01.二次根式讲义
《二次根式》课件

知识梳理
一般地,我们把形如
概念
(a≥0)
的式子叫做二次根式. 其中“
1 ”
称为二次根号.
二
次
根
式
有意义
的条件
被开方数(式子)为非负数,
(a≥0)
性质
(a≥0),二次根式的被开方数非负
≥0(a≥0),二次根式的值非负
二
次
根
式
( )2 = a (a≥0)
拓展
(
≥
0)
2 = = ቊ
.
3.已知 + 2与 − + 3 互为相反数,
求( + )2020 的值.
技巧点拨:解答本类问题时,常先依据“若几
个非负数的和为0,那么这几个非负数都为0”
列出方程组,然后解方程组求出字母的值,再
把字母的值代入相关式子求值.
解: ∵
+ 2与 − + 3 互为相反数,
(4)原式 = 3 − = − 3.
7
− .
4
注意:(1)三类常见的非负数: , ,2 .
2
(2)若 + + = 0,则 = 0, =
0, = 0,即若几个非负数的和等于0,则这几
个非负数均为0.
(3)化简形如 2 的式子时,要先转化为 ,
再根据a的符号去掉绝对值符号.
① (a≥0),二次根式的被开方数非负;
② ≥0(a≥0),二次根式的值非负.
(2)( )2 = (a≥0).
(3)
2
≥0 ,
= =ቊ
− < 0 .
4. 代数式
用基本运算符号(基本运算包括加、减、乘、除、乘
二次根式讲义

二次根式考点1二次根式的概念a≥0)的式子叫做二次根式。
二次根式的实质是一个非负数a的算数平方根。
二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a必须是非负数。
(x≥0,y•≥0)当x考点2二次根式的性质⑴a≥0)是一个非负数,≥ 0a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数的算术平方根是非负数。
⑵()一个非负数的算术平方根的平方等于这个非负数。
⑶一个数的平方的算术平方根等于这个数的绝对值。
注:A、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于 a本身,若a是负数,则等于a的相反数-aB、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;C、化简时,先将它化成│a│,再根据绝对值的意义来进行化简。
⑷与的区别前者表示一个正数a的算术平方根的平方,而后者表示一个实数a的平方的算术平方根;a的取值范围不同,因而它的运算结果是有差别的。
练1 ;;;练2 计算1.)22.(23.24.()22练3计算1.22.)23.√(1-a)2( a>0 )考点3 二次根式的乘除 二次根式的乘法:)0,0(≥≥=⋅b a ab b a 把被开方数相乘,再作开方运算。
练1.计算(1 (2 (3 (4练2 化简(1 (2 (3 (4 二次根式的除法:ba b a=).0,0(>≥b a 把被开方数相除,再作开方运算。
练1.计算:(1(2 (3 (4练2.化简:(1 (2 (3 (4练3.计算(1, (2, (3 考点4 最简二次根式⑴被开方数不含分母;⑵被开方数中不含能开得尽方的因数或因式。
练1 下列二次根式中,最简二次根式是( )(B )xy (C (D 练2 下列二次根式中,最简二次根式是( ) A. 21a + B. 1a 2+ C. ab 4 D. b a 2练3 下列根式中,不是最简二次根式的是:(A) (C) (D)考点5二次根式的加减⑴、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这样的二次根式叫做同类二次根式。
二次根式辅导讲义

二次根式一、知识梳理1、二次根式的概念和性质二次根式的定义:形如a (0a ≥)的式子叫做二次根式.注意点:(1)被开方数是正数或0;(2)二次根式a (0a ≥)表示非负数a 的算术平方根.二次根式的性质:(1)二次根式的非负性:0a ≥;(2)2()(0)a a a =≥;(3)2(0)(0)(0)a a a a a a a a >⎧⎪===⎨⎪-<⎩;(4)当0a ≥时,22()a a =.2、最简二次根式最简二次根式最简二次根式的定义:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中不含能开 得尽方的因数或因式.这样的二次根式叫做最简二次根式.最简二次根式的满足条件:(1)被开放数的因数是整数,因式是整式(被开方数不能存在小数、分数形式);(2)被开方数中不含能开得尽方的因数或因式;(3)分母中不含二次根式.说明:二次根式的计算结果要写成最简根式的形式.3、二次根式的加减同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫同类二次根式.二次根式的加减同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次 根式.合并同类二次根式:()a x b x a b x +=+,同类二次根式才可加减合并.分母有理化分母有理化:把分母中的根号化去叫做分母有理化.互为有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,说这两个代数式互为有理化因式.a b+与a b-互为有理化因式;分式有理化时,一定要保证有理化因式不为0.4、二次根式综合运算二次根式的综合运算法则:先算乘除法,再算加减法,有括号的先算括号里面的,最终结果二次根式部分要化为最简二次根式.注意:在二次根式的计算题中,如果题目中没有明确说明字母的取值范围,按照字母使二次根式有意义计算.5、二次根式化简求值二次根式的化简求值:先把二次根式化为最简二次根式,然后进行二次根式的加减乘除运算,化为较为简单的一个式子(或直接得出结果),最后代入未知数的值求解,有时候也会存在整体代入的情况.注意:对于二次根式的化简求值如果字母没有明确说明取值范围,必须要进行分类讨论.6、根式的大小比较比较大小的方法1.作差法:比较a、b的大小,0,0,0,a b a b a ba b>>⎧⎪-==⎨⎪<<⎩2.作商法:比较a、b的大小,当0,0a b>>时,可以采用作商法,1,1,1,a b aa b ba b>>⎧⎪==⎨⎪<<⎩二次根式比较大小的方法(1)0a b a b>>⇔>(2)二次根式比较大小:能直接比较大小的直接比较;不能直接比较大小的,先平方再比较.(3)估算法(4)分子有理化(5)倒数法7、二次根式的乘除二次根式的乘除法二次根式的乘法法则:a b ab⋅=(0a≥,0b≥).二次根式的除法法则:a abb=(0a≥,0b>).说明:利用乘除法则时注意a、b的取值范围,对于ab a b=⋅,a、b都非负,否则不成立.二、典型例题题型一、二次根式的概念和性质例1: 函数1x y x =-中自变量x 的取值范围是( ) A .1x ≥B .1x <且0x ≠C .1x >D .1x ≥且0x ≠【答案】C【解析】该题考查的是函数的定义域.根式下的式子在非负条件下有意义,分数在分母不为0的条件下有意义,综上所述,10x -≥,且10x -≠,∴1x >,故本题答案为C .例2: 若320-+-=x y ,则xy 的值为____.A .8B .6C .5D .9【答案】A【解析】该题考查的是的非负性.根据题意得:3020x y -=⎧⎨-=⎩解得:32x y =⎧⎨=⎩∴32x y =,故选A .变式: 已知:()322512012x x y x -+-=+--,求x y 的值. 【答案】25【解析】该题考查的是二次根式的性质.∵()322512012x xy x -+-=+--有意义∴()32020120120x x x ⎧-≥⎪⎪-≥⎨⎪--≠⎪⎩所以2x =,055y =+=∴2525x y ==题型二、最简二次根式例1、下列二次根式中,最简二次根式是( )A .22xB .0.5C .22x y +D .1x 【答案】C【解析】该题考查最简二次根式.A 、x x 222=被开方数含能开得尽方的因数,不是最简二次根式;故本选项错误; B 、120.522==,被开方数含分母,不是最简二次根式;故本选项错误; C 、22x y +满足最简二次根式的定义,是最简二次根式;D 、1x x x=,被开方数含能开得尽方的因数,不是最简二次根式. 故选C .例2、若最简二次根式2342a +与22613a -是同类二次根式,则a =_________【答案】1±【解析】该题考查的是二次根式.满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式. 根据题意可列:22461a a +=-解得:1a =±变式、若2,m ,4为三角形三边,化简:()()2226m m -+-=____________.【答案】4【解析】该题考查的是根式的化简求值.∵2,m ,4为三角形三边,可知包括如下关系:①24m +>,即6m <②24m +>,即2m >∴原式264m m =-+-=题型三、二次根式的加减例1、计算124183-⨯=__________.【答案】6【解析】该题考查的是二次根式的计算.原式346923=⨯-⨯⨯326323=-⨯ 2666=-=例2、111115533131317+++=++++____.【答案】1714-【解析】该题考查根式的分母有理化.11115135133171317144444155********-----+++=+++=++++ 故答案为1714-. 变式、已知32x =+,32y =-,则33_________x y xy +=.【答案】10【解析】因为32x =+,32y =-,所以()()32321xy =+-=,()()323223x y +=++-=,所以()()()22332221232110x y xy xy x y xy x y xy ⎡⎤⎡⎤+=+=+-=⨯-⨯=⎢⎥⎣⎦⎣⎦题型四、二次根式综合运算例1、化简:2244112a a a a -+--+(112a ≤≤)【答案】32a -【解析】()()222244112211211a a a a a a a a -+--+---=---,因为112a ≤≤,所以原式21121132a a a a a =---=-+-=-例2、若352x y +=-,325x y -=-,求xy .【答案】52-【解析】2()352x y +=-;2()325x y -=-∴22()()352(325)5244x y x y xy +-----===-变式、化简22691025a a a a +++-+【答案】当3a <-时,原式=22a -+;当35a -≤<时,原式=8;当5a ≥时,原式=22a -;【解析】()()22226910253535a a a a a a a a +++-+=++-=++-,当3a <-时,原式353522a a a a a =++-=---+=-+;当35a -≤<时,原式35358a a a a =++-=+-+=;当5a ≥时,原式353522a a a a a =++-=++-=-题型五、二次根式化简求值例1、化简:()221269x x x -+-+=____【答案】43x -【解析】该题考查根式的化简.()()2221269123x x x x x -+-+=-+-∵由题得120x -≥,12x ≤∴()2333x x x -=-=-.∴原式12343x x x =-+-=-.故答案为43x -.例2、化简:108322++.【答案】42+【解析】22108322108(12)108(12)1882(42)42++=++=++=+=+=+变式、化简:(1)412-(2)415+【答案】(1)31-(2)1062+【解析】(1)()24124233131-=-=-=- (2)221064158215(53)222++=+=+=题型六、根式的大小比较例1、比较大小:512-_______12.(填“>”、“<”或“=”). 【答案】>【解析】该题考查的是二次根式比大小.5115115254022222------===>,即511022-->, 即51122->. 例2、设120082006,2007A B =-=,比较大小:A ____B .【答案】A B >【解析】222008200620082006A ==+-,22220072007B ==;2008200622007+< ∴22A B< ∴A B >变式、已知21a =-,226b =-,62c =-,那么a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c b a >>D .c b a <<【答案】B【解析】()()221,223,2322a b c ⎛⎫=-=-=- ⎪ ⎪⎝⎭2222(231)2(13)(2223)0222b a -=--+=-+=+->,b a > 2222(132)2(13)(2223)0222a c -=--+=-+=+->,a c >b ac >>题型七、二次根式的乘除例1、下列计算正确的是( )A .235⋅=B .236⋅=C .84=D .2(3)3-=-【答案】B【解析】根据二次根式的乘法运算法则,可得236⋅=,故答案为B 选项.例2、下列计算结果正确的是( )A .257+=B .2510⨯=C .3223-=D .25105=【答案】B【解析】该题考查的是二次根式计算.A 选项2与5不是同类项,不能合并,故本选项错误;B 选项252510⨯=⨯=,故本选项正确;C 选项32222-=,故本选项错误;D 选项21055=,故本选项错误. 故答案是B .变式、已知:4322232b a a =-+-+,求11a b +的平方根.【答案】2±【解析】该题考查的是二次根式.4322232b a a =-+-+,根据被开方数的非负性我们知道320230a a -≥⎧⎨-≥⎩,所以23a =, 代入得43222322b a a =-+-+=,所以1131222a b +=+=,平方根为2±三、课堂巩固1、函数11y x =-中自变量的取值范围是( B )A .1x ≠B .1x >C .1x ≥D .1x ≥-2、对于所有实数,a b ,下列等式总能成立的是( C )A .()2a b a b +=+B .22a b a b +=+C .()22222a b a b +=+ D .()2a b a b +=+ 3、函数12y x =+中,自变量x 的取值范围是2->x 4、实数P 在数轴上的位置如图所示,化简()()2223p p -+-=15、计算:=⨯121726,=--)84)(213(24, =⨯-03.027.02-0.18,=÷-327348-5.6、化简:()221269x x x -+-+=x 34-.7、设120082006,2007A B =-=,比较大小:A >B . 8、已知: 21x =-,求223x x +-的值.()()()()2222231322-=-+=+-=-+x x x x 9、已知:,x y 为实数,且113y x x <-+-+,化简:23816y y y ---+. 1=x 3<y 原式=()1-4343=---=---y y y y1 2 3 4 p课后作业1、函数2x y x-=中,自变量x 的取值范围是( A ) A .2x ≤且0x ≠B .2x ≤C .2x <且0x ≠D .0x ≠2、若()424A a =+,则A =( A ) A .24a +B .22a +C .()222a + D .()224a + 3、若2(2)10m n ++-= 则m n -= -3 .4、在下列二次根式22211025312232322a a a a b m x a b x a b +-++,,,,,,,,,,中,最简二次根式有6个.5、若最简二次根式35a -与3a +是同类二次根式,则a =___4___.6、若231604b a a +-+=-,则3223a b a b +=-___-18___.7、比较大小:512-___>___12.(填“>”、“<”或“=”). 8、计算:01186(121)221+---- 原式=01232212=--++9、化简:(1)412-原式=()13132-=- (2)415+221064158215(53)222++=+=+=。
二次根式讲义

二次根式辅导讲义同步知识梳理一:二次根式得概念二次根式得定义形如得式子叫二次根式,其中叫被开方数,只有当就是一个非负数时,才有意义.二:二次根式得性质1、非负性:a a()≥0就是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2、()() a aa20=≥.注意:此性质既可正用,也可反用,反用得意义在于,可以把任意一个非负数或非负代数式写成完全平方得形式:a a a=≥()()203、a aa aa a20 ==≥-<⎧⎨⎩||()()注意:(1)字母不一定就是正数.(2)能开得尽方得因式移到根号外时,必须用它得算术平方根代替.(3)可移到根号内得因式,必须就是非负因式,如果因式得值就是负得,应把负号留在根号外.4、公式a aa aa a2==≥-<⎧⎨⎩||()()与()()a aa20=≥得区别与联系(1)a2表示求一个数得平方得算术根,a得范围就是一切实数.(2)()a2表示一个数得算术平方根得平方,a得范围就是非负数.(3)a2与()a 2得运算结果都就是非负得.三:最简二次根式与同类二次根式2a B、1--3<0,则化简(1)148 (2)4337- (3)11212 (4)13550-【例14】把下列各式分母有理化(1)328x x y(2)38xx【例15】把下列各式分母有理化:(1)221- (2)5353+- (3)333223- 举一反三:1、已知2323x -=+,2323y +=-,求下列各式得值:(1)x y x y +-(2)223x xy y -+专题五:二次根式计算——二次根式得乘除【例16】化简(1)916⨯ (2)1525⋅ (3)229x y (0,0≥≥y x ) (4)12×632⨯ 【例17】计算(1)(2) (3) (4)(5) (6) (7) (8)【例18】化简:(1)364 (2)22649b a )0,0(≥>b a (2)2964xy )0,0(>≥y x (4)25169x y )0,0(>≥y x【例19】计算:(1)123 (2)3128÷ (3)11416÷(4)648【例20】能使等式22xxx x =--成立得得x 得取值范围就是( )A 、2x >B 、0x ≥C 、02x ≤≤D 、无解专题六:二次根式计算——二次根式得加减【例20】计算(1)11327520.53227--+-; (2)12543102024553457⎛⎫⎛⎫+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; 【例21】(1)224344x y x y x y x y --+--+ (2)a b a ba b a b--+-+ 专题七:二次根式计算——二次根式得混合计算与求值1、ab b a ab b 3)23(235÷-⋅ 2、 22 (212 +418-348 ) 3、132x y ·(-42y x)÷162x y 4、673)32272(-⋅++5、62332)(62332(+--+)6、1110)562()562(+-【例21】 1.已知:,求得值.2.已知,求得值。
《二次根式课件》公开课课件

二次根式的历史与文化背景
01
二次根式的起源
二次根式最初起源于古希腊数学家毕达哥拉斯学派,他们研究了直角三
角形的边长关系,发现了直角三角形的勾股定理。
02 03
二次根式的发展历程
随着数学的发展,二次根式在各个历史时期都得到了广泛的应用和研究 。特别是在文艺复兴时期,数学家们开始系统地研究二次根式的性质和 运算方法。
二次根式的性质
总结词
二次根式具有非负性、算术平方根的单调性、算术平方根的取值范围等性质。
详细描述
二次根式的被开方数是非负数,因此二次根式本身也是非负数。此外,算术平 方根具有单调性,即随着被开方数的增大,其平方根也单调增大。最后,算术 平方根的取值范围是非负实数。
二次根式的化简
总结词
化简二次根式的方法包括因式分解、配方法、直接开平方法 和分母有理化等。
二次根式在代数式变形中的应用
总结词
简化表达式
详细描述
二次根式在代数式变形中有着重要的应用,它可以简化复杂的代数表达式。通过利用二 次根式的性质和运算法则,可以将复杂的代数表达式化简为更简单的形式,方便后续的
运算和分析。
二次根式在代数式变形中的应用
总结词:因式分解
详细描述:在代数式变形中,二次根式还可以用于因式分解 。通过提取公因式和利用二次根式的性质,可以将多项式进 行因式分解,从而更好地理解和分析代数式的结构。
详细描述
化简二次根式是数学中常见的代数运算之一。通过因式分解 或配方法,将二次根式化为最简形式。如果被开方数是多项 式,则可以使用直接开平方法或分母有理化进行化简。化简 后的二次根式更易于计算和运用。02 二次 Nhomakorabea式的运算
二次根式的加减法
二次根式讲义

二次根式讲义 一、知识点梳理 1.二次根式式子)0(≥a a 叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。
2.定义重点①式子有意义:)0(≥a a 中必须,否则,式子没有意义②隐含条件:)0(≥a a ,则,即也为非负数4. 二次根式的乘除运算b a ab ⋅=(00≥≥b a ,))0,0(≥≥=b a b ab a根式中分母不能含有根号,且要变为最简。
6.最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
三、典型例题讲解 例11、用代数式表示:(1)面积为S 的正方形的边长为______.(2)•面积为10•的直角三角形的两直角边的比为1:•2,•则这两条直角边分别为______.2、在二次根式1a -中,字母a 的取值范围是( )A .1<aB .1≤aC .1≥aD .1>a 3、下列式子中,是二次根式的有( )①22x +,②3x ,③32,④2()x -A .1个B .2个C .3个D .4个 4、(1)若0≥a ,则a _____0.(2)若021=++-x y ,则=x _____,=y ______. 5、求使式子有意义的实数x 的取值范围.(1)2x - (2)11x - 例21、计算:(1)=2)3(______;(2)=-2)52(_____. 2、下列式子正确的个数是( )①2)4(4±=;②3)3(2-=--;③1)2()3(22=-;④2)7(7=.A .1个B .2个C .3个D .4个3、在实数范围内分解因式792-a .解:=-=-222)7()3(79a a ( )·( )4、计算:(1)22=______.(2)2(5)-=_____; (3)2211010-==______.5、计算: (1)2(2)x -(2≤x ) (2)2(32)- (3)-2(3.14)π-例31、计算:(1)2×7=______.(2)12×8=______; (3)0.1×100=_______.2、下列运算不正确的是( )A .0.40.6⨯=0.2×0.6=1.2B .4×36=2×6=12C .0.4 3.60.4 3.6 1.44⨯=⨯===1.2D .a ·3=3a (0≥a ) 3、计算:(1)3×(-212) (2)2×6×13(3)2ab ·1b (4)-12xy ·(-4y )4、计算:(1)812=______;(2)126=_____.5、计算:(1)318÷2=_____;(2)293x y xy ÷=______. 例41、化简:(1)8=______;(2)1327=____.2、化简:(1)3a =_____;(2)2316x y =_____.3、化简:(1)56=______; (2)-125015⨯=______; (3)2332ab c=______;4、下列计算正确的是( )A .-1210×2=-1220B .y x xy x xy x 31313313=⋅=⋅C .112882887272⨯=⨯=4=2 D .534=5435、把38化为最简二次根式为_______.6、下列二次根式中,不是最简二次根式的是( )A .aB .31C .1x D .21a +四、举一反三 1.(2012义乌)一个正方形的面积是15,估计它的边长大小在( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间2.(2012杭州)已知)212()33(-⨯-=m ,则有( )A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-5 3.(2012泰安)下列运算正确的是( )A .2(5)5-=- B .21()164--= C .632x x x ÷= D .325()x x =4.(2012德阳)使代数式12-x x有意义的x 的取值范围是( )A . 0≥xB .21≠x C .0≥x 且21≠x D .一切实数5.(2011山东菏泽)实数a 在数轴上的位置如图所示,则22(4)(11)a a -+- 化简后为( )A . 7B . -7C .152-aD . 无法确定6.(2011山东济宁)若0)3(12=++-+y y x ,则y x -的值为 ( )A .1B .-1C .7D .-77.(2011山东烟台)如果aa 21)12(2-=-,则( )A .21<a B. 21≤a C. 21>a D. 21≥a8.(2011山东日照)已知x ,y 为实数,且满足x +1y y ---1)1(=0,那么20112011y x -= .9. (2011山东枣庄)对于任意不相等的两个实数a 、b ,定义运算※如下:a※b =b a b a -+,如3※2=32532+=-.那么8※12= .10.已知a ,b ,c 为△ABC 的三边长,化简22()()a b c b a c +-+---a b c --.a 105第2题图第4题图 五、过关测试二次根式的定义 1、二次根式11x --有意义,则实数x 的取值范围为_____. 2、矩形面积为12cm 2,矩形的长与宽之比为3:2,则矩形长为_____cm ,宽为____cm . 3、无论实数x 取何值下列式子总有意义为( )A .2(1)x -- B .21x -+ C .21x + D .1x -4、如图所示,方格图中小正方形的边长为1,将方格图中阴影部分剪下来,再把剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( ) A .3 B .2 C .5 D .65、如图所示,在平面直角坐标系中,A (-2,3),B (-4,0),C (-2,0)是三角形的三个顶点,求三角形各边的长.6、已知1433b a --与114+-b a 互为相反数,试求a ,b 的值.7、已知x ,y 为实数,且y =1122x x -+-+12,求x ,y 的值.二次根式的性质1、计算:(1)=2)75(____________; (2)=-2)2(x ______.2、(1)当0≥x 时,=-2x ______________;(2)当0≤x 时,2x =______. 3、下列式子计算不正确的是( )A .3)3(2=B .a a =-2)((0≥a )C .2(32)-=3-2D .15)53(2-=- 4、计算:(1)22)3553()54(- (2)22(6)(8)-+-(3)2)52(494-⋅+ (4)2230.6--5、已知实数x 在数轴上的位置如图所示,化简2222(1)(2)x x x --+-.6、(改错题)计算:(2x -)2+2(3)x - 解:(2x -)2+2(3)x -=2-x +x -3 ① =-1 ②你认为上述解答过程是错在第_____步,为什么?并求出正确的结果.二次根式的乘法 1、计算:(1)-122×3=_____; (2)18×(-32)=_____. 2、计算:(1)110×110=______; (2)131x·3xy =______. 3、化简:(1)3a -=_____;(2)34m n (0<m )=______. 4、若)2)(1(21--=-⋅-x x x x .则x 的取值范围是( )A .1>xB .2≥xC .2>xD .1≥x 5、定义运算“@”运算法则,x@y@z =xyz ,则2@3@6值为( )A .3B .2C .6D .126、下列各等式成立的是( )A .45×25=85B .53×42=205C .43×32=75D ,53×42=20 7、已知2=a ,则200的值为( )A .a 2B .a 3C .a 10D .a 8 8、下列计算正确的是( )A .(121)(9)1219-⨯-=-⨯-=33B .23x =x 3C .(16)(25)1625-⨯-=⨯=20D .249x -=32-x 9、阅读解答题:因为23=223⨯=12 ①-23=2(2)3-⨯=12 ②所以23=-23 ③ 即2=-2导致以上出现错误的结果错因在第几步( ) A .① B .② C .③ D .④ 10、化简:(1)2000 (2)250a b (0<a ,0>b )(3)18×3220×(-1315) (4)627×(-23)(5)2xy ×12x (6)115×23×(-1210)11、计算(1)5xy ×(-323x y )×361y (2)32ab b ·(-323a b )·3ab(0<a ,0>b )(3))))((abx ax x a b x ab --- (0>a ,0>b ,0>x )12、将aa 1-括号外的因式a 移到括号内部.二次根式的除法及最简二次根式 1、计算:(1)49=_____________;(2)2764=______.2、计算:(1)0.680.17=__________;(2)328=______. 3、计算:(1)0.48=______;(2)512=_____. 4、若2211x xx x--=++,则x 取值范围为_______. 5、下列各式是最简二次根式为( ) A .15B .24C .28D .7326、如图所示,小芳想在墙壁上钉一个三角形架,•其中两直角边的长度之比为3:2,斜边长为520,则较短直角边的长度为( ) A .40 B .210 C .410 D .426 7、化去下列各式中根号内的分母正确的是( ) A .2225555== B .22151535=⨯ C .3333n n mn m m m ==(0>m ,0>n ) D .11aa a a===a 8、下列各式计算正确的是( )A .442939---==---=23B .238499==2132C .3163727÷= D .825=58 9、把下列二次根式化为最简二次根式: (1)338=_______; (2)712=_______;(3)2.11.0⋅=_______;(4)3273x =_______; 10、计算:(1)48÷(32·3)(2)43623x x ÷(3)3520÷(-136)(4)8243311、计算:(1)3223×(-1815)÷1225(2)-4318÷(28×1354)。
二次根式课件ppt

பைடு நூலகம்
03
二次根式的应用
求解实际问题
求解最优化问题
二次根式可以用于求解最优化问题, 例如在投资组合、生产计划等领域, 通过二次根式求解最优解,以实现最 大利润或最小成本。
求解面积和体积问题
二次根式可以用于求解一些几何图形 的面积和体积,例如在计算矩形、三 角形、球体等的面积和体积时,可以 使用二次根式进行计算。
有界性
当$a \geq 0$时,$\sqrt{a} \leq \sqrt{a + b}$($b > 0$)。
正定性
当$a > b > 0$时,$\sqrt{a} > \sqrt{b}$。
05
二次根式的综合题
与方程有关的综合题
总结词
二次根式与方程的结合,涉及解方程、方程的根、根的判别式等。
详细描述
01
02
03
性质1
二次根式被开方数必须是 非负数,否则无意义。
性质2
二次根式的被开方数中不 能含有分母,否则不能化 简。
性质3
二次根式的被开方数中不 能含有能开得尽方的因数 或因式,否则也不能化简 。
二次根式的运算
加减运算
同类二次根式可以合并, 不同类二次根式不能合并 。
乘除运算
二次根式相乘除时,只需 将被除式与除式同时平方 再约分即可。
乘法法则
$(a\sqrt{b}) \times (c\sqrt{d}) = ac\sqrt{bd}$($a,b,c,d \geq 0$)。
除法法则
$\frac{(a\sqrt{b})}{(c\sqrt{d})} = \frac{a}{c}\sqrt{\frac{b}{d}}$($a,b,c,d \geq 0$,$bd \neq 0$)。
专题01 二次根式及其性质

专题01 二次根式及其性质【考点剖析】1、二次根式概念:一般地,我们把形如(a≥0)的式子叫二次根式.2、二次根式有意义的条件:二次根式中的被开方数是非负数.(1)如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.(2)如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.3、二次根式的性质与化简(1)二次根式的基本性质:①;②;③(2)与要注意区别与联系:①a的取值范围不同,中a≥0,中为任意值;②a≥0时,;a<0时,无意义,二次根式的定义【典例】例1.下列式子:,,,,,,中,一定是二次根式的是( )A.3个B.4个C.5个D.6个【答案】B【解析】解:在所列式子中,一定是二次根式的是,,,这4个,故选:B.【点睛】根据二次根式的性质:二次根式中的被开方数必须是非负数,否则二次根式无意义,逐一判断.本题考查了二次根式的定义.理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.【巩固练习】1.、、、、中二次根式有( )A.5个B.4个C.3个D.2个【答案】C【解析】解:、、是二次根式,、的被开方数不一定为非负数,故不一定是二次根式.故选:C.2.下列各式中①;②;③;④;⑤;是二次根式的有( )个.A.2个B.3个C.4个D.5个【答案】A【解析】解:①、②的被开方数是负数,不是二次根式;③;④符合二次根式的定义;⑤当﹣1<x<1时,被开方数是负数,不是二次根式.综上所述,二次根式的个数是2.故选:A.3.下列各式中:①;②;③;④.其中,二次根式的个数有( )A.1个B.2个C.3个D.4个【答案】A【解析】解:①;②;③;④.二次根式的只有①,故选:A.二次根式有意义的条件【典例】例1.式子中x的取值范围是( )A.x≥1且x≠2B.x>1且x≠2C.x≠2D.x>1【答案】A【解析】解:由题意得:x﹣1≥0且x﹣2≠0,解得:x≥1且x≠2.故选:A.【点睛】根据二次根式有意义的条件可得x﹣1≥0,再根据分式有意义的条件可得x﹣2≠0,再解出x的值.此题主要考查了二次根式有意义的条件,以及分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.例2.若已知a、b为实数,且2b+4,则a+b=______.【答案】1【解析】解:由题意得,a﹣5≥0,5﹣a≥0,解得,a=5,则b=﹣4,则a+b=1,故答案为:1.【点睛】根据二次根式中的被开方数必须是非负数解答即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.【巩固练习】1.若二次根式有意义,则x的取值范围是( )A.x B.x C.x D.x≤5【答案】B【解析】解:由题意得,5x﹣1≥0,解得,x,故选:B.2.代数式有意义,则x应满足的条件是( )A.x≠3B.x C.x且x≠3D.x且x≠3【答案】C【解析】解:由题意得,1+3x≥0,x﹣3≠0,解得,x且x≠3,故选:C.3.如果代数式有意义,那么x的取值范围是( )A.x≥0B.x≠1C.x>1D.x≥0且x≠1【答案】C【解析】解:由题意得,x≥0,x﹣1>0,解得,x>1,故选:C.4.如果y3,那么y x的算术平方根是( )A.2B.3C.9D.±3【答案】B【解析】解:由题意得,x﹣2≥0,2﹣x≥0,解得,x=2,∴y=3,则y x=9,9的算术平方根是3.故选:B.5.若|2017﹣m|m,则m﹣20172=____________.【答案】2018【解析】解:∵|2017﹣m|m,∴m﹣2018≥0,m≥2018,由题意,得m﹣2017m.化简,得2017,平方,得m﹣2018=20172,m﹣20172=2018.故答案为:20186.已知a满足|2017﹣a|a,则a﹣20172的值是____________.【答案】2018【解析】解:∵|2017﹣a|a,∴a﹣2018≥0,故a≥2018,则原式可变为:a﹣2017a,故a﹣2018=20172,则a﹣20172=2018.故答案为:2018.二次根式的性质【典例】例1.下列各式中,一定能成立的是( )A.B.()2C.x﹣1D.•【答案】A【解析】解:A、,所以A选项正确;B、()2当a为负数是不成立,所以B选项错误;C、x﹣1当x<1时不成立,所以C选项错误;D、•当x<3时不成立,所以D选项错误.故选:A.例2.实数a,b在数轴上的位置如图,则化简|a﹣b|的结果为( )A.2a B.﹣2a C.2b D.﹣2b 【答案】B【解析】解:由题意得:a>b,|a|<|b|,a>0,b<0,∴a﹣b>0,a+b<0,∴|a﹣b|=﹣a﹣b﹣a+b=﹣2a,故选:B.例3.阅读下面的解题过程,判断是否正确?若不正确,请写出正确的解答.已知m为实数,化简:解:原式.【答案】见解析【解析】解:不正确,根据题意,m成立,则m为负数,=m=m=(m+1).【点睛】本题主要考查了二次根式的性质的灵活运用,关键是根据成立,则m为负数,要求熟练掌握负整数指数幂、二次根式、绝对值等考点的运算.【巩固练习】1.下列各式成立的是( )A.2B.()2=2C.a D.3【答案】D【解析】解:A、2,故此选项错误;B、()2=4,故此选项错误;C、|a|,故此选项错误;D、3,正确.故选:D.2.实数a在数轴上的位置如图所示,则化简后为( )A.8B.﹣8C.2a﹣18D.无法确定【答案】A【解析】解:由题意可知6<a<12,∴a﹣5>0、a﹣13<0.∴|a﹣5|+|a﹣13|=a﹣5+13﹣a=8.故选:A.3.如图所示,实数a、b在数轴上的位置化简的结果是( )A.﹣2a B.﹣2b C.0D.2a﹣2b 【答案】A【解析】解:由数轴可知:a<0,b>0,a﹣b<0,∴原式=﹣a﹣b﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a故选:A.4.把x根号外的因数移到根号内,结果是( )A.B.C.D.【答案】C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式 要点一、二次根式及代数式的概念
1.二次根式:一般地,我们把形如
(a ≥0)•的式子叫做二次根式,“”称为二次根号.
要点诠释: 二次根式的两个要素:①根指数为2;②被开方数为非负数.
2.代数式:形如5,a ,a+b ,ab ,,x 3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式.
要点二、二次根式的性质
1.a ≥0,(a ≥0);
2. (a ≥0);
3.
. 要点诠释:
1.二次根式(a ≥0)的值是非负数。
一个非负数可以写成它的算术平方根的形式, 即2(0a a a =≥).
2a 2()a 要注意区别与联系:1).a 的取值范围不同,2)a 中a ≥02a a 为任意值。
2).a ≥0时,2a 2a a ;a <0时,2)a 2a a -.
典型例题
知识点
类型一、二次根式的概念
例1、下列各式中,一定是二次根式的有()个.
举一反三:
【变式】下列式子中二次根式的个数有().
(1)1
3
;(2)3
-;(3)21
x
-+;(4)38;(5)2
1
()
3
-;(6)1x
-(1
x>)
例2、式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥1
举一反三:
【变式】下列格式中,一定是二次根式的是().
2
3-()2
0.3
-2-x
类型二、二次根式的性质
例3. 计算下列各式:
(1)232()4-
⨯- (2)2(3.14)π-
举一反三:
【变式】(1)2)2
52(-=_____________. (2)2)2(2a a ---=_____________.
例4、已知实数a ,b ,c 在数轴上的位置如图所示,
化简:22||()||a a c c b b -++---|.
举一反三:
【变式】若整数m 2(1)1,5
m m m +=+<且则m 的值是___________.
课后练习
一.选择题
1、要使代数式有意义,则x 的( ). A. 最大值是23 B .最小值是23 C. 最大值是32 D. 最小值是32
2.、下列各式变形中,正确的是( )
A .x 2•x 3=x 6
B .=|x |
C .(x 2﹣)÷x=x ﹣1
D .x 2﹣x +1=(x ﹣)2+
3、下列说法正确的是( )
A .4是一个无理数
B .函数11
y x =-的自变量x 的取值范围是x ≥1 C .8的立方根是2± D.若点(2,)-3)P a Q
和点(b ,关于x 轴对称,则a b +的值为5.
4、若a 不等于0,a 、b 互为相反数,则下列各对数中互为相反数的一对数是( ).
A.
与 B.与 C.与 D.与
5、下列根式是最简二次根式的是( ).
A .8
B .24x y +
C .
D . 6、已知,化简二次根式的正确结果为( ).
A.
B. C. D.
二. 填空题
7、若二次根式有意义,则x 的取值范围是 .
8、=____________. 若,则____________.
9、(1)2)53(-=_____________. (2)9622++-a a a (a>0)=__________________________.
10、若22x x -+-=0,则2(1)x -=_______________. 11、已知,1≤x≤3,化简:22(1)(3)x x -+-= .
12、有如下判断:
(1)11010x y xy x ⋅= (2)155=1 (3)55552424
=+ (4)332363⨯=(5)222516541-=-=(6)a b a b ⋅=⋅成立的条件是,a b 同号.其中正确的有_____个.
三 综合题
13. 当x 为何值时,下列式子有意义?
(1)21x + (2) 2x -
(3)1y x =
-; (4)1
y x =-;
14. 已知实数x ,y 满足
,求代数式2013()x y +的值.
15.求值
(1)已知a、b满足,解关于x的方程(a+2)x+b2=a﹣1.(2)已知x、y都是实数,且,求y x的平方根.。