微分方程的稳定性模型
数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。
实验二 优化模型........................................................................ 错误!未定义书签。
实验三 微分方程模型................................................................ 错误!未定义书签。
实验四 稳定性模型.................................................................... 错误!未定义书签。
实验五 差分方程模型................................................................ 错误!未定义书签。
实验六 离散模型........................................................................ 错误!未定义书签。
实验七 数据处理........................................................................ 错误!未定义书签。
实验八 回归分析模型................................................................ 错误!未定义书签。
实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
微分方程模型中的稳定性与解的存在性证明

微分方程模型中的稳定性与解的存在性证明微分方程是数学中的重要分支之一,它描述了自然界中众多现象的变化规律。
在微分方程的研究中,稳定性与解的存在性证明是两个基本问题。
本文将从这两个方面展开讨论微分方程模型的特性。
稳定性是指系统在一定条件下的长期行为是否趋于稳定。
在微分方程模型中,稳定性分为局部稳定性和全局稳定性。
局部稳定性指的是系统在某一点附近的行为是否稳定,而全局稳定性则是指系统在整个定义域内的行为是否稳定。
稳定性的判断可以通过线性化的方法来进行。
线性化是将非线性微分方程在某一点附近进行线性逼近,从而获得系统的线性化方程。
通过对线性化方程的特征值进行分析,可以判断原方程在该点附近的稳定性。
解的存在性证明是指是否存在满足微分方程的解。
在微分方程模型中,解的存在性通常需要借助一些数学工具和定理来证明。
其中最常用的方法是皮卡-林德洛夫定理和柯西-利普希茨定理。
皮卡-林德洛夫定理是解的存在性证明中的重要定理之一。
它指出,如果微分方程的右端函数在某个矩形区域内满足利普希茨条件,那么在该区域内存在唯一的解。
利普希茨条件是指右端函数的偏导数存在且有界。
柯西-利普希茨定理则是解的存在性证明中的另一个重要定理。
它指出,如果微分方程的右端函数在某个区域内满足利普希茨条件,那么在该区域内存在唯一的解,并且解的存在范围可以延伸到整个定义域。
除了皮卡-林德洛夫定理和柯西-利普希茨定理,还有一些其他的定理和方法可以用于解的存在性证明。
比如,格朗沃尔不等式、逐步逼近法和拟凸函数法等。
总之,微分方程模型中的稳定性与解的存在性证明是微分方程研究中的重要问题。
通过线性化和定理的运用,可以对微分方程的稳定性进行判断和证明。
而解的存在性证明则需要借助一些数学工具和定理来进行推导。
这些方法和定理为我们研究微分方程提供了有力的工具和理论支持。
微分方程的平衡点及稳定性分析

者 可 以不 一致 , 比如 说 , 线性 近 似方 程 的平衡 点 为 中心 时 , 用其 它 的方 法来判 断( ) 要 4 式平 衡 点 的稳
12 判 定 平 衡 点 稳 定 性 的 方 法 .
① 间接法 : 定义3 的方法称为间接法。 ②直接法 : 不求方程式( 的解 ) 1 ) 0的方法 , 称
为直接法。 方法: 在 将 ) 。 处作泰勒展开, 只取一
次项 , 有微 分方 程 ( ) 近似 为 1可
变化规律 , 预测它的未来形态时 , 要建立对象 的动 态模 型 , 常 要用到 微分方 程模 型 。 通 而稳 定性 模 型 的对象仍是动态过程 ,而建模 的目的是研究时间 充分 长 以后 过程 的变 化趋 势— — 平衡 状 态是 否 稳 定。 稳定性模型不求解微分方程 , 而是用微分方程
) ) () 1
①羞 0 0则称 ), < 。 为方程(和(的稳定的 1 3 ) ) 平
衡点。
o 则称 为方 程() 3的不稳 定 的平 , 1和() 衡点。
定义2 代数方程 ) 的实根 。 : = 0 称为微分方
程() 1的平衡 点 。 定 义 3从 某 领 域 的任 意 值 出发 , 方 程 ( ) : 使 1
。 o 作 泰勒 展 开 , ,) y处 只取 一 次项 , (在 P 。 。 得 4 ) 0 ,) Y
的线 性近 似方 程 为 :
贝 ) 却 r0 则根据定理 1x O I => , , 是不稳定的平衡 =
点 . I 一rO 是稳定的平衡点。 厂) <,
分 析 : 平衡 点 的稳 定性 来 看 , 从 随着 时 间 的推 移 , 口的增 长在 人 处 趋于 稳定 , 也就 是人 口达
微分方程模型介绍

微分方程模型介绍在研究实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型。
微分方程模型反映的是变量之间的间接关系,因此,要得到直接关系,就得求微分方程。
求解微分方程有三种方法:1)求解析解;2)求数值解(近似解);3)定性理论方法。
建立微分方程模型的方法:1)利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律等来建立微分方程模型。
2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。
下面我们以生态学模型为例介绍微分方程模型的建立过程: 一. 单种群模型1. 马尔萨斯(Malthus)模型假定只有一个种群,()N t 表示t 时刻生物总数,r 表示出生率,0t 表示初始时刻,则生物总数增长的数学模型为()()()00d ,d (1)t t N t rN t t N t N =⎧=⎪⎨⎪=⎩不难得到其解为()0()0r t t N t N e-=.2. 密度制约模型由马尔萨斯模型知,种群总数将以几何级数增长,显然与实际不符,因为种群密度增大时,由于食物有限,生物将产生竞争,或因为传染病不再按照增长率r 增长,因而有必要修改,在(1)式右端增加一项竞争项。
()()()d (1)(2)d N t N t rN t tK=-其中K 为最大容纳量,可以看出当()N t K =时,种群的规模不再增大。
这个模型就是著名的Logistic 模型,可以给出如下解释:由于资源最多仅能维持K 个个体,故每个个体平均需要的资源为总资源的1K,在t 时刻个体共消耗了总资源的()N t K此时资源剩余()1N t K-,因此Logistic 模型表明:种群规模的相对增长率与当时所剩余的资源份量成正比,这种种群密度对种群规模增长的抑制作用。
微分方程在经济模型中的应用

微分方程在经济模型中的应用引言:微分方程是数学中的一种重要工具,它描述了变化率与变量之间的关系。
在经济学中,微分方程被广泛应用于各种经济模型的建立和分析中。
本文将探讨微分方程在经济模型中的应用,并介绍其中的一些经典案例。
一、经济增长模型中的微分方程经济增长是一个国家或地区经济长期发展的过程,而微分方程能够帮助我们理解和预测经济增长的规律。
一个经典的经济增长模型是索洛模型,它描述了资本积累和技术进步对经济增长的影响。
该模型可以用如下的微分方程表示:dK/dt = sY - δK其中,K表示资本积累,Y表示产出,s表示储蓄率,δ表示资本耗损率。
该方程描述了资本积累的变化率与产出、储蓄率和资本耗损率之间的关系。
通过求解这个微分方程,我们可以得到资本积累随时间的变化情况,从而分析经济增长的趋势和速度。
二、消费函数模型中的微分方程消费函数是描述个人或家庭消费行为的数学模型。
在经济学中,消费函数通常被表示为一个微分方程。
一个经典的消费函数模型是凯恩斯消费函数,它描述了个人消费与收入之间的关系。
该模型可以用如下的微分方程表示:dy/dt = c - bY其中,Y表示个人收入,c表示消费的固定部分,b表示边际消费倾向。
该方程描述了个人收入的变化率与消费、收入和边际消费倾向之间的关系。
通过求解这个微分方程,我们可以得到个人收入随时间的变化情况,从而分析个人消费的趋势和规律。
三、货币供应模型中的微分方程货币供应是一个国家或地区货币总量的变化情况,而微分方程可以帮助我们建立货币供应模型并进行分析。
一个经典的货币供应模型是弗里德曼-斯图尔特模型,它描述了货币供应与货币基础、货币乘数和其他因素之间的关系。
该模型可以用如下的微分方程表示:dM/dt = m(dB/dt)其中,M表示货币供应,B表示货币基础,m表示货币乘数。
该方程描述了货币供应的变化率与货币基础的变化率和货币乘数之间的关系。
通过求解这个微分方程,我们可以得到货币供应随时间的变化情况,从而分析货币政策的效果和稳定性。
微分方程的稳定性模型_图文_图文

1) 甲可以独自生存,乙不能独自生存;甲 乙一起生存时相互提供食物、促进增长。
2) 甲乙均可以独自生存;甲乙一起生存 时相互提供食物、促进增长。
3) 甲乙均不能独自生存;甲乙一起生存 时相互提供食物、促进增长。
模型 假设
• 甲可以独自生存,数量变化服从Logistic规律 ; 甲乙一起生存时乙为甲提供食物、促进增长 。 • 乙不能独自生存;甲乙一起生存时甲为乙 提供食物、促进增长;乙的增长又受到本身 的阻滞作用 (服从Logistic规律)。
假设
• 解释(预测)双方军备竞赛的结局 1)由于相互不信任,一方军备越大,另一 方军备增加越快;
2)由于经济实力限制,一方军备越大,对 自己军备增长的制约越大;
3)由于相互敌视或领土争端,每一方都存
在增加军备的潜力。
进一步 假设
1)2)的作用为线性;3)的作用为常数
建模 x(t)~甲方军备数量, y(t)~乙方军备数量
r1=1, N1=20, 1=0.1, w=0.2, r2=0.5, 2=0.18
相轨线趋向极限环 结构稳定
实质上,我们并不需求解上面的微分方程以得到x(t) 的动态变化过程,只希望知道渔场的稳定鱼量和保 持稳定的条件,即时间 t 足够长以后渔场鱼量 x(t) 的趋向,并由此确定最大持续产量。为此可以直接 求上面常微分方程的平衡点并分析其稳定性。
不求x(t), 判断x0稳定性的方法——直接法
由于
讨论方程(1)的稳定性时,可用
对于消耗甲的资源而言
,乙(相对于N2)是甲(相
对于N1)的1 倍。
对甲增长的阻滞 作用,乙小于甲 乙的竞争力弱
2>1 甲的竞争力强
甲达到最大容量,乙灭绝
微分方程的经典模型

模型分析
问题中并未出现“变化率”、“导数”这样的关键词,但要寻找的是体重 (记为W)关于时间t的函数。如果我们把体重W看作是时间t的连续可微函数, 我们就能找到一个含有的
dW 微分方程。 dt
模型假设
W0 ; 1.W ( t ) 表示 t 时刻某人的体重,并设一天开始时人的体重为 2. W ( t ) 关于 t 连续而且充分光滑;
模型建立
游击作战模型的形式:
,
(t) f (x, y) x (t) g(x, y) y x(0) x , y(0) y 0 0
, 由假设2、3,甲乙双方的战斗减员率分别为
f(x ,y ) c x y
g (x ,y )dxy
结合以上两表达式,并代入 c、d 的值,可得游击作战的数学模型
或被歼灭)的一方为败。因此,如果 K K0 ,则乙的兵力减少到
甲方兵力降为“零”,从而乙方获胜。同理可知, K0
K0 胜。而当
a
时
时,甲方获
时,双方战平。
2 2 bx ay 0 甲方获胜的充要条件为 0 0
代入a 、b 的表达式,进一步可得甲方获胜的充要条件为
2 2 r p x r p y x x 0 y y 0
模型建立 根据假设得到一般的战争模型
x ( t) f( x ,y ) x u ( t) y ( t) g ( x ,y ) y v ( t) x ( 0 )x , y ( 0 )y 0 0
正规作战模型
模型假设
1.不考虑增援,并忽略非战斗减员;
得:
其解为:
i(t) i0e
k0t
模型分析与解释
这个结果与传染病初期比较吻合,但它表明病人人数将按指数规律 无限增加,显然与实际不符
数学建模微分方程模型

我国是世界第一人口大国,地球上每九 个人中就有二个中国人,在20世纪的一段 时间内我国人口的增长速度过快,如下表:
年 1908 1933 4.7 1953 6.0 1964 7.2 1982 10.3 1990 11.3 2000 12.95
人口(亿)3.0
有效地控制人口的增长,不仅是使我国全面进 入小康社会、到21世纪中叶建成富强民主文明的社 会主义国家的需要,而且对于全人类社会的美好理 想来说,也是我们义不容辞的责任。
1.人口模型
问题的提出 假设和定义 模型的建立 分析和求解 结论和讨论
1 问题的提出
人口问题是当今世界上最令人关注的问题之一, 一些发展中国家的人口出生率过高,越来越威胁着 人类的正常生活,有些发达国家的自然增长率趋于 零,甚至变为负数,造成劳动力紧缺,也是不容忽 视的问题。另外,在科学技术和生产力飞速发展的 推动下,世界人口以空前的规模增长,统计数据显 示:
模型的缺点
缺点:当t→∞时,I(t) → n,这表示所有的人最
终都将成为病人,这一点与实际情况不 符合
原因:这是由假设〔1)所导致,没有考虑病人可
以治愈及病人病发身亡的情况。 思考题:考虑有病人病发身亡的情况,再对模型 进行修改。
模型三 有些传染病(如痢疾)愈后免疫力很低,还有可能再
次被传染而成为病人。 模型假设: (1)健康者和病人在总人数中所占的比例分别为s(t)、i(t), 则: s(t)+i(t)=1 (2)一个病人在单位时间内传染的人数与当时健康人数成 正比,比例系数为k (3)病人每天治愈的人数与病人总数成正比,比例系数为 μ(称日治愈率),病人治愈后成为仍可被感染的健康者, 称1/ μ为传染病的平均传染期(如病人数保持10人,每 天治愈2人, μ =1/5,则每位病人平均生病时间为 1/ μ =5天)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)由于相互敌视或领土争端,每一方都存 在增加军备的潜力。
进一步 1)2)的作用为线性;3)的作用为常数 假设
建模
x(t)~甲方军备数量, y(t)~乙方军备数量
(t ) x ky g x (t ) lx y h y
, ~ 本方经济实力的制约;
k, l ~ 对方军备数量的刺激;
稳定性模型 的特点
• 对象仍是动态过程,而建模目的是研究时 间充分长以后过程的变化趋势 ——平衡状 态是否稳定。
• 不求解微分方程,而是用微分方程稳定性 理论研究平衡状态的稳定性。
目
6.1
6.2
录
捕鱼业的持续收获
军备竞赛
6.3
6.4
种群的相互竞争
种群的相互依存
6.5
种群的弱肉强食
6.1
背景
捕鱼业的持续收获
模型假设 • 有甲乙两个种群,它们独自生存
时数量变化均服从Logistic规律;
• 两种群在一起生存时,乙对甲增长的阻滞作 用与乙的数量成正比; 甲对乙有同样的作用。
x1 1 (t ) r1 x1 (1 ) x N1
x2 2 (t ) r2 x2 (1 ) x N2
x1 x2 x2 x1 1 (t ) r1 x1 2 (t ) r2 x2 模型 x 1 2 N N 1 N 1 N x 1 1 2 2 对于消耗甲的资源而 对甲增长的阻滞 1 1 作用,乙大于甲 言,乙(相对于N2)是甲 (相对于N1) 的 1 倍。 乙的竞争力强
建模
捕捞情况下 渔场鱼量满足
记 F ( x) f ( x) h( x)
x (t ) F ( x) rx(1 ) Ex x N
• 不需要求解x(t), 只需知道x(t)稳定的条件
实质上,我们并不需求解上面的微分方程以得到x(t) 的动态变化过程,只希望知道渔场的稳定鱼量和保 持稳定的条件,即时间 t 足够长以后渔场鱼量 x(t) 的趋向,并由此确定最大持续产量。为此可以直接 求上面常微分方程的平衡点并分析其稳定性。
(二阶)非线性 (自治)方程
1 (t ) f ( x1 , x2 ) x 的平衡点及其稳定性 2 (t ) g ( x1 , x2 ) x
f ( x1 , x2 ) 0 g ( x1 , x2 ) 0
的根
0 1
平衡点P0(x10, x20) ~ 代数方程
x ( t ) x , 若从P0某邻域的任一初值出发,都有 lim 1 t lim x2 (t ) x , 称P0是微分方程的稳定平衡点 t
6.3
种群的相互竞争
• 一个自然环境中有两个种群生存,它们之间的 关系:相互竞争;相互依存;弱肉强食。 • 当两个种群为争夺同一食物来源和生存空间相 互竞争时,常见的结局是,竞争力弱的灭绝, 竞争力强的达到环境容许的最大容量。 • 建立数学模型描述两个种群相互竞争的过程, 分析产生这种结局的条件。
一阶常微分方程的平衡点及其稳定性
dx x F ( x, t ) dt x dx F ( x) (1) dt
一阶微分非线性方程
一阶非线性(自治)方程
F(x)=0的根 x0 ~微分方程的平衡点 (或奇点 )。它也是 方程(1)的解. 设x(t)是方程的解,若从x0 某邻域的任一初值出发, 都有
长后趋向有限值)的条件 k, l ~ 对方军备数量的刺激; g, h ~ 本方军备竞赛的潜力。
(t ) x ky g x 模型 (t ) lx y h y
kl
1) 双方经济制约大于双方军备刺激时,军备竞赛 才会稳定,否则军备将无限扩张。 2) 若g=h=0, 则 x0=y0=0, 在 > kl 下 x(t), y(t)0,
在研究许多实际问题时,人们最为关心的 也许并非系统与时间有关的变化状态,而是系 统最终的发展趋势。例如,在研究某频危种群 时,虽然我们也想了解它当前或今后的数量, 但我们更为关心的却是它最终是否会绝灭,用 什么办法可以拯救这一种群,使之免于绝种等 等问题。要解决这类问题,需要用到微分方程 或微分方程组的稳定性理论。下面,我们将研 究几个与稳定性有关的问题。
lim y ( t ) y , 称P0是微分方程的稳定平衡点 0 t
a b 记系数矩阵 A c d
特征方程 det(A I ) 0 特征根
p q 0 p ( a d ) q det A
2
1, 2 ( p p 4q ) / 2
E r F ( x0 ) 0, F ( x1 ) 0
E~捕捞强度
x0稳定, x1不稳定
x0不稳定, x1稳定
r~固有增长率
x0 稳定, 可得到稳定产量
x1 稳定, 渔场干枯
在捕捞量稳定的条件下, 产量模型 图解法 控制捕捞强度使产量最大 F ( x) f ( x) h( x) y y=rx y=E*x x y=h(x)=Ex f ( x) rx(1 ) * P hm N P h h( x) Ex y=f(x)
g, h ~ 本方军备竞赛的潜力。 军备竞赛的结局 t 时的x(t),y(t)
常微分方程组的平衡点及其稳定性
(t ) ax by 线性常系数 x 的平衡点及其稳定性 微分方程组 y (t ) cx dy
ax by 0 平衡点P0(x0,y0)=(0,0) ~代数方程 的根 cx dy 0 若从P0某邻域的任一初值出发,都有 lim x(t ) x0 , t
x (t ) F ( x) rx(1 ) Ex x N E F ( x) 0 x0 N (1 ), x1 0 r分方程的两个特殊解。 F ( x0 ) E r, F ( x1 ) r E 稳定性判断
E r F ( x0 ) 0, F ( x1 ) 0
0 2
判断P0 (x10,x20) 稳定 性的方法——直接法 (1)的近似线性方程
问题 及 分析
• 在捕捞量稳定的条件下,如何控制捕捞 使产量最大或效益最佳。
• 如果使捕捞量等于自然增长量,渔场鱼 量将保持不变,则捕捞量稳定。
产量模型 假设
x(t) ~ 渔场鱼量
• 无捕捞时鱼的自然增长服从 Logistic规律 x (t ) f ( x) rx(1 x ) N r~固有增长率, N~最大鱼量 • 单位时间捕捞量与渔场鱼量成正比 h(x)=Ex, E~捕捞强度
p ( ) 0 q det A kl
平衡点(x0, y0)稳定的条件
p 0, q 0
kl
模型的定性解释
kh g l g h , y0 平衡点 x0 kl kl 双方军备稳定(时间充分 , ~ 本方经济实力的制约;
F ( x0 )(x x0 ) (2) x
F ( x0 ) t
易知 x0也是方程(2)的平衡点. (2)的通解为
x(t ) Ce
x0 ,
关于x0是否稳定有以下结论:
F ( x0 ) 0 x0稳定(对(2), (1))
F ( x0 ) 0 x0不稳定(对(2), (1))
lim x ( t ) x , 称x0是方程(1)的稳定平衡点 0 t
不求x(t), 判断x0稳定性的方法——直接法
由于
F ( x) F ( x0 )( x x0 ), 讨论方程(1)的稳定性时,可用
dx F ( x0 )( x x0 ) dt (2)
来代替.即
(1)的近似线性方程
稳定平衡点 x0 N (1 E / r )
捕捞 • 封闭式捕捞追求利润R(E)最大 过度 • 开放式捕捞只求利润R(E) > 0
令 E R( E ) T ( E ) S ( E ) pNE(1 ) cE =0 r
ER
r c (1 ) 2 pN
c Es r (1 ) pN
• 鱼销售价格p
• 单位捕捞强度费用c 收入 T = ph(x) = pEx 支出 S = cE
单位时间利润
R T S pEx cE
E R( E ) T ( E ) S ( E ) pNE(1 ) cE r r c r E ( 1 ) E* 求E使R(E)最大 R 2 pN 2 2 rN c 渔场 x N (1 E R ) N c hR (1 2 2 ) R 4 p N 2 2p 鱼量 r
平衡点 P0(0,0)稳定
平衡点 P0(0,0)不稳定
军备竞赛
平衡点 稳定性判断 系数 A l 矩阵
(t ) x ky g x 模型 (t ) lx y h y
kh g x0 , kl
k
l g h y0 kl
2
(t ) ax by 线性常系数 x 的平衡点及其稳定性 微分方程组 y (t ) cx dy
平衡点 P0(0,0) 特征根
1, 2 ( p p 4q ) / 2
2
微分方程一般解形式
c1e c2e
1t
2t
1,2为负数或有负实部
p>0且q>0
p<0或q<0
模型
x1 x2 1 (t ) r1 x1 x 1 N 1 N 1 2
x1 x2 2 (t ) r2 x2 x 1 2 N N 1 2
模型 t 时x (t ), x (t )的趋向 (平衡点及其稳定性) 1 2 分析
R(E)=0时的捕捞强度(临界强度) Es=2ER 临界强度下的渔场鱼量