植物的抗逆性

合集下载

植物的抗逆性研究

植物的抗逆性研究

植物的抗逆性研究植物作为生物界的重要一员,面临着各种各样的环境压力和挑战。

从极端的温度、干旱、盐碱地到病原菌、逆境环境等,植物必须具备一定的抗逆性才能够在这些复杂的环境条件下存活和繁衍。

因此,研究植物抗逆性成为了当前植物科学研究的热点之一。

一、植物抗逆性的定义及重要性植物抗逆性是指植物在受到外界环境压力的干扰时,通过调节其生理、生化和分子水平的表达来适应和反应,从而保持正常的生长与发育。

尽管植物自身无法迅速逃脱环境压力,但其在长期演化适应过程中,形成了一系列抗逆性相关的机制和途径。

植物的抗逆性对于维持生态系统的平衡、增加农作物产量以及改善环境质量都具有重要意义。

二、植物抗逆性的机制研究1. 生理途径植物通过诸如调节渗透调节物质(如脯氨酸等)的积累、调节离子的平衡、维持水分平衡、增强光合作用等方法来增强其抗逆性。

例如,在干旱条件下,植物会通过减少气孔开放、增加根系吸水能力等方式保持水分平衡。

2. 生化途径植物通过诸如抗氧化剂的产生、膜脂过氧化物的降解、气孔导度的调节等途径来应对环境压力。

抗氧化剂可以抑制或中和自由基产生,减少细胞氧化损伤;膜脂过氧化物降解则可以维持细胞膜的完整性和功能;而调节气孔导度则可以控制植物对水分和二氧化碳的吸收。

3. 分子途径植物通过激活或抑制特定基因的表达来调节其抗逆性。

植物在受到外界环境压力时,会激活一系列抗逆性相关基因的表达,从而产生一系列蛋白质和其他抗逆性相关的分子物质,以应对环境压力。

这些分子物质包括抗寒蛋白、抗干旱蛋白、热休克蛋白等。

三、植物抗逆性的提高途径1. 遗传改良通过选育出具有更好抗逆性的品种来提高植物的抗逆性。

利用传统育种方法或基因工程技术,可以选择具有抗逆性相关基因的物种进行杂交或转基因,从而培育出具有更好抗逆性的品种。

2. 生理处理通过诸如提前浸泡、贮运时的冷藏等处理方法,可以提高植物对干旱、寒冷等环境压力的抵抗能力。

此外,还可以通过调节植物生长环境(如光照、气温等)来提高其抗逆性。

植物的抗逆性

植物的抗逆性

植物的抗逆性(2)逆境对光合作用的影响。

在逆境下植物的气孔关闭,光合作用都表现出下降的趋势,同化产物供应减少。

(3)逆境对呼吸作用的影响。

在冻害、热害、盐害、涝渍时植物呼吸速率明显下降;冷害、旱害时植物的呼吸速率先上升后下降;植物发生病害时植物呼吸速率明显增强。

另外逆境也会影响各呼吸代谢途径的活性;(4)逆境对物质代谢的影响。

在各种逆境下植物体内的物质分解大于合成。

二、植物在逆境影响下带来的形态变化(一)形态结构变化如干旱会导致叶片和嫩茎萎蔫,气孔开度减小甚至关闭;淹水使叶片黄化,枯干,根系褐变甚至腐烂;高温下叶片变褐,出现死斑,树皮开裂;病原菌侵染叶片出现病斑。

(二)生理生化变化在冰冻、低温、高温、干旱、盐渍、土壤过湿和病害等各种逆境发生时,植物体的水分状况有相似变化,即吸水力降低,蒸腾量降低,但蒸腾量大于吸水量,使植物组织的含水量降低并产生萎蔫。

如果逆境超出了作物正常生长、发育所能忍受的范围,会严重影响作物生长,比如:根系坏死、生长不良、生长缓慢、叶片黄化、树体瘦弱、晚熟、早衰、虫害入侵、病害频发、产量低、品质差,直至作物死亡。

三、渗透调节与抗逆性(一)渗透调节的概念多种逆境都会对植物产生水分胁迫。

水分胁迫时植物体内积累各种有机和无机物质,以提高细胞液浓度,降低其渗透势,这样植物就可保持其体内水分,适应水分胁迫环境。

这种由于提高细胞液浓度,降低渗透势而表现出的调节作用称为渗透调节。

(二)渗透调节物质植物细胞中渗透胁迫的信号传递和渗透调节渗透调节物质的种类很多,大致可分为两大类。

一类是由外界进入细胞的无机离子,一类是在细胞内合成的有机物质。

1、无机离子逆境下细胞内常常累积无机离子以调节渗透势,特别是盐生植物主要靠细胞内无机离子的累积来进行渗透调节。

植物对无机离子的吸收是一主动过程,故细胞中无机离子浓度可大大超过外界介质中的浓度。

在小麦和燕麦中发现,这种吸收和积累与ATP酶的活性有关。

无机离子进入细胞后,主要累积在液泡中,成为液泡的重要渗透调节物质。

植物学专业毕业论文选题参考植物抗逆性研究与应用

植物学专业毕业论文选题参考植物抗逆性研究与应用

植物学专业毕业论文选题参考植物抗逆性研究与应用植物学专业毕业论文选题参考:植物抗逆性研究与应用植物抗逆性是指植物在面对各种环境胁迫时所表现出的适应和抵抗能力。

植物抗逆性研究与应用是植物学领域中一个重要的研究方向。

本文将介绍植物抗逆性的概念、研究方法以及其在农业、环境保护等领域的应用。

一、概述植物抗逆性植物作为静止生物,在其生长发育过程中会面临各种环境胁迫,如高温、低温、干旱、盐碱等。

植物通过一系列的适应和抵抗机制来应对这些胁迫,保证自身的生存和繁衍。

植物抗逆性是研究植物对环境胁迫的应对能力的一个重要指标。

二、研究方法1. 分子生物学方法分子生物学方法是研究植物抗逆性的关键手段之一。

通过基因克隆、基因表达分析、基因组学研究等方法,可以探究植物在受胁迫时产生的相关基因和蛋白质的表达变化,进而了解植物抗逆性的分子机制。

2. 生理学方法生理学方法是研究植物对环境胁迫的生理反应的重要工具。

通过测定植物的生理指标,如叶绿素含量、脯氨酸积累量、超氧化物歧化酶活性等,可以评价植物抗逆性的水平。

3. 遗传学方法遗传学方法是研究植物抗逆性的重要途径之一。

通过杂交育种、遗传分析等方法,可以筛选出具有优良抗逆性的植株,并利用遗传方法揭示其抗逆性的遗传基础。

三、植物抗逆性的应用1. 农业领域植物抗逆性的研究在农业生产中有重要意义。

通过培育具有较强抗逆性的作物品种,可以提高作物的耐受性,减少环境胁迫对农作物产量和品质的影响。

同时,研究植物抗逆性的分子机制,为转基因技术在农业生产中的应用提供理论基础。

2. 环境保护领域植物抗逆性的研究对于环境保护具有重要意义。

通过研究植物在污染环境中的抗逆性,可以筛选出适应恶劣环境的植物物种,用于修复受到污染的土壤和水体。

此外,植物抗逆性的研究也可为环境污染的监测和评估提供参考依据。

四、结论植物抗逆性是植物学领域中重要的研究方向。

通过研究植物抗逆性的分子机制和生理反应,可以揭示植物在受到环境胁迫时的应对方式。

植物抗逆性研究及其在农业生产中的应用

植物抗逆性研究及其在农业生产中的应用

植物抗逆性研究及其在农业生产中的应用植物抗逆性是指在外界环境不良条件下,植物能够保持正常的生长发育和生理代谢功能的能力。

植物作为生物体,同样会受到多种不良环境因素的影响,如高温、低温、旱灾、盐碱胁迫等。

因此,研究植物抗逆性并探索其在农业生产中的应用具有重要的意义。

一、植物抗逆性研究的意义植物抗逆性研究的主要目的是为了增加作物的抵御性和适应性,实现高效、稳定的农业生产。

通过深入研究植物在不良环境条件下的适应机制,可以揭示植物抗逆性形成的分子基础和信号传导途径,为后续培育新品种和开发抗逆性优良基因提供重要的理论依据。

二、植物抗逆性的影响因素1. 高温胁迫:高温会导致植物代谢失调,光合作用受阻,并引发氧化胁迫,增加植物受害程度。

2. 低温胁迫:低温会影响植物的代谢活性和膜结构,导致植物受冻伤、不良生长和死亡。

3. 旱灾胁迫:缺水会导致植物根系发育不良,破坏植物的水分平衡,严重时会导致植物死亡。

4. 盐碱胁迫:盐碱土壤中的高盐、高碱环境会影响植物正常的生长和代谢,阻碍植物的水分吸收和养分利用。

三、植物抗逆性研究方法1. 分子生物学研究:通过筛选差异表达基因、构建转基因植物等方法,来揭示植物在抗逆性过程中参与的基因和调控机制。

2. 生理生化研究:通过测定植物的生理生化指标,如酶活性、抗氧化系统、渗透调节物质等,来评估植物对不良环境的抵抗力。

3. 遗传学研究:通过群体的遗传分析和连锁图谱构建,来鉴定植物抗逆性相关基因。

四、植物抗逆性在农业生产中的应用1. 育种改良:通过研究和选育抗逆性强的优良品种,提高作物的抗逆性和适应性,促进农业生产的可持续发展。

2. 优化种植管理:根据植物抗逆性差异,合理调整种植结构和管理措施,提高作物的产量和品质。

3. 适应环境栽培:选用抗逆性强的品种,在不良环境条件下进行栽培,提高作物的适应性,减少农业灾害风险。

总结:植物抗逆性研究及其在农业生产中的应用具有重要意义。

通过深入研究植物的抗逆机制,可以为优化种植管理、育种改良等提供重要的理论指导。

提高植物抗逆性的方法

提高植物抗逆性的方法

提高植物抗逆性的方法植物在生长发育过程中,常常会遭受到各种环境的压力和逆境,如高温、低温、干旱、盐碱等。

这些逆境条件会对植物的生长和产量产生负面影响。

因此,提高植物的抗逆性成为了农业生产中的重要课题。

本文将介绍几种提高植物抗逆性的方法。

一、遗传改良遗传改良是提高植物抗逆性的重要手段之一。

通过选择和育种,选出具有较强抗逆性的品种,进行繁殖和推广。

在育种过程中,可以通过杂交、选择和基因编辑等方法,引入或改变植物的抗逆基因,提高植物的抗逆性。

例如,通过转基因技术,将耐盐基因导入作物中,使其具有更强的耐盐性。

二、适应性栽培适应性栽培是指根据植物的生长特性和环境条件,选择适合的栽培措施,提高植物的抗逆性。

例如,在干旱地区种植作物时,可以采用节水灌溉技术,合理利用水资源,减少水分蒸发和浪费。

在高温地区种植作物时,可以选择耐热品种,合理安排作物的生长期,避免高温时段。

适应性栽培还包括选择适合的土壤类型、施肥和病虫害防治等措施,以提高植物的抗逆性。

三、生理调控生理调控是通过调节植物的生理过程,提高植物的抗逆性。

例如,通过施用植物生长调节剂,可以促进植物的生长和发育,增强植物的抗逆性。

另外,适当的修剪和摘心也可以促进植物的分枝和生长,增加植物的抗逆性。

此外,植物的光合作用和呼吸作用也是影响植物抗逆性的重要因素,通过调节光合作用和呼吸作用的速率,可以提高植物的抗逆性。

四、外源物质处理外源物质处理是指通过施用外源物质,提高植物的抗逆性。

例如,施用植物生长调节剂、有机肥料和微量元素等,可以促进植物的生长和发育,增强植物的抗逆性。

此外,一些生物活性物质,如脯氨酸、多糖和脂肪酸等,也可以提高植物的抗逆性。

这些外源物质可以通过叶面喷施、土壤施用或种子处理等方式施用。

五、生物技术应用生物技术应用是指利用生物技术手段,提高植物的抗逆性。

例如,通过基因工程技术,将抗逆基因导入植物中,使其具有更强的抗逆性。

另外,利用组织培养和遗传转化技术,可以培育出具有抗逆性的新品种。

植物抗逆性研究的现状与前景

植物抗逆性研究的现状与前景

植物抗逆性研究的现状与前景植物作为生物界的基础,承担着维持生态平衡和人类生存需求的重要任务。

然而,由于环境的变迁和人为活动的影响,植物面临着各种各样的逆境胁迫。

为了解决这一问题,植物抗逆性研究成为了当前农业和生物科学领域的热门课题。

本文将对植物抗逆性研究的现状和前景进行探讨。

一、植物抗逆性的定义和意义植物抗逆性是指植物在逆境胁迫下保持正常生长和发育的能力。

逆境胁迫包括但不限于高温、低温、干旱、盐碱、重金属污染等。

植物抗逆性的提高对于维持农作物产量、改善土壤质量、保护生态环境具有重要意义。

二、植物抗逆性研究的现状1. 生理和分子机制的研究植物抗逆性研究的第一步是了解逆境胁迫对植物生理和分子机制的影响。

通过对植物抗氧化系统、渗透调节机制、光合作用等关键生理过程的研究,可以深入了解植物在逆境下的应对策略。

此外,分子生物学和基因组学的发展使得人们能够研究逆境胁迫下植物的基因表达调控网络,识别调控抗逆性的关键基因。

2. 抗逆性的遗传改良植物抗逆性的提高既可以通过传统育种方法来实现,也可以借助基因工程技术。

选育适应特定逆境条件的杂交品种和转基因植物是当前主要的研究方向之一。

通过对植物基因组的深入了解,可精确识别和改良调控抗逆性的关键基因,进一步提高植物的逆境适应性。

三、植物抗逆性研究的前景1. 利用基因组学和遗传学技术随着基因组学和遗传学技术的不断进步,研究人员能够更加准确地研究植物抗逆性相关基因和调控网络,从而实现对抗逆性的精确改良。

这为研究植物抗逆性提供了更加广阔的空间和机会。

2. 探索新的抗逆机制和途径尽管植物的抗逆性已经被广泛研究,但我们对植物抗逆机制和途径的理解仍然不够完善。

未来的研究应该进一步探索新的抗逆机制和途径,以便更好地应对复杂多变的逆境胁迫。

3. 跨学科合作植物抗逆性研究跨越了植物学、生物化学、分子生物学、基因工程等多个学科领域。

未来的研究应该加强不同学科间的合作,利用各自的优势来推动植物抗逆性研究的发展。

植物抗逆性研究及应用前景展望

植物抗逆性研究及应用前景展望

植物抗逆性研究及应用前景展望随着环境变化的加剧和全球气候变暖的影响,植物面临着越来越多的逆境压力。

而植物的抗逆性研究成为热点领域,对于保证农作物的安全生产和提高植物生态系统的稳定性具有重要意义。

本文将探讨植物抗逆性的研究现状,并展望其在未来的应用前景。

1. 植物抗逆性研究的现状植物抗逆性研究主要关注植物在环境变化和逆境胁迫下的生理和分子机制。

通过对植物的耐旱、耐寒、耐盐、抗病等逆境响应机制的研究,可以探索植物如何适应恶劣环境,并提高其抵抗逆境的能力。

1.1. 植物逆境信号转导通路植物在受到逆境胁迫时,会启动一系列逆境信号转导通路,以调控相关基因的表达和激活抗逆性相关的突变体。

这些通路包括激活蛋白激酶、激活离子通道、调控激素合成和信号传导等。

目前,研究者们通过基因工程手段对这些信号通路进行探索,为提高植物抗逆性提供了理论基础。

1.2. 逆境胁迫下的植物生理响应植物在逆境胁迫下,会调节其生理过程以适应环境的变化。

例如,植物在受到干旱胁迫时,会通过调节开关孔、减少水分散失等方式来保持水分平衡。

而在盐胁迫下,植物则会调节细胞内的离子浓度和维持细胞膜的完整性。

这些生理响应对于植物的存活和生长具有重要意义。

2. 植物抗逆性的应用前景展望植物抗逆性研究为农业生产和植物生态系统的可持续发展提供了可能性。

未来,通过对植物的抗逆性机制的深入研究,我们可以预见以下可能的应用前景:2.1. 育种选育抗逆性品种植物抗逆性研究能够为育种选育提供新的思路和方法。

通过利用基因操作技术,我们可以将植物中与抗逆性相关的基因转移到经济作物中,以提高其抵御逆境的能力。

例如,将耐盐性基因转移到盐碱地作物中,提高其耐盐能力,从而增加在贫瘠土地上的农作物产量。

2.2. 植物抗逆性调节相关产品的开发植物抗逆性研究还为开发植物抗逆性调节相关产品提供了可能。

通过研究植物抗逆性相关的生理和分子机制,可以开发出改善植物抗逆性的肥料、生长调节剂和生物农药等。

植物的抗逆性与抗病性

植物的抗逆性与抗病性

植物的抗逆性与抗病性植物作为生命界中的重要成员,在面临各种环境变化和病原体入侵时,具备了一定的抗逆性和抗病性。

这些特性使植物能够适应复杂多变的环境,并与病原体进行斗争,保持正常生长和发育。

本文将探讨植物的抗逆性和抗病性,以及影响这些特性的因素。

一、植物的抗逆性植物在生长过程中经常面临环境的各种挑战,如高温、低温、干旱、盐碱等。

为了应对这些挑战,植物有着多种适应策略。

首先,植物的根系结构可以通过调整生长方向和形态来获取水分和养分。

例如,一些植物的根系能够向深处延伸,以便在干旱条件下吸收地下的水分和养分。

其次,植物能够通过调整气孔大小来控制蒸腾作用,减少水分流失。

在高温条件下,植物还可以调整叶片和细胞结构,增加抗氧化物质的产生,从而减轻氧化损伤。

此外,一些植物还能合成特殊的耐盐蛋白,帮助其在盐碱地生长。

二、植物的抗病性植物与各种病原体之间进行持续的进化斗争,发展出了一系列的抗病机制。

其中,抗感染性是一种常见的抗病性机制。

植物通过产生一系列抗菌蛋白、抗菌物质和免疫信号分子,来抵御病原体的入侵。

这些物质可以抑制病原体的生长,阻止其在植物内部扩散。

此外,植物还能通过识别病原体的分子信号来启动免疫响应,加强细胞壁的坚固性,增加保护层的形成,从而阻止病原体的进一步侵袭。

另外,植物还可以与有益微生物建立共生关系,以提升自身的抗病能力。

三、影响抗逆性和抗病性的因素植物的抗逆性和抗病性受多种因素的影响。

首先,遗传因素是其中之一。

不同品种的植物对环境和病原体的应对能力存在差异,这与其基因组中的相关基因有关。

其次,环境因素也对植物的抗逆性和抗病性产生影响。

例如,气候变暖和气候干燥等气候变化对植物的适应能力产生了重要影响。

此外,土壤的盐碱度以及土壤中的营养状况也会直接影响植物的抗逆性和抗病性。

最后,植物的生长发育状态和营养状况也对其抗逆性和抗病性产生影响。

植物的生长发育越健康,其免疫系统越强大,越能抵御外界的压力。

综上所述,植物的抗逆性和抗病性是植物生活中的重要特性,它们使得植物能够在不断变化的环境中生存和繁衍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、生物膜与抗逆性
生物膜结构和功能的稳定性与植物的抗逆性密 切相关。
膜脂中碳链相对短、不饱和脂肪酸多时,植物的
抗冷性强。
膜脂中饱和脂肪酸相对含量高(抗脱水能力强),
植物的抗旱、抗热性强。
膜蛋白的稳定性强,植物抗逆性也强。
四、逆境蛋白与抗逆性

逆境条件诱导植物产生的特异性蛋白质统称 为逆境蛋白(stress proteins)。 1. 热激蛋白 2.低温诱导蛋白 3. 渗调蛋白

3. 渗调蛋白

植物在干旱或盐渍条件下合成的参与渗透调 节的蛋白质,称为渗调蛋白(osmotin)。

渗调蛋白的功能:降低细胞的渗透势和防止 细胞脱水,有助于提高植物对盐和干旱胁迫 的抗性。
4. 病程相关蛋白



病程相关蛋白(Pathogenesis related protein,PR)是植物受到病原菌侵染后合成 的一类参与抗病作用的蛋白质。 如几丁酶和β-1, 3-葡聚糖酶活性,能够抑制 病原真菌孢子的萌发,降解病原菌细胞壁,抑 制菌丝生长。 β-1, 3-葡聚糖酶分解细胞壁的产物还能诱导 与其他防卫系统有关的酶系,从而提高植物抗 病能力。

如抗坏血酸(Asb)、还原型谷胱甘肽(GSH)、 维生素E(VE)、类胡萝卜素(Car)、巯基乙 醇(MSH)、甘露醇等,是植物体内1O2的猝灭 剂。
其中Car是最主要的1O2猝灭剂,可使叶绿素免 受光氧化的损害。 植物体内的一些次生代谢物如多酚、单宁、黄 酮类物质也能有效地清除O2-。


六、渗透调节与抗逆性
抗性是植物在对环境的逐步适应过程中形成的

避逆性(stress avoidance)指植物通过各 种方式避开或部分避开逆境的影响;
沙漠中的植物通过生育期的调整来避开不良气候; 或通过特殊的形态结构 (仙人掌肉质茎)贮存大量 水分;植物叶表覆盖茸毛、蜡质;强光下叶片卷 缩等避免干旱的伤害。


耐逆性(stress tolerance)指植物在不良 环境中,通过代谢的变化来阻止、降低甚至 修复由逆境造成的损伤,从而保证正常的生 理活动。
活性氧的氧化能力很强,能破坏植物体内蛋 白质(酶)、核酸等生物大分子。
植物体内的抗氧化防御系统
1 保护酶体系

超氧化物岐化酶(SOD)-- 使O2-发生岐化反应,
生成O2和H2O2;

过氧化物酶(POD)-- 催化过氧化物的分解;

过氧化氢酶(CAT)--
H2O2 ―→ H2O + O2
2 抗氧化物质(非酶体系)
2.低温诱导蛋白

植物经过低温处理后重新合成的一些特异性 蛋白质,称为低温诱导蛋白(lowtemperature-induced protein)/冷响应蛋 白(cold responsive protein)/冷激蛋白 (cold shock protein)。
冷激蛋白的功能:减少细胞失水和防止细胞 脱水的作用,有助于提高植物对冰冻逆境的 抗性。
植物的抗性生理
第一节 抗性生理通论
逆境(stress)指对植物生长和生存不利的各 种环境因素的总和,又称胁迫。
植物的抗逆性(stress resistance),简称抗 性:植物对逆境的适应和抵抗能力。
生物因素:病虫害、杂草等
逆境的种类 理化因素:温度、水分、盐碱、 化学因素、天气等
一、植物对逆境的适应


有机物做为渗透物质,必须具有几个条件:
(1)分子量小,可溶性强;
(2)能被细胞膜保持而不易渗漏; (3)在生理PH范围内不带正电荷,不影响细 胞的酸碱度(PH); (4)对细胞器无毒害作用;
(5)生物合成迅速,并在细胞内迅速积累。 对酶活性影响小,不易分解。
1.脯氨酸
脯氨酸是最重要和有效的有机渗透调节物质。


4. 病程相关蛋白
1.

热激蛋白 (heat shock protein,HSP)
植物在高于正常生长温度刺激下诱导合成的 新蛋白称热激蛋白 / 热休克蛋白。
热激蛋白的功能:防止蛋白质变性,使其恢 复原有的空间构象和生物活性。增强植物的 抗热性。


在高于植物生长最适温度的10~15℃时 HSP即迅速合成。

水分胁迫时植物体内主动积累各种有机和无 机物质来提高细胞液浓度,降低渗透势,提 高细胞保水力,从而适应水分胁迫环境,这 种现象称为渗透调节。 渗透调节是在细胞水平上通过代谢来维持细 胞的正常膨压。

渗透调节物质

一是无机离子(积累在液泡中) : K+、 Na+、Ca2+、Mg2+、Cl-、SO42-、NO3-等 二是有机溶质:主要是脯氨酸、甜菜碱、 蔗糖、甘露醇、山梨醇等。 所有逆境(尤其是干旱)引起脯氨酸和 甜菜碱的累积,且主要存在于细胞质中。
五、活性氧及其对植物的影响
指性质极为活泼、氧化能力很强的含氧 物的总称。

如超氧物阴离子自由基 (O-2. ),羟基 自由基 (· OH),过氧化氢 (H2O2),脂质
过氧化物 (ROO-)和单线态氧 (1O2)。
活性氧的伤害作用


(1)细胞结构和功能受损
活性氧易引起线粒体结构和功能破坏,使氧 化磷酸化效率(P/O)降低;

针叶树可以忍受-40℃~-70℃的低温;
温泉细菌能在70℃~80℃,甚至沸水中存活
二、植物在逆境下的形态与生理生化变化
(一)形态结构变化
逆境条件下植物形态有明显的变化。如干旱会 导致叶片和嫩茎萎蔫,气孔开度减小甚至关闭; 淹水使叶片黄化,干枯,根系褐变甚至腐烂
(二)生理生化变化

1.水分代谢失调
干旱引起直接的水分胁迫;低温、冰冻、盐渍、 高温引起间接的水分胁迫。

2.光合速率下降
任何逆境均引起光合速率下降
3.呼吸代谢发生变化 冻害、热害、盐渍、涝害引起呼吸速率下降;冷 害、干旱时呼吸速率先升后降;病害、伤害呼吸速 率显著增强,且PPP途径增强。

4.大分子物质降解 于合成
各种逆境下,物质的分解大


(2)生长受抑
活性氧明显抑制植物生长,且根比芽对高氧 逆境更敏感; 轻度的氧伤害在解除高氧逆境后作用
膜脂过氧化是指生物膜中不饱和脂肪酸在 自由基诱发下发生的过氧化反应; 膜脂由液晶态转变成凝胶态,引起膜流动性 下降,质膜透性大大增加;


(4)损伤生物大分子
相关文档
最新文档