人教版八年级下册第十七章《勾股定理》单元培优练习题(含答案)
八年级下册第17章勾股定理培优试题(含答案)

人教版数学八年级下册第17章勾股定理培优试题一.选择题(共10小题)1.在△ABC 中,∠B=90°,若BC=3,AC=5,则AB 等于( )A .2B .3C .4D .342.如图,有一长方形空地ABCD,如果AB=6米,AD=8米,要从A 走到C ,至少要走( ) A .6米 B .8米 C .10米 D .14米3.以下各组数为三角形的三边长,其中不能够构成直角三角形的是( )A .32、42、52B .7、24、25C .0.3、0.4、0.5D .9、12、154.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( ) A .3 B .5 C .4.2 D .45.某直角三角形的一直角边长为8,另一直角边长与斜边长的和为32,则斜边的长为( ) A .8 B .10 C .15 D .176.满足下列条件的△ABC,不是直角三角形的是( )A .∠C=∠A+∠BB .∠C=∠A-∠BC .a :b :c=3:4:5D .∠A :∠B :∠C=3:4:57.小明想知道学校旗杆的高度,她发现旗杆上的绳子刚好垂到地面,当她把绳子的下端拉开5米后,发现绳子下端距离地面1米,则旗杆的高是( )A .8米B .10米C .12米D .13米8.下列各组数中,不是勾股数的是( )A .9,12,15B .8,15,17C .12,18,22D .5,12,13 9.下列结论中,错误的有( )①在Rt △ABC 中,已知两边长分别为3和4,则第三边的长为5;②△ABC 的三边长分别为AB,BC,AC,若BC 2+AC 2=AB 2,则∠A=90°;③在△ABC 中,若∠A :∠B :∠C=1:5:6,则△ABC 是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A .0个B .1个C .2个D .3个10.如图,△ABC 中,AB=AC,AB=5,BC=8,AD 是∠BAC 的平分线,则AD 的长为( ) A .5 B .4 C .3 D .2二.填空题(共6小题)11.已知一个直角三角形的两直角边长分别是1和2,则斜边长为 .12.如图,在△ABC 中,∠C=90°,AD 平分∠CAB,DE ⊥AB 于E ,且DE=15cm,BE=8cm,则 BC= cm .13.平面直角坐标系上有点A(-3,4),则它到坐标原点的距离为 .14.如图,分别以直角△ABC 的三边为直径作半圆,若两直角边分别为6,8,则阴影部分的面积是 .15.定义:如图,点P 、Q 把线段AB 分割成线段AP 、PQ 和BQ ,若以AP 、PQ 、BQ 为边的三角形是一个直角三角形,则称点P 、Q 是线段AB 的勾股分割点.已知点P 、Q 是线段AB的勾股分割点,如果AP=8,PQ=12(PQ>BQ),那么BQ= .16.如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了米.三.解答题(共8小题)17.如图,在正方形网格中,小正方形的边长为1,A,B,C为格点(1)判断△ABC的形状,并说明理由.(2)求BC边上的高.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.19.我市鸭绿江边的景观区内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积,经技术人员测量∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.(1)请你帮助管理人员计算出这个四边形对角线AC的长度;(2)请用你学过的知识帮助管理员计算出这块空地的面积.20.某广场内有一块空地ABCD如图所示,现计划在空地上种草皮,经测量,∠B=90°,AB=6m,BC=8m,CD=26m,AD=24m.求四边形ABCD空地的面积.21.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=1.8.(1)求CD的长;(2)求AB的长;(3)△ABC是直角三角形吗?请说明理由.22.如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC 为0.7米,梯子顶端到地面的距离AC 为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A ′D 为1.5米,求小巷有多宽.23.如图,长7.5m 的梯子靠在墙上,梯子的底部离墙的底端4.5m .(1)求梯子的顶端到地面的距离;(2)由于地面有水,梯子底部向右滑动1.5m,则梯子顶端向下滑多少米?24.阅读下列一段文字,然后回答下列问题.已知在平面内有两点P 1()x 1,y 1、P 2()x 2,y 2,其两点间的距离P 1P 2=()x 1-x 22+()y 1-y 22,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为|x 2-x 1|或|y 2-y 1|.(1)已知A(2,4)、B(-3,-8),试求A、B两点间的距离;(2)已知M、N在平行于y轴的直线上,点M的纵坐标为4,点N的纵坐标为-1,试求M、N两点的距离为;(3)已知一个三角形各顶点坐标为D(1,6)、E(-2,2)、F(4,2),你能判定此三角形的形状吗?说明理由.答案:1-5 CCACD6-10 DDCCC11.12.3213.514.2415.416.0.817. 解:(1)结论:△ABC是直角三角形.理由:∵BC2=12+82=65,AC2=22+32=13,AB2=62+42=52,∴AC2+AB2=BC2,∴△ABC是直角三角形.(2)设BC边上的高为h.则有•AC•AB=•BC•h,∵AC=,AB=2,BC=∴h=18.解:∵AB=13,AC=20,AD=12,AD⊥BC,∴Rt△ABD中,BD===5,Rt△ACD中,CD===16,∴BC=BD+CD=5+16=21.19.解:(1)连接AC.在Rt△ABC中,∵∠ABC=90°,AB=20,BC=15,∴AC===25(米).∴这个四边形对角线AC的长度为25米.(2)在△ADC中,∵CD=7,AD=24,AC=25,∴AD2+CD2=242+72=252=AC2,∴△ADC为直角三角形,∠ADC=90°,∴S四边形ABCD=S△ADC+S△ABC=×15×20+×7×24=234(平方米),∴四边形ABCD的面积为234平方米.20. 解:连接AC,在Rt△ABC中,AC2=AB2+BC2=62+82=102,∴AC=10.在△DAC中,CD2=262,AD2=242,而242+102=262,即AC2+AD2=CD2,∴∠DCA=90°,S四边形ABCD=S△BAC+S△DAC=•BC•AB+DC•AC,=×8×6+×24×10=144(m)2,答:四边形ABCD空地的面积是144m2.21.解:(1)∵CD是AB边上的高,∴△BDC是直角三角形,∴CD===2.4;(2)同(1)可知△ADC也是直角三角形,∴AD===3.2,∴AB=AD+BD=3.2+1.8=5;(3)△ABC是直角三角形,理由如下:又∵AC=4,BC=3,AB=5,∴AC2+BC2=AB2,∴△ABC是直角三角形.22.解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+1.52=6.25,∴BD2=4.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的宽度CD为2.7米.23.解:(1)如图,在Rt△ABC中,AC2=AB2-BC2,∵AB=7.5m,BC=4.5m,∴AC==6(m),答:梯子的顶端到地面的距离为6m;(2)如图,∵BF=1.5m,∴CF=6m,∴EC==4.5(m),∴AE=1.5,答:梯子顶端向下滑1.5米.24.解:(1)AB==13,故答案为:13;(2)MN=4-(-1)=5;故答案为:5;(3)△ABC为等腰三角形.理由如下:∵DE=5,EF=4-(-2)=6,DF==5,∴DE=DF,∴△DEF为等腰三角形;。
八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)一 选择题(每小题3分 共30分)1. 如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组数是( )A. √2 √3 √5B. 1.5C. 32 42 52D. 1 22. 点A(−3,−4)到原点的距离为( )A. 3B. 4C. 5D. 73. 有一个直角三角形的两边长分别为3和4,则第三边的长为( )A. 5B. √7C. √5D. 5或√74.如果直角三角形两直角边的比为5∶12, 则斜边上的高与斜边的比为( ) A 60∶13B 5∶12C 12∶13D 60∶1695. 若一直角三角形两边长分别为12和5 则第三边长为( ) A .13 B .13或C .13或15D .156.一个圆桶底面直径为24cm ,高32cm ,则桶内所能容下的最长木棒为( )A .20cmB .50cmC .40cmD .45cm7.如图 小明准备测量一段水渠的深度 他把一根竹竿AB 竖直插到水底 此时竹竿AB 离岸边点C 处的距离米.竹竿高出水面的部分AD 长0.5米 如果把竹竿的顶端A 拉向岸边点C 处 竿顶和岸边的水面刚好相齐 则水渠的深度BD 为( )A .2米B .2.5米C .2.25米D .3米1.5CD8.如图, “赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形 已知大正方形面积为25 (x +y)2=49 用x y 表示直角三角形的两直角边(x >y) 下列选项中正确的是( )A. 小正方形面积为4B. x 2+y 2=5C. x 2−y 2=7D. xy =249.如图,在△ABC 中 ∠C =90° AC =4 BC =2.以AB 为一条边向三角形外部作正方形 则正方形的面积是( )A. 8B. 12C. 18D. 2010.如图 在Rt △ABC 中 ∠ACB =90° AC =3 BC =4 BE 平分∠ABC CD ⊥AB 于D BE 与CD 相交于F 则CF 的长是( )A. 1B. 43C. 53D. 2二 填空题(每题3分 共24分)11.若一个三角形的三边之比为5:12:13 且周长为60cm 则它的面积为_____cm 2. 12.如图所示 所有的四边形都是正方形 所有的三角形都是直角三角形 其中最大的正方形的边长为7cm 正方形A B C 的面积分别是28cm 210cm 214cm 则正方形D 的面积是___________2cm .13.在ABC中90C∠=︒AB=5 则222AB AC BC++=______.14.如图在△ABC中∠ABC=90° 分别以BC AB AC为边向外作正方形面积分别记为S1S2,S3若S2=4 S3=6则S1=__________.15.方程思想如图在Rt△ABC中∠C=90° BC=6cm AC=8cm 按图中所示方法将△BCD沿BD折叠使点C落在AB边的点C’处那么△ADC’的面积是_____cm2. 16.如图一架秋千静止时踏板离地的垂直高度DE=0.5m将它往前推送1.5m(水平距离BC=1.5m)时秋千的踏板离地的垂直高度BF=1m秋千的绳索始终拉直则绳索AD的长是m.17.如图小明利用升旗用的绳子测量学校旗杆BC的高度他发现绳子刚好比旗杆长11米若把绳子往外拉直绳子接触地面A点并与地面形成30°角时绳子末端D距A点还有1米那么旗杆BC的高度为米.18.在△ABC中AB=AC=5 BC=6.若点P在边AC上移动则BP的最小值是.三、解答题(满分46分,19题6分20 21 22 23 24题每题8分)19.小明将一副三角板如图所示摆放在一起发现只要知道其中一边的长就可以求出其它各边的长若已知CD=2求AC的长.20.如图折叠长方形的一边AD使点D落在边BC的点F处已知AB=8cm BC=10cm求(1)FC的长.(2)EF的长.21 (8分)如图已知∠ADC=90°AD=8 CD=6 AB=26 BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.22.如图 在长方形中 点在边上 把长方形沿直线折叠 点落在边上的点处。
人教版 八年级数学下册 第17章 勾股定理 培优练习(含答案)

人教版 八年级下册 第17章 勾股定理 培优练习(含答案)一、单选题(共有6道小题)1.下列各组数能构成直角三角形三边长的是( ).A .1,2,3B .4,5,6C .12,13,14D .9,40,412.下列数组为三角形的边长:(1)5,12,13;(2)10,12,13;(3)7,24,25;(4)6,8,10,其中能构成直角三角形的有( )A .4组B .3组C .2组D .1组3.如图,长方形ABC D 中,A B =3,BC =1,AB 在数轴上,若以点A 为圆心,对角线A C 的长为半径作弧交数轴的正半轴于M ,则点M 表示的数是( )A :2B :5-1C :10-1 D:54.如图,在矩形ABCD 中,AB =8 ,BC=16,将矩形ABCD 沿EF 折叠,使点C 与点A 重合,则折痕EF 的长为 ( )A .6B .12C .25D .455.如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折叠后,点D 恰好落在BC 边上的G 点处,若矩形面积为34,且∠AFG=60°,GE=2BG ,则折痕EF 的长为( )A.1B.3C.2D.326.在等腰△ABC 中,∠ACB =90°,且AC =1.过点C 作直线l ∥AB ,P 为直线l 上一点,且–1–212MB AC 0D'E F D B CA 60°E H G FD A B CAP =AB .则点P 到BC 所在直线的距离是( )A .1B .1或132-+C .1或132+D .132-+或132+ 二、填空题(共有9道小题)7.如图,图中的数字代表正方形的面积,则正方形A 的面积为 。
8.如图所示,数轴上表示1,3的点为A ,B ,且C ,B 两点到点A 的距离相等,则点C 所表示的数是 ( )A.32-B.23-C.13-D.31-9.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25; ④9,40,41,…请你写出有以上规律的第⑤组勾股数: .10.如图所示,将长方形ABCD 沿直线AE 折叠,顶点D 正好落在BC 边上F 点处,已知CE=3cm ,AB=8cm ,则图中阴影部分面积为_______.11.如图,矩形ABCD 中,8,AB =点E 是AD 上的一点,有4,AE =BE 的垂直平分线交BC 的延长线与点,F 连结EF 交CD 于点,G 若G 是CD 的中点,则BC 的长是________. 916A12BA 0C E DA E FD B C A12.如图,在矩形ABCD 中,AB =4,BC =6,若点P 在AD 边上,连接BP 、PC ,△BPC 是以PB 为腰的等腰三角形,则PB 的长为_______.13.图①所示的正方形木块棱长为6cm ,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A 爬行到顶点B 的最短距离为 cm .14.一只蚂蚁从长、宽都是30cm ,高是80cm 的长方体纸箱的A 点沿纸箱爬到B点,它所行的最短路线长度为 . 15.观察以下几组勾股数:①3,4,5;②5,12,13;③7,24,25;④9,40,41. 请寻找规律,写出有以上规律的第⑤组勾股数: ,第n 组勾股数是 .三、解答题(共有5道小题)16.如图所示,在平面直角坐标系中,点A 、B 的坐标分别为A (3,1),B (2,4),请猜想△OAB 是什么样的三角形,并证明。
人教版八年级数学下册 第17章 勾股定理 单元复习试题 附答案

第17章勾股定理一.选择题(共10小题)1.已知点A的坐标为(2,﹣1),则点A到原点的距离为()A.3B.C.D.12.满足下列条件的三角形中,不是直角三角形的是()A.三内角的度数之比为1:2:3B.三内角的度数之比为3:4:5C.三边长之比为3:4:5D.三边长的平方之比为1:2:33.一个直角三角形两条直角边的长分别为5,12,则其斜边上的高为()A.B.13C.6D.254.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A.1B.2018C.2019D.20205.历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE、EB 在一条直线上.证明中用到的面积相等关系是()A.S△EDA=S△CEBB.S△EDA+S△CEB=S△CDBC.S四边形CDAE=S四边形CDEBD.S△EDA+S△CDE+S△CEB=S四边形ABCD6.校园内有两棵树,相距12米,一棵树高为13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞()A.10米B.11米C.12米D.13米7.如图,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要()A.4米B.5米C.7米D.10米8.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1B.+1C.﹣1D.+19.△ABC是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB =50米,如果要在这块空地上种植草皮,按每平方米草皮a元计算,那么共需要资金()A.600a元B.50a元C.1200a元D.1500a元10.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是200米/分,小红用3分钟到家,小颖4分钟到家,小红和小颖家的直线距离为()A.600米B.800米C.1000米D.1400米二.填空题(共7小题)11.在Rt△ABC中,∠C=90°,BC=12,AC=9,则AB=.12.有一个直角三角形的两边为4、5,要使三角形为直角三角形,则第三边等于.13.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E 表示的实数是.14.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=,b=,c=.15.如图,正方形网格中,点A,B,C,D均在格点上,则∠ACD+∠BDC=°.16.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.如图在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D为BC边上一点,若△ABD为“准互余三角形”,则BD的长为.17.如图,四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°,若CD=4,则DE长为.三.解答题(共5小题)18.如图,△ABC中,∠ACB=90°,AB=,求斜边AB上的高CD.19.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.20.某消防队进行消防演练,在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12米,即AD=BC=12米,此时建筑物中距地面12.8米高的P 处有一被困人员需要救援,已知消防云梯的车身高AB是3.8米.为此消防车的云梯至少应伸长多少米?21.一架方梯AB长13米,如图,斜靠在一面墙上,梯子底端离墙OB为5米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了3米,那么梯子的底端在水平方向滑动了几米?22.这是某商场自动扶梯示意图,若将扶梯AC水平放置,则刚好与AB一样长.已知扶梯高度CE=5cm,CD=1cm,求扶梯AC的长.参考答案一.选择题(共10小题)1.C.2.B.3.A.4.D.5.D.6.D.7.C.8.D.9.A.10.C.二.填空题(共7小题)11.15.12.3或.13.﹣1.14.2n,n2﹣1,n2+1.15.90.16.或.17..三.解答题(共5小题)18.解:∵∠ACB=90°,AB=,∴AC==,∵×AB•CD=×AC•BC∴CD===.19.解:(1)三边分别为:3、4、5 (如图1);(2)三边分别为:、2、(如图2);(3)画一个边长为的正方形(如图3).20.某消防队进行消防演练,在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12米,即AD=BC=12米,此时建筑物中距地面12.8米高的P 处有一被困人员需要救援,已知消防云梯的车身高AB是3.8米.为此消防车的云梯至少应伸长多少米?解:由题意可知:AB=CD=3.8米,AD=12米,PC=12.8米,∠ADP=90°,∴PD=PC﹣CD=9米,在Rt△ADP中,AP==15米,答:此消防车的云梯至少应伸长15米.21.解:(1)∵AO⊥DO,∴AO===12(m),(2)∵AA′=3m,∴A′O=AO﹣AA′=9m,∴OB′===,∴BB′=OB′﹣OB=﹣5=2﹣5(m),∴梯子的底端在水平方向滑动了2﹣5米.22.解:设AC的长为x米,∵AC=AB,∴AB=AC=x米,∵EB=CD=1米,∴AE=(x﹣1)米,在Rt△ACE中,AC2=CE2+AE2,即:x2=52+(x﹣1)2,解得:x=13,答:扶梯AC的长为13米.。
人教版八年级数学下《第十七章勾股定理》单元练习含答案

人教版八年级数学下《第十七章勾股定理》单元练习含答案一、选择题1.直角三角形的斜边为20cm,两直角边之比为3:4,那么这个直角三角形的周长为()A. 27cmB. 30cmC. 40cmD. 48cm2.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为()A. 4B. 16C.D. 4或3.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A. 4B. 8C. 16D. 644.设直角三角形的两条直角边分别为a和b,斜边长为c,已知b=12,c=13,则a=()A. 1B. 5C. 10D. 255.在Rt△ABC中,∠C=90°,AB=15,AC:BC=3:4,则这个直角三角形的面积是()A. 24B. 48C. 54D. 1086.E为正方形ABCD内部一点,且AE=3,BE=4,∠E=90°,则阴影部分的面积为()A. 25B. 12C. 13D. 197.如图:在△ABC中,AB=5cm,AC=4cm,BC=3cm,CD是AB边上的高,则CD=()A. 5cmB. cmC. cmD. cm8.以下列各组数为一个三角形的三边长,能构成直角三角形的是()A. 2,3,4B. 4,6,5C. 14,13,12D. 7,25,249.如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A. 8B. 9C.D. 1010.三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形11.以下列各组数据为三角形的三边,能构成直角三角形的是()A. 4cm,8cm,7cmB. 2cm,2cm,2cmC. 2cm,2cm,4cmD. 6cm,8cm,10cm二、填空题12.已知|a-6|+(2b-16)2+=0,则以a、b、c为三边的三角形的形状是______.13.如图,△ABC中,D为BC上一点,且BD=3,DC=AB=5,AD=4,则AC=______.14.如果三角形的三边分别为,,2,那么这个三角形的最大角的度数为______ .15.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是______.16.已知|x-6|+|y-8|+(z-10)2=0,则由x、y、z为三边的三角形是______.17.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,则△BDE的面积为______cm2.18.如图,在△ABC中,∠C=90°,AC=2cm,AB=3cm,将△ABC绕点B顺时针旋转60°得到△FBE,则点E与点C之间的距离是______cm.19.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为______.20.将一副三角尺如图所示叠放在一起,若AB=24cm,则阴影部分的面积是______.三、计算题21.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AB的长.22.如图,为了测量池塘的宽度DE,在池塘周围的平地上选择了A、B、C三点,且A、D、E、C四点在同一条直线上,∠C=90°,已测得AB=100m,BC=60m,AD=20m,EC=10m,求池塘的宽度DE.23.如图,四边形ABCD中,∠B=90°,AB=BC=,CD=8,AD=10.(1)求∠BCD的度数;(2)求四边形ABCD的面积.24.如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6.求DE的长.25.如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.答案和解析【答案】1. D2. D3. D4. B5. C6. D7. B8. D9. C10. C11. D12. 直角三角形13.14. 90°15. 1516. 直角三角形17. 618.19. 3-320. 72cm221. 解:(1)∠BAC=180°-60°-45°=75°.(2)∵AC=2,∴AD=AC•sin∠C=2×sin45°=;∴AB===.22. 解:在Rt△ABC中,==80m所以DE=AC-AD-EC=80-20-10=50m∴池塘的宽度DE为50米.23. 解:(1)连接AC,在Rt△ABC中,∠B=90°,AB=BC=,根据勾股定理得:AC==6,∠ACB=45°,∵CD=8,AD=10,∴AD2=AC2+CD2,∴△ACD为直角三角形,即∠ACD=90°,则∠BCD=∠ACB+∠ACD=135°;(2)根据题意得:S四边形ABCD=S△ABC+S△ACD=××+×6×8=9+24=33.24. 解:在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10,(2分)又∵BD=BC=6,∴AD=AB-BD=4,(4分)∵DE⊥AB,∴∠ADE=∠C=90°,(5分)又∵∠A=∠A,∴△AED∽△ABC,(6分)∴,(7分)∴DE==×6=3.(8分)25. 解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC-CP=10-6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=AD•DC=AC•DQ,∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC-PC=10-=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法3、如图3,过点P作PM⊥BC于M交AD于N,∴∠PND=90°,∵PN∥CD,∴,∴,∴AN=,∴ND=8-=(10-)同理:PM=(10-)∵∠PND=90°,∴∠DPN+∠PDN=90°,∵四边形PEFD是矩形,∴∠DPE=90°,∴∠DPN+∠EPM=90°,∴∠PDN=∠EPM,∵∠PND=∠EMP=90°,∴△PND∽△EMP,∴=,∵PD=EF,DF=PE.∴,∵,∴,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴=,∵AP=,∴CF=.【解析】1. 解:根据题意设直角边分别为3xcm与4xcm,由斜边为20cm,根据勾股定理得:(3x)2+(4x)2=202,整理得:x2=16,解得:x=4,∴两直角边分别为12cm,16cm,则这个直角三角形的周长为12+16+20=48cm.故选D根据两直角边之比,设出两直角边,再由已知的斜边,利用勾股定理求出两直角边,即可得到三角形的周长.此题考查了勾股定理,利用了方程的思想,熟练掌握勾股定理是解本题的关键.2. 解:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选:D.此题要分两种情况:当3和5都是直角边时;当5是斜边长时;分别利用勾股定理计算出第三边长即可.此题主要考查了利用勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.3. 解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2-PQ2=289-225=64,则正方形QMNR的面积为64.故选D.根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.4. 解:∵直角三角形的两条直角边分别为a和b,斜边长为c,b=12,c=13,∴a===5.故选B.直接根据勾股定理即可得出结论.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5. 解:设AC=3x,则BC=4x,根据勾股定理有AC2+BC2=AB2,即(3x)2+(4x)2=152,得:x2=9,则△ABC的面积=×3x×4x=6x2=54.故选:C.设AC=3x,则BC=4x,然后根据勾股定理得到AC2+BC2=AB2,求出x2的值,继而根据三角形的面积公式求出答案.本题考查勾股定理的知识,难度适中,关键是根据勾股定理公式求出x2的值.6. 解:∵在Rt△AEB中,∠AEB=90°,AE=3,BE=4,由勾股定理得:AB=5,∴正方形的面积是5×5=25,∵△AEB的面积是AE×BE=×3×4=6,∴阴影部分的面积是25-6=19,故选D.根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.本题考查了正方形的性质,勾股定理的运用,利用勾股定理求出正方形的边长并观察出阴影部分的面积的表示是解题的关键.7. 解:在△ABC中,∵AB=5cm,AC=4cm,BC=3cm,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°.根据三角形面积相等可知,BC•AC=AB•CD,∴CD==cm.故选:B.由题干条件知:AC2+BC2=AB2,根据勾股定理的逆定理可知三角形为直角三角形,根据三角形的面积相等即可求出CD的长.本题主要考查勾股定理的逆定理的知识点,此题难度一般,利用好勾股定理的逆定理是解答本题的关键.8. 解:∵72+242=49+576=625=252.∴如果这组数为一个三角形的三边长,能构成直角三角形.故选:D.根据勾股定理的逆定理,对四个选项中的各组数据分别进行计算,如果三角形的三条边符合a2+b2=c2,则可判断是直角三角形,否则就不是直角三角形.此题主要考查学生对勾股定理的逆定理的理解和掌握.此题难度不大,属于基础题.9. 解:∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,则由面积公式知,S△ABC=AB•AC=BC•AD,∴AD=.故选C.根据所给的条件和勾股定理的逆定理证出△ABC是直角三角形,再根据三角形的面积相等即可得出BC边上的高.本题考查了勾股定理的逆定理、三角形面积的计算;由勾股定理的逆定理证出三角形是直角三角形是解决问题的关键.10. 解:化简(a+b)2=c2+2ab,得,a2+b2=c2所以三角形是直角三角形,故选:C.对等式进行整理,再判断其形状.本题考查了直角三角形的判定:可用勾股定理的逆定理判定.11. 解:A、42+72≠82,故不能构成直角三角形;B、22+22≠22,故不能构成直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、62+82=102,故能构成直角三角形.故选D.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.12. 解:由题意得:a-6=0,2b-16=0,10-c=0,解得:a=6,b=8,c=10,∵62+82=102,∴三角形为直角三角形,故答案为:直角三角形.根据非负数的性质可得a-6=0,2b-16=0,10-c=0,再解方程可得a、b、c的值,再利用勾股定理逆定理可得三角形的形状.此题主要考查了非负数的性质,以及勾股定理逆定理,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.13. 解:∵BD=3,DC=AB=5,AD=4,又∵32+42=52,∴△ABD是直角三角形,∴△ACD是直角三角形.∴AC==.先根据勾股定理的逆定理得出△ABD、△ACD是直角三角形,再根据勾股定理求出AC的长.本题考查了勾股定理的逆定理及勾股定理,确定∠ADB是直角是解题的关键.14. 解:∵()2+22=()2,∴此三角形是直角三角形,∴这个三角形的最大角的度数为90°,故答案为:90°.根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形可得答案.此题主要考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.15. 解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,,∴△ABD≌△CED(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=AD•AB=15,故答案为:15.延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形即:△ABD为直角三角形,进而可求出△ABD的面积.本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形,题目的设计很新颖,是一道不错的中考题.16. 解:∵|x-6|+|y-8|+(z-10)2=0,∴x-6=0,y-8=0,z-10=0,解得x=6,y=8,z=10,∵62+82=102,∴x2+y2=z2,∴由x、y、z为三边的三角形是直角三角形.故答案为:直角三角形.根据非负数的性质可得x-6=0,y-8=0,z-10=0,进而可得x=6,y=8,z=10,再根据勾股定理逆定理可得x、y、z为三边的三角形是直角三角形.此题主要考查了非负数的性质,以及勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.17. 解:∵AC=6cm,BC=8cm,∴AB=10cm,∵AE=6cm(折叠的性质),∴BE=4cm,设CD=DE=x,则在Rt△DEB中,42+x2=(8-x)2,解得x=3,即DE等于3cm.∴△BDE的面积=×4×3=6,故答案为:6,先根据勾股定理求得AB的长,再根据折叠的性质求得AE,BE的长,从而利用勾股定理可求得DE的长,于是得到结论.本题考查了翻折变换(折叠问题),以及利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.18. 解:连接EC,即线段EC的长是点E与点C之间的距离,在Rt△ACB中,由勾股定理得:BC===(cm),∵将△ABC绕点B顺时针旋转60°得到△FBE,∴BC=BE,∠CBE=60°,∴△BEC是等边三角形,∴EC=BE=BC=cm,故答案为:.根据旋转的性质得出BC=BE,∠CBE=60°,得出等边三角形BEC,求出EC=BC,根据勾股定理求出BC即可.本题考查了旋转的性质,勾股定理,等边三角形的性质和判定等知识点,能求出△BEC是等边三角形是解此题的关键.19. 解:(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=120°,∴BN=CN,∠B=∠ACB=30°.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设CE=2x,则CM=x,EM=x,FM=4x-x=3x,EF=ED=6-6x.在Rt△EFM中,FE=6-6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6-6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6-6x=3-3.故答案为:3-3.(方法二):将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=30°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG为等边三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=30°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.设EC=x,则BD=CF=2x,DE=FE=6-3x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-3x=x,x=3-,∴DE=x=3-3.故答案为:3-3.(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC 于点N,由AB=AC=2、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通过角的计算可得出∠FAE=60°,结合旋转的性质可证出△ADE≌△AFE(SAS),进而可得出DE=FE,设CE=2x,则CM=x,EM=x、FM=4x-x=3x、EF=ED=6-6x,在Rt△EFM中利用勾股定理可得出关于x的一元二次方程,解之可得出x的值,再将其代入DE=6-6x中即可求出DE的长.(方法二)将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=30°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG 为等边三角形,进而得出△CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CF=2x,DE=FE=6-3x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-3x=x可求出x以及FE的值,此题得解.本题考查了全等三角形的判定与性质、勾股定理、解一元二次方程以及旋转的性质,通过勾股定理找出关于x的一元二次方程是解题的关键.20. 解:∵∠B=30°,∠ACB=90°,AB=24cm,∴AC=AB=12cm.由题意可知BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=12cm.故S△ACF=×12×12=72(cm2).故答案为:72cm2.由于BC∥DE,那么△ACF也是等腰直角三角形,欲求其面积,必须先求出直角边AC的长;Rt△ABC中,已知斜边AB及∠B的度数,易求得AC的长,进而可根据三角形面积的计算方法求出阴影部分的面积.本题考查了含30°角的直角三角形的性质以及解直角三角形,发现△ACF是等腰直角三角形,并能根据直角三角形的性质求出直角边AC的长,是解答此题的关键.21. (1)根据三角形的内角和是180°,用180°减去∠B、∠C的度数,求出∠BAC的度数是多少即可.(2)首先根据AC=2,AD=AC•sin∠C,求出AD的长度是多少;然后在Rt△ABD中,求出AB的长是多少即可.此题主要考查了勾股定理的应用,以及直角三角形的性质和应用,要熟练掌握.22. 根据已知条件在直角三角形ACB中,利用勾股定理求得AC的长,用AC减去AD、CE求得DE即可.本题考查了勾股定理的应用,将数学知识与生活实际联系起来,是近几年中考重点考点之一.23. 此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理是解本题的关键.(1)连接AC,在直角三角形ABC中,利用勾股定理求出AC的长,再由CD与AD的长,利用勾股定理的逆定理判断得到三角形ACD为直角三角形,再由等腰直角三角形的性质,根据∠BCD=∠ACB+∠ACD即可求出;(2)四边形ABCD面积=三角形ABC面积+三角形ACD面积,求出即可.24. 依题意易证△AED∽△ABC,根据相似三角形的对应边的比相等,即可求出DE的长.本题考查对相似三角形性质的理解,相似三角形对应边成比例.25. (Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.方法3、先判断出△PME∽△DNP即可得出,进而用两边对应成比例夹角相等判断出△ADP∽△CDF,得出比例式即可得出结论.此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,解(Ⅰ)的关键是分三种情况讨论计算,解(Ⅱ)的关键是判断出△ADP∽△CDF,是一道中考常考题.。
人教版八年级数学下《第十七章勾股定理》单元练习含答案

人教版八年级数学下《第十七章勾股定理》单元练习含答案一、选择题(每小题4分,共32分)1.下列各组数据,是勾股数的是( D )(A),, (B)32,42,52(C)0.5,1.2,1.3 (D)12,16,202.线段a,b,c分别为△ABC中∠A,∠B,∠C的对边,下列不能构成直角三角形的是( C )(A)a=5,b=12,c=13 (B)a=b=5,c=5(C)∠A∶∠B∶∠C=3∶4∶5 (D)∠A+∠B+∠C=135°3.已知下列命题:①若|a|=|b|,则a2=b2;②若 am2>bm2,则a>b;③对顶角相等;④等腰三角形的两底角相等.其中原命题和逆命题均为真命题的个数是( B )(A)1 (B)2 (C)3 (D)44.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC,那么这四个三角形中,不是直角三角形的是( A )5.如图,在长方形ABCD中,AD=3,M是CD上的一点,将△ADM沿直线AM 对折得到△ANM,若AN平分∠MAB,则折痕AM的长为( B )(A)3 (B)2 (C)3 (D)66.如图,2×2的网格中,小正方形的边长是1,点A,B,C都在格点上,则AB边上的高为( A )(A) (B) (C) (D)7.如图,一轮船以15海里/小时的速度从港口A出发向东北方向航行,另一轮船以8海里/小时的速度同时从港口A出发向东南方向航行,离开港口2小时后,分别到达点B、点C处,则两船相距为( D ) (A)25海里(B)30海里(C)32海里(D)34海里8.如图,将一根长24 cm的筷子,置于底面直径为5 cm,高为12 cm的圆柱形水杯中,设筷子露在杯子外面的长度为h,则h的取值范围是( C )(A)12 cm≤h≤19 cm (B)12 cm≤h≤13 cm(C)11 cm≤h≤12 cm (D)5 cm≤h≤12 cm第5题图第6题图第7题图第8题图二、填空题(每小题4分,共24分)9.命题“等腰三角形两腰上的高相等”是真命题(填“真”或“假”),它的逆命题是如果一个三角形两条边上的高相等,那么这个三角形是等腰三角形.10.如图,四个全等的直角三角形围成一个大正方形ABCD,中间阴影部分是一个小正方形EFGH,这样就组成一个“赵爽弦图”.若AB=5,AE=4,则正方形EFGH的面积为 1 .11.如图,△ABC中,AD=8,AC=10,DC=6,AB=17,则BC的长是21 .12.如图,在△ABC中,AB=AC=5,P是BC边上除点B,C外的任意一点,则AP2+PB·PC= 25 .13.如图是由一系列直角三角形组成的,则第5个三角形的面积为,第n个三角形的面积为.14.如图①,已知正方体ABCD A1B1C1D1的棱长为4 cm,点E,F,G分别是AB,AA1,AD的中点,截面EFG将这个正方体切去一个角后得到一个新的几何体(如图②),则图②中阴影部分的面积为 2 cm2.第10题图第11题图第12题图第13题图第14题图三、解答题(共44分)15.(6分)在Rt△ABC中,∠C=90°.(1)已知c=25,b=15,求a;(2)已知a=,∠A=60°,求b,c.解:(1)在Rt△ABC中,根据勾股定理可得a===20.(2)在Rt△ABC中,∠C=90°,∠A=60°,所以∠B=30°,所以c=2b,根据勾股定理可得a2+b2=c2,即6+b2=(2b)2,解得b=,则c=2.16.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个顶点叫做格点.(1)在图(1)中以格点为顶点画一个面积为10的正方形;(2)在图(2)中以格点为顶点画一个三角形,使三角形三边长分别为2,,,这个三角形的面积为.解:(1)面积为10的正方形的边长为,因为=,所以如图(1)所示的四边形即为所求.(2)因为=,=,所以如图(2)所示的三角形即为所求.这个三角形的面积为×2×2=2.17.(8分)如图,一个直径为10 cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1 cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,求筷子长度和杯子的高度.解:设杯子的高度是x cm,那么筷子的高度是(x+1)cm,根据勾股定理得x2+52=(x+1)2,所以x2+25=x2+2x+1,所以x=12,12+1=13(cm).答:杯子高12 cm,筷子长13 cm.18.(8分)学了勾股定理后,刘老师给学生布置了一道题:如图△ABC 中,∠B=45°,∠BAC=75°,AB=,求BC的长.有些同学认为△ABC不是直角三角形,求不出BC的长,老师让学生小组合作,经过讨论形成共识:可以通过作垂直构建直角三角形求解.请你结合他们的思路完成这一问题.解:如图过点A作AD⊥BC于点D,在Rt△ABD中,∠B=45°,所以DA=DB,由勾股定理得AD2+BD2=AB2=6,解得AD=DB==.因为∠B=45°,∠BAC=75°,所以∠C=60°,所以∠DAC=30°,所以CD=AC,由勾股定理得AD2+CD2=AC2,即3+CD2=4CD2,解得CD=1.则BC=BD+CD=+1.19.(8分)小红同学要测量A,C两地的距离,但A,C之间有一水池,不能直接测量,于是她在A,C同一平面上选取了一点B,测量得到AB=80米,BC=20米,∠ABC=120°,请你帮助小红同学求出A,C两点之间的距离(参考数据:≈4.5,≈4.6)解:如图,过点C作CD⊥AB交AB延长线于点D,因为∠ABC=120°,所以∠CBD=60°.在Rt△BCD中,∠BCD=90°-∠CBD=30°,所以BD=BC=×20=10(米),所以CD==10(米),所以AD=AB+BD=80+10=90(米).在Rt△ACD中,AC=≈92(米).答:A,C两点之间的距离约为92米.20.(8分)台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向由点A向点B移动,已知点C为一海港,且点C与直线AB上两点A,B 的距离分别为300 km 和400 km,又AB=500 km,以台风中心为圆心周围250 km以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风的速度为20 km/h,台风影响该海港持续的时间有多长? 解:(1)海港C受台风影响.理由:如图,过点C作CD⊥AB于D,因为AC=300 km,BC=400 km,AB=500 km,所以AC2+BC2=AB2.所以△ABC是直角三角形.所以AC·BC=CD·AB,所以300×400=500CD,所以CD==240(km).因为以台风中心为圆心周围250 km以内为受影响区域,所以海港C受到台风影响.(2)当EC=250 km,FC=250 km时,正好影响海港C,因为ED==70(km),所以EF=140 km,因为台风的速度为20 km/h,所以140÷20=7(h),即台风影响该海港持续的时间为7小时.附加题(共20分)21.(10分)如图,把长方形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处;(1)求证:B′E=BF;(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给予证明.(1)证明:由题意得B′F=BF,∠B′FE=∠BFE,在长方形ABCD中,AD∥BC,所以∠B′EF=∠BFE,所以∠B′FE=∠B′EF,所以B′F=B′E,所以B′E=BF.(2)解:a,b,c三者存在的关系是a2+b2=c2.证明:由(1)知B′E=BF=c,A′E=AE=a,A′B′=AB=b,在△A′B′E中,∠A′=90°,所以A′E2+A′B′2=B′E2,所以a2+b2=c2.22.(10分)已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则①线段PB= ,PC= ;②猜想:PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程.解:(1)①因为△ABC是等腰直角三角形,AC=1+,所以AB===+,因为PA=,所以PB=AB-PA=,如图(1),过C作CD⊥AB于点D,则AD=CD=AB=,所以PD=AD-PA=,在Rt△PCD中,PC==2.②PA2+PB2=PQ2.证明如下:如图(1),因为△ACB为等腰直角三角形,CD⊥AB,所以CD=AD=DB,因为PA2=(AD-PD)2=(CD-PD)2=CD2-2CD·PD+PD2,PB2=(BD+PD)2=(CD+PD)2=CD2+2CD·PD+PD2,所以PA2+PB2=2(CD2+PD2),在Rt△PCD中,由勾股定理可得PC2=CD2+PD2,所以PA2+PB2=2PC2,因为△CPQ为等腰直角三角形,且∠PCQ=90°,∠CPQ=45°,所以PQ=PC,所以2PC2=PQ2,所以PA2+PB2=PQ2.(2)如图(2),过C作CD⊥AB于点D,因为△ACB为等腰直角三角形,CD⊥AB,因为PA2=(AD+PD)2=(CD+PD)2=CD2+2CD·PD+PD2,PB2=(PD-BD)2=(PD-CD)2=CD2-2CD·PD+PD2,所以PA2+PB2=2(CD2+PD2),在Rt△PCD中,由勾股定理可得PC2=CD2+PD2,所以PA2+PB2=2PC2, 因为△CPQ为等腰直角三角形,且∠PCQ=90°,∠CPQ=45°,所以PQ=PC,所以2PC2=PQ2,所以PA2+PB2=PQ2.。
新人教版八年级下数学第十七章勾股定理提高练习与常考难题和培优题压轴题(含解析)-

新人教版八年级下第十七章勾股定理提高练习与常考难题和培优题压轴题(含解析)一.选择题(共8小题)1.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.2.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c23.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+6.一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米7.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.48.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169二.填空题(共5小题)9.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是.10.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为米.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是(只填数,不填等式)13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.三.解答题(共27小题)14.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.15.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.16.如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?19.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC 边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t 秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.20.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.21.(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n >0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?23.(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S 的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).24.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代数式(x+1)2﹣4(x+1)+4的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB=;②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c 的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即∴.28.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)30.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.31.在一次“构造勾股数”的探究性学习中,老师给出了下表:m 2 3 3 4…n1123…a22+1232+1232+2242+32…b4 6 1224 …c22﹣1232﹣1232﹣2242﹣32…其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a=,b=,c=.(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.32.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.33.阅读下面的情景对话,然后解答问题:(1)理解:①根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)②若某三角形的三边长分别为1、、2,则该三角形(是或不是)奇异三角形.(2)探究:若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)34.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112=+ ;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.38.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B 处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.39.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.40.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对2.图中字母所代表的正方形的面积为144的选项为()A.B.C.D.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.﹣C.2 D.﹣24.如图,带阴影的正方形面积是.5.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD=.6.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析一.选择题(共8小题)1.(2016秋•吴江区期中)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.(2016春•抚顺县期中)下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选C.【点评】本题考查了勾股定理的正确运用,只有斜边的平方才等于其他两边的平方和.3.(2016春•临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.4.(2015春•青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.5.(2016春•南陵县期中)如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.【解答】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选A.【点评】本题考查了勾股定理、实数与数轴.找出OA=OB是解题的关键.6.(2015春•蓟县期中)一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米【分析】先根据梯子的顶端下滑了0.4米求出A′C的长,再根据勾股定理求出B′C 的长,进而可得出结论.【解答】解:(1)∵在Rt△ABC中,AB=2.5m,BC=0.7m,∴AC===2.4(m).∵梯子的顶端下滑了0.4米,∴A′C=2m,∵在Rt△A′B′C中,A′B′=2.5m,A′C=2m,∴B′C==1.5m,∴BB′=B′C﹣BC=1.5﹣0.7=0.8m.故选C.【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(2015春•罗田县期中)在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.4【分析】根据勾股定理求出AB的长即可解答.【解答】解:在Rt△ABC中,根据勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=4.故选D.【点评】本题综合考查了勾股定理的应用,找到关系MN=AM+BN﹣AB是关键.8.(2016春•重庆校级期中)如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2的值.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选C.【点评】考查了勾股定理的证明,注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.二.填空题(共5小题)9.(2016春•固始县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是7cm≤h≤16cm.【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故答案为:7cm≤h≤16cm.【点评】本题考查了勾股定理的应用,求出h的值最大值与最小值是解题关键.10.(2015春•汕头校级期中)如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为(1+)米.【分析】根据题意利用勾股定理得出BC的长,进而得出答案.【解答】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC2,∴BC=,∴则树高为:(1+)m.故答案为:(1+).【点评】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.11.(2016春•高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,则Rt△ABC的面积为ab=24(cm2).故答案为:24cm2.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.(2016春•嘉祥县期中)观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是15,112,113(只填数,不填等式)【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数.【解答】解:∵第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春•武昌区期中)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=84,c=85.【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.【点评】认真观察各式的特点,总结规律是解题的关键.三.解答题(共27小题)14.(2016春•黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.(2016秋•永登县期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB ⊥CB 于B ,∴S △ABC =,S △DAC =,∵AB=CB=,DA=1,AC=2, ∴S △ABC =1,S △DAC =1而S 四边形ABCD =S △ABC +S △DAC ,∴S 四边形ABCD =2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD 是直角三角形是解题的关键.16.(2016春•邹城市校级期中)如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC 即为所求.【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春•平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A 点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC中,∴==200,∴A、C两点之间的距离为200km.【点评】本题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.(2015秋•新泰市期中)如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?【分析】(1)过A作AE⊥BD于E,线段AE的长即为台风中心与气象台A的最短距离,由含30°角的直角三角形的性质即可得出结果;(2)根据题意得出线段CD就是气象台A受到台风影响的路程,求出CD的长,即可得出结果.【解答】解:(1)过A作AE⊥BD于E,如图1所示:∵台风中心在BD上移动,∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.(2)∵台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12(小时).【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题(2)的关键.19.(2015春•阳东县期中)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.。
人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)

人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)分值:120分时间:90分钟一、选择题(本大题共12道小题,共36分)1.已知三角形的三条边分别为a,b,c,则下列不能判断三角形为直角三角形的是A. B. C. D.2.下列各组数是勾股数的是A. ,,B. 1,1,C. ,,D. 5,12,133.如图,中,,,,点P是BC边上的动点,则AP的长不可能是A. B. 4 C. D. 7(第3题图)(第4题图)4.如图,矩形ABCD中,,,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M为A. 2B.C.D.5.如图所示,正方形ABGF和正方形CDBE的面积分别是100和36,则以AD为直径的半圆的面积是A. B. C. D.(第5题图)(第6题图)6.如图,一次飓风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是A. 5米B. 6米C. 7米D. 8米7.如图,在的网格中,每个小正方形的边长均为1,点A,B,C都在格点上.若BD是的高,则BD的长为A. B. C. D.(第7题图)(第9题图)8.下列命题中正确的是A. 在直角三角形中,两条边的平方和等于第三边的平方B. 如果一个三角形两边的平方差等于第三边的平方,那么这个三角形是直角三角形C. 在中,,,的对边分别为a,b,c,若,则D. 在中,若,,则9.如下图,在长方形ABCD中,,,将此长方形折叠,使点D与点B 重合,折痕为EF,则的面积为A. B. C. D.10.如下图,在中,,,,CD平分交AB于点D ,E是AC的中点,P是CD上一动点,则的最小值是A. B. 6 C. D.(第10题图)(第11题图)11.如图,透明的圆柱形容器容器厚度忽略不计的高为,底面周长为,在容器内壁离容器底部的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且在离容器上部的点A处,则蚂蚁吃到饭粒需爬行的最短路程是A. B. C. D.12.勾股定理是几何中的一个重要定理,在我国古算书周髀算经中就有“若勾三、股四、则弦五”的记载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《勾股定理》单元培优练习题一.选择题1.下列命题中,是假命题的是( )A.有一个内角等于60°的等腰三角形是等边三角形B.在直角三角形中,斜边上的高等于斜边的一半C.在直角三角形中,最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等2.下列各组数中,能构成直角三角形的是( )A.4,5,6B.1,1,C.6,8,11D.5,12,233.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是( )A.6B.C.D.4.有一个三角形两边长为4和5,要使三角形为直角三角形,则第三边长为( )A.3B.C.3或D.以上都不对5.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是( )A.7B.8C.7D.76.在下列各组数中,是勾股数的是( )A.1、2、3B.2、3、4C.3、4、5D.4、5、67.在同一平面上把三边BC=3,AC=4,AB=5的三角形沿最长边AB翻折后得到△ABC′,则CC′的长等于( )A.B.C.D.8.如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为( )A.B.C.D.9.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为( )A.9B.6C.4D.310.从电线杆离地面8米处拉一根长为10m的缆绳,这条缆绳在地面的固定点距离电线杆底部有( )m.A.2B.4C.6D.811.如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是( )A.9cm B.8cm C.7cm D.6cm12.若△ABC的三边a、b、c满足(a﹣b)2+|a2+b2﹣c2|=0,则△ABC是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二.填空题13.直角三角形两条边的长度分别为3cm,4cm,那么第三条边的长度是 cm.14.若△ABC得三边a,b,c满足(a﹣b)(a2+b2﹣c2)=0,则△ABC的形状为 .15.已知a,b是互质的正整数,且a+b,3a,a+4b恰为一直角三角形的三条边长,则a+b的值等于 16.如图,在Rt△ABC中,∠A=90°,AB=AC=4,点D为AC的中点,点E在边BC上,且ED⊥BD,则△CDE的面积是 .17.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数 , , .18.将一副三角尺按如图所示方式叠放在一起,若AB=20cm,则阴影部分的面积是 cm2.19.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形的形状是 三角形.20.若3,4,a和5,b,13是两组勾股数,则a+b的值是 .21.如图,小正方形边长为1,则△ABC中AC边上的高等于 .22.如图,四个全等的直角三角形围成一个大正方形ABCD,中间阴影部分是一个小正方形EFGH,这样就组成一个“赵爽弦图”.若AB=5,AE=4,则正方形EFGH的面积为 .三.解答题23.在△ABC中,∠ACB=90°,AC=5,AB=BC+1,求Rt△ABC的面积.24.如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.25.操作:剪若干个大小形状完全相同的直角三角形,三边长分别记为a、b、c(如图①),分别用4张这样的直角三角形纸片拼成如图②③的形状,图②中的两个小正方形的面积S2、S3与图③中小正方形的面积S1有什么关系?你能得到a、b、c之间有什么关系?26.观察下表列 举猜 想3、4、532=4+55、12、1352=12+137、24、2572=24+25……13、b、c132=b+c请你结合该表格及相关知识,求出b,c的值,并验证13,b,c是否是勾股数?27.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;(2)用这样的两个三角形可以拼出多种四边形,画出周长最大的四边形;当a=2,b=4时,求这个四边形的周长.参考答案一.选择题1.解:A、等腰三角形底角相等,若底角为60°,则顶角为180°﹣60°﹣60°=60°,若顶角为60°,则底角为=60°,所以有一个角为60°的等腰三角形即为等边三角形,故A选项正确;B、直角三角形中斜边的中线等于斜边的一半,只有在等腰直角三角形中斜边的高与斜边的中线才会重合,故B选项错误;C、在直角三角形中,最大的边为斜边,根据勾股定理可知斜边长的平方的等于两直角边长平方的和,故C选项正确;D、过三角形角平分线的交点作各边的垂线,则三角形分成3对小三角形,其中各顶点所在的两个直角三角形全等,即过角平分线作的高线相等,故D选项正确;即B选项中命题为假命题,故选:B.2.解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.3.解:∵∠ACB=90°,AC=8,AB=10,∴BC==6,△ABC的面积=×AB×CD=×AC×BC,即×10×CD=×8×6,解得,CD=,故选:C.4.解:当长为4和5的两边都是直角边时,斜边是:=;当长是5的边是斜边时,第三边是:=3.第三边长是:或3.故选:C.5.解:∵AE=5,BE=12,即12和5为两条直角边长时,小正方形的边长=12﹣5=7,∴EF=;故选:C.6.解:A、12+22=5≠32,不是勾股数,故本选项不符合题意.B、22+32=13≠42,不是勾股数,故本选项不符合题意.C、32+42=52,是勾股数,故本选项符合题意.D、42+52=41≠62,不是勾股数,故本选项不符合题意.故选:C.7.解:如图所示,连接CC′,根据对称的性质可知CC′⊥AB,且CC′=2CE,∵AC×BC=AB×CE,∴CE=,∴CC′=2×CE=.故选:D.8.解:如图所示:S△ABC=×BC×AE=×BD×AC,∵AE=4,AC==5,BC=4即×4×4=×5×BD,解得:BD=.故选:C.9.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为: ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.10.解:由题意得,在Rt△ABC中,AC=8,AB=10,所以BC==6.故选:C.11.解:由题意,可得这只烧杯的直径是:=6(cm).故选:D.12.解:∵(a﹣b)2+|a2+b2﹣c2|=0,∴a﹣b=0,a2+b2﹣c2=0,解得:a=b,a2+b2=c2,∴△ABC的形状为等腰直角三角形;故选:C.二.填空题(共10小题)13.解:当这个直角三角形的两直角边分别为3cm,4cm时,则该三角形的斜边的长为:=5(cm).当这个直角三角形的一条直角边为3cm,斜边为4cm时,则该三角形的另一条直角边的长为:=(cm).故答案为:5或.14.解:∵(a﹣b)(a2+b2﹣c2)=0,∴a=b或a2+b2=c2.当只有a=b成立时,是等腰三角形.当只有第二个条件成立时:是直角三角形.当两个条件都成立时:是等腰直角三角形.15.解:在直角三角形中,(1)若a+4b为斜边,则(a+4b)2=(a+b)2+9a2∴9a2﹣6ab﹣15b2=0,(a+b)(3a﹣5b)=0∵a+b≠0,且a,b互质,∴a=5,b=3.三条边长分别为8,15,17,a+b=8.(2)若3a为斜边,则9a2=(a+b)2+(a+4b)2,∴7a2﹣10ab﹣17b2=0,∴(a+b)(7a﹣17b)=0.∵a+b≠0,∴7a=17b,a,b互质,∴a=17,b=7.三条边长分别为24,45,51,a+b=24.综上得a+b=8.或a+b=24.16.解:点D为AC的中点故AD=DC=AC=2,S△ABD=S△BDC=S△ABC=12,由勾股定理得BC==4,过D点作DF垂直于BC于F点,DF===,BD2=AD2+AB2=12+48=60,BD=2,由勾股定理得BF===3,由射影定理得BD2=BF•BE,∴BE===CE=BC﹣BE=4﹣=,S△CDE=×CE×DF=××=2.故答案为:2.17.解:符合a2+b2=c2即可,例如5,12,13;8,15,17;9,40,41.(答案不唯一)18.解:∵∠B=30°,∠ACB=90°,AB=20cm,∴AC=10cm.∵∠AED=∠ACB=90°,∴BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=10cm.故S△ACF=×10×10=50(cm2).故答案为50.19.解:∵2ab=(a+b)2﹣c2,∴2ab=a2+2ab+b2﹣c2,∴a2+b2=c2,∵三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,∴此三角形是直角三角形,故答案为:直角.20.解:∵3,4,a和5,b,13是两组勾股数,∴a=5,b=12,∴a+b=17,故答案为:17.21.解:过B作BG⊥AC,交AC于点G,在Rt△ACF中,AF=2,CF=1,根据勾股定理得:AC==,∵S△ABC=S正方形AFED﹣S△BCE﹣S△ABD﹣S△ACF=4﹣×1×1﹣2××2×1=,S△ABC=AC•BG,∴×BG=,则BG=.故答案为:22.解:直角三角形直角边的较短边为=3,正方形EFGH的面积=5×5﹣4×3÷2×4=25﹣24=1.故答案为:1.三.解答题(共5小题)23.解:如图所示:设AB=x,则BC=x﹣1,故在Rt△ACB中,AB2=AC2+BC2,故x2=52+(x﹣1)2,解得;x=13,即AB=13.∴BC=12,∴S△ABC=•AC•BC=×5×12=30.24.解:设CD=x,则BD=BC+CD=9+x.在△ACD中,∵∠D=90°,∴AD2=AC2﹣CD2,在△ABD中,∵∠D=90°,∴AD2=AB2﹣BD2,∴AC2﹣CD2=AB2﹣BD2,即102﹣x2=172﹣(9+x)2,解得x=6,∴AD2=102﹣62=64,∴AD=8.故AD的长为8.25.解:分别用4张直角三角形纸片,拼成如图2、图3的形状,观察图2、图3可发现,图2中的两个小正方形的面积之和等于图3中的小正方形的面积,即S2+S3=S1,这个结论用关系式可表示为a2+b2=c2.26.解:根据图表,由图可得规律:,解得.所以b=84;c=85.∵132+842=7225,852=7225,∴13,84,85是勾股数.27.解(1)由图可得:,整理得:,整理得:a2+b2=c2;(2)当a=2,b=4时,根据勾股定理得:;如图1:则四边形的最大周长为2b+2c=.。