素。
而向量乘矩阵的计算方法也是类似的,只是向量可以看作是一个特殊的矩阵,即只有一行或一列的矩阵。
向量与矩阵相乘的结果是一个新的向量,其维度与原始矩阵中的列数一致。
对于向量乘矩阵的求导,需要使用链式法则来进行计算。
具体来说,如果有一个向量y是由一个矩阵X乘以一个向量x得到的,即y = X*x,那么它的导数可以表示为dy/dx = d(X*x)/dx。
根据矩阵乘法的性质,可以将y展开为y = [y1, y2, ..., yn],其中每个yi都是由X的一行与x进行点乘得到的。
可以将dy/dx表示为一个行向量,其每个元素就是对应的yi关于x的导数。
在实际应用中,向量乘矩阵求导的计算通常可以通过以下步骤进行:1. 定义原始向量y = X*x,其中X是一个m×n的矩阵,x是一个n×1的向量,y是一个m×1的向量。
2. 将y展开为y = [y1, y2, ..., yn],其中每个yi都是由X的一行与x进行点乘得到的。
3. 分别求解每个yi关于x的导数,然后将其组合成一个行向量,即dy/dx。
4. 最后得到的dy/dx即是向量y关于向量x的导数。
示例:假设有一个2×3的矩阵X = [[1,2,3],[4,5,6]],一个3×1的向量x = [[1],[2],[3]],现在要求向量y = X*x的导数。
向量与矩阵的定义及运算学习资料

α 1 (2α) 2
(1 5,1 1,1 6,1 ( 1),1 4)
2 22 2
2
2.5, 0.5, 3, 0.5, 2 ,
β1(2 β ) ( 0 .5 ,0 .5 ,2 ,1 .5 , 2 ). 2
12
二 矩阵
定义3 设P是复数集C的一个子集合,其中包含 0与1。如果P中的任意两个数a,( b这两个数也可 以相同)的和、差、积、商(除数不为零)仍 在P中,则称P是一个数域(number field).
向量与矩阵的定义及运算
n维行向量和n维列向量都可称为n维向量
(vector), n维向量常用小写黑体希腊字母,, ,L 表示。
例: =(1,3,8);
(10, 23,45, 2);
x
= y
z
2
定 义 2 设 两 个 n维 向 量 =(a1, a2 ,L , an ), (b1 , b2 ,L , bn )
定义5 设A(aij)sn和B(bij)sn是(数域P上) 两个sn(同型)矩阵,则 (1)如果它们对应的元素分别相等,即aij bij, (i 1,2,L,s;j 1,2,L,n),则称A与B相等,记作 AB.
注意:和要简写成 必须满足:每项形式完全一样,不一样
的只是求和指标,而且求和指标连续从小到大增加一。 9
例 2 证 明 : 任 意 n维 向 量 (k1,k2,L,kn)是 向 量 组 1(1,0,L,0),2(0,1,L,0),L,n(0,L,0,1)的
一 个 线 性 组 合 。 证明:由向量的线性运算,得
(k1, k2 ,L , kn ) (k1, 0,L , 0) (0, k2, 0,L , 0) L (0,L , 0, kn )
克罗内克内积 与 矩阵乘法关系

克罗内克内积和矩阵乘法是线性代数中非常重要的概念,它们在各个领域的数学和科学研究中都有着广泛的应用。
理解克罗内克内积与矩阵乘法之间的关系,可以帮助我们更好地理解向量和矩阵运算的本质,也有助于我们在实际问题中更灵活地运用这些数学工具。
在本文中,我将从简单到复杂,从浅入深地探讨这两个概念,帮助你全面地理解它们的关系和应用。
1. 克罗内克内积的基本概念克罗内克内积,又称为张量积,是一种对两个向量进行运算得到的新向量的方法。
如果有两个向量a和b,它们分别是m维和n维的列向量,那么它们的克罗内克内积a ⊗ b将得到一个mn维的列向量。
具体而言,克罗内克内积的运算规则是将向量a的每个元素与向量b相乘,然后将结果按照特定的顺序排列成一个新的列向量。
2. 矩阵乘法的基本概念矩阵乘法是线性代数中的基本运算之一,它用于描述线性变换和多维空间中的向量运算。
如果有两个矩阵A和B,它们的维度分别是m×n 和n×p,那么它们的乘积AB将得到一个m×p的矩阵。
具体而言,矩阵乘法的运算规则是将矩阵A的每一行与矩阵B的每一列进行内积运算,得到新矩阵的每个元素。
3. 克罗内克内积与矩阵乘法的关系在深入探讨克罗内克内积与矩阵乘法的关系之前,我们先来看一下它们之间的基本联系。
事实上,克罗内克内积可以被视为一种特殊的矩阵乘法运算,它可以用于描述不同维度之间的张量关系。
具体而言,如果我们将列向量a和b分别看作是m×1和n×1的矩阵,那么它们的克罗内克内积a⊗b可以被等价地表示为a×b^T,其中b^T表示b 的转置矩阵。
4. 深入理解克罗内克内积与矩阵乘法的关系在实际问题中,我们经常会遇到需要对不同维度的向量和矩阵进行运算的情况。
这时,理解克罗内克内积与矩阵乘法的关系可以帮助我们更灵活地处理这些运算,从而更好地解决问题。
举个例子,假设我们需要计算两个不同维度的向量的内积,可以利用克罗内克内积的性质将这个问题转化为矩阵乘法的形式,从而更方便地进行计算。
向量化与矩阵化计算

向量化与矩阵化计算在计算机科学和数学领域中,向量化和矩阵化计算是两种重要的技术,用于优化和加速计算过程。
这两种方法可以将计算任务分解为更小的单元,并利用硬件的并行处理能力来提高计算效率。
本文将介绍向量化和矩阵化计算的概念、原理以及应用。
一、向量化计算向量化计算是一种利用向量(一维数组)来表示和操作数据的方法。
在向量化计算中,操作可以同时应用于整个向量,而不需要逐个元素进行计算。
这种方式可以利用现代计算机的SIMD(单指令多数据)指令集来并行处理向量操作,从而提高计算效率。
向量化计算的一个典型应用是数值计算和科学计算。
例如,对于两个向量的加法,传统的逐个元素相加需要使用循环来实现,而向量化计算可以直接对整个向量执行元素级加法,从而提高计算速度。
类似地,向量化计算还可以应用于矩阵乘法、向量点积等操作。
二、矩阵化计算矩阵化计算是一种利用矩阵(二维数组)来表示和操作数据的方法。
与向量化计算类似,矩阵化计算可以将操作应用于整个矩阵,而不需要逐个元素进行计算。
这种方式可以利用现代计算机的SIMD指令集和多核处理器的并行处理能力,进一步提高计算效率。
矩阵化计算在机器学习和深度学习中得到了广泛应用。
例如,神经网络的正向传播可以表示为矩阵乘法和激活函数的组合操作,反向传播可以表示为矩阵乘法和梯度计算的组合操作。
通过矩阵化计算,可以将神经网络的计算过程高效地实现,并利用硬件的并行处理能力加速训练过程。
三、向量化与矩阵化计算的优势向量化和矩阵化计算具有以下几个优势:1. 提高计算效率:向量化和矩阵化计算可以利用现代计算机的硬件并行处理能力,将计算任务分解为更小的单元并同时进行计算,从而提高计算效率。
2. 简化代码实现:向量化和矩阵化计算可以将复杂的计算任务简化为一行或几行代码,使代码更简洁、易于理解和维护。
3. 兼容性强:向量化和矩阵化计算可以适用于不同的硬件平台和编程语言,提供了更高的灵活性和可移植性。
4. 降低内存占用:向量化和矩阵化计算可以减少临时变量的使用,节约内存空间。
§1.1-向量与矩阵的定义及运算

(10)若kA 0,则k 0,或者A 0.
28
例 设矩阵A、B、C满足等式 3(A+C)=2(B-C),其中
A
2 1
3 3
6 5
,
B
3 1
2 3
4 5
,
求C.
解:由等式可得 5C 2B 3A
23 21
22 2 (3)
b1 j
(ai1
ai 2
L
ain
)
b2 M
j
= A的第i行乘 B的第j列
bnj
故可以把乘法规则总结为:左行乘右列.
36
注意:(1) 只有当第一个矩阵的列数等 于第二个矩阵的行数时,两个矩阵才 能相乘.
例如
1 3 5
2 2 8
3 1 9
1 6
6 0
8 1
不存在.
(2) 乘积矩阵C的行数=左矩阵的行数, 乘积矩阵C的列数=右矩阵的列数.
ka11
(kaij )sn
ka21
M
kas1
ka12 ka22
M
ka s 2
L ka1n
L
ka2n
M M
L
kasn
为数k与A的数乘,记作kA.
25
(4) 负矩阵:将矩阵A=(aij)s×n的各元 素取相反符号,得到的矩阵称为矩阵A
的负矩阵,记为-A. 即
a11 a12 L a1n
(aij )sn
a21 M
a22 M
L M
a2n
M
as1
as2
L
asn
26
矩阵的线性运算性质
(1) A B B A;
矩阵的运算的所有公式

矩阵的运算的所有公式矩阵是数学中一个重要的概念,研究矩阵的运算公式对于理解线性代数和计算机图形学等领域都至关重要。
以下是矩阵的运算公式的详细介绍:1.矩阵的加法:对于两个相同大小的矩阵A和B,它们的加法定义为:C=A+B,其中C的元素等于A和B对应元素的和。
2.矩阵的减法:对于两个相同大小的矩阵A和B,它们的减法定义为:C=A-B,其中C的元素等于A和B对应元素的差。
3.矩阵的数乘:对于一个矩阵A和一个标量k,它们的数乘定义为:B=k*A,其中B的元素等于A的对应元素乘以k。
4.矩阵的乘法:对于两个矩阵A和B,它们的乘法定义为:C=A*B,其中C的元素等于A的行向量与B的列向量的内积。
5.矩阵的转置:对于一个矩阵A,它的转置定义为:B=A^T,其中B的行等于A的列,B的列等于A的行,且B的元素和A的对应元素相同。
6.矩阵的逆:对于一个可逆矩阵A,它的逆定义为:A^{-1},使得A*A^{-1}=I,其中I是单位矩阵。
7.矩阵的行列式:对于一个方阵A,它的行列式定义为:,A,是A的元素的代数余子式之和。
8.矩阵的迹:对于一个方阵A,它的迹定义为:tr(A),是A的主对角线上元素之和。
9.矩阵的转置乘法:对于两个矩阵A和B,它们的转置乘法定义为:C=A^T*B,其中C的元素等于A的列向量与B的列向量的内积。
10.矩阵的伴随矩阵:对于一个方阵A,它的伴随矩阵定义为:adj(A),是A的代数余子式构成的矩阵的转置。
11.矩阵的秩:对于一个矩阵A,它的秩定义为:rank(A),是A的线性无关的行或列的最大数量。
12.矩阵的特征值和特征向量:对于一个方阵A,它的特征值是满足方程det(A - λI) = 0的λ值,特征向量是对应于特征值的非零向量。
13.矩阵的奇异值分解(SVD):对于一个矩阵A,它的奇异值分解定义为:A=U*Σ*V^T,其中U和V 是正交矩阵,Σ是一个对角线上元素非负的矩阵。
14.矩阵的广义逆矩阵:对于一个矩阵A,它的广义逆矩阵定义为:A^+,使得A*A^+*A=A,其中A*A^+和A^+*A均为投影矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h
2
向量与矩阵运算
向量与矩阵的生成(续)
矩阵的生成 ✓ 直接输入: A=[1, 2, 3; 4, 5, 6; 7, 8, 9] ✓ 由向量生成 ✓ 通过编写m文件生成 ✓ 由函数生成
例:>> x=[1,2,3];y=[2,3,4];
>> A=[x,y], B=[x;y]
例:>> C=magic(3)
提取一个矩阵的上三角部分 产生 0~1 间均匀分布的随机矩阵 m=n 时简写为 rand(n)
产生均值为0,方差为1的标准正态分布随机矩阵 m=n 时简写为 randn(n)
h
4
矩阵操作
提取矩阵的部分元素: 冒号运算符
A(:) A的所有元素 A(:,:) 二维矩阵A的所有元素 A(:,k) A的第 k 列, A(k,:) A的第 k 行 A(k:m) A的第 k 到第 m 个元素 A(:,k:m) A的第 k 到第 m 列组成的子矩阵
>> B=fliplr(A) >> C=flipud(A) >> D=rot90(A), E=rot90(A,-1)
h
6
矩阵操作
矩阵的转置与共轭转置
’ 共轭转置 .’ 转置,矩阵元素不取共轭
点与单引号之间不能有空格!
例:>> A=[1 2;2i 3i]
>> B=A’ >> C=A.’
h
7
矩阵操作
f 作用在 x 的每个分量上 若 A 是矩阵,则 f(A) 是一个与 A 同形状的矩阵
h
13
函数取值
expa1(1)
例: expA()expa(21)
expa1(2)
expa(22)
expa1(n) expa(2n)
expa(m1) expa(m2) expa(mn)
例:>> x=[0:pi/4:pi]; A=[1 2 3; 4 5 6];
h
8
矩阵基本运算
矩阵的加减:对应分量进行运算
要求参与加减运算的矩阵具有 相同的维数
例:>> A=[1 2 3; 4 5 6]; B=[3 2 1; 6 5 4]
>> C=A+B; D=A-B;
矩阵的普通乘法
要求参与运算的矩阵满足线性代数中矩阵相乘的原则
例:>> A=[1 2 3; 4 5 6]; B=[2 1; 3 4];
Matlab中的所有 标点符号必须在 英文状态下输入
h
15
Matlab中常见数学函数
sin、cos、tan、cot、sec、csc、… asin、acos、atan、acot、asec、acsc、… exp、log、log2、log10、sqrt abs、conj、real、imag、sign max、min、sum、mean、sort rank、det、inv、eig
h
3
常见矩阵生成函数
zeros(m,n) 生成一个 m 行 n 列的零矩阵,m=n 时可简写为 zeros(n)
ones(m,n)
eye(m,n)
diag(X)
tril(A) triu(A) rand(m,n) randn(m,n)
生成一个 m 行 n 列的元素全为 1 的矩阵, m=n 时可写为 ones(n) 生成一个主对角线全为 1 的 m 行 n 列矩阵, m=n 时可简写为 eye(n),即为 n 维单位矩阵 若 X 是矩阵,则 diag(X) 为 X 的主对角线向量 若 X 是向量,diag(X) 产生以 X 为主对角线的对角矩阵 提取一个矩阵的下三角部分
h
10
矩阵的乘方
A 是方阵,p 是正整数 A^p 表示 A 的 p 次幂,即 p 个 A 相乘。
h
11
矩阵的数组运算
数组运算:对应元素进行运算
数组运算包括:点乘、点除、点幂 相应的数组运算符为: “.* ” , “./ ” , “.\ ” 和 “ .^ ” 点与算术运算符之间不能有空格!
>> y1=sin(x); y2=exp(A); y3=sqrt(A);
h
14
数与数组的点幂
例:x=[1 2 3]; y=[4 5 6];
x.^y =[1^4,2^5,3^6]=[1,32,729] x.^2 =[1^2,2^2,3^2]=[1,4,9]
2 .^x = ? 2 .^[x;y]= ?
>> C=A*B
h
9
矩阵基本运算
矩阵的除法:/、\ 右除和左除
若 A 可逆方阵,则 B/A <==> A 的逆右乘 B <==> B*inv(A) A\B <==> A 的逆左乘 B <==> inv(A)*B
通常,矩阵除法可以理解为
X=A\B <==> A*X=B X=B/A <==> X*A=B
例:>> A=[1 2 3; 4 5 6]; B=[3 2 1; 6 5 4];
>> C=A.*B; D=A./B; E=A.\B; F=A.^B;
参与运算的对象必须具有相同的形状!
h
12
函数取值
函数作用在矩阵上的取值
设 x 是变量, f 是一个函数
当 x = a 是标量时,f(x) = f(a)也是一个标量 当 x = [a, b, … , c] 是向量时,f(x)= [f(a), f(b), … , f(c)]
自己动手
A(:) 与 A(:,:) 的区别 ? 如何获得由 A 的第一、三行和第一、二列组成的子矩阵?
h
5
矩阵操作
矩阵的旋转
fliplr(A) 左右旋转 flipud(A) 上下旋转 rot90(A) 逆时针旋转 90 度;
rot90(A,k) 逆时针旋转 k×90 度
例:>> A=[1 2 3;4 5 6]
查看矩阵的大小:size
size(A) 列出矩阵 A 的行数和列数 size(A,1) 返回矩阵 A 的行数 size(A,2) 返回矩阵 A 的列数
例:>> A=[1 2 3; 4 5 6]
>> size(A) >> size(A,1) >> size(A,2)
length(x) 返回向量 X 的长度 length(A) 等价于 max(size(A))
向量与矩阵运算西南交通大学数学建模h1向量与矩阵运算
向量与矩阵的生成
向量的生成 ✓ 直接输入: a=[1,2,3,4] ✓ 冒号运算符 ✓ 从矩阵中抽取行或列
例:a=[1:4] ==> a=[1, 2, 3, 4]
b=[0:pi/3:pi] ==> b=[0, 1.0472, 2.0944, 3.1416] c=[6:-2:0] ==> c = [6, 4, 2, 0]