量子力学真题总结
量子力学基础试题及答案

量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。
答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。
答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。
答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。
答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。
答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。
答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。
2. 描述量子力学中的波函数坍缩现象。
答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。
量子力学复习题附答案

量子力学复习题附答案1. 量子力学的基本假设是什么?答案:量子力学的基本假设包括波函数假设、态叠加原理、测量假设、不确定性原理、薛定谔方程和泡利不相容原理。
2. 描述态叠加原理的内容。
答案:态叠加原理指出,一个量子系统可以处于多个可能状态的线性组合,即叠加态。
系统的态函数可以表示为这些可能状态的叠加。
3. 测量假设在量子力学中扮演什么角色?答案:测量假设指出,当对量子系统进行测量时,系统会从叠加态“坍缩”到一个特定的本征态,其概率由波函数的模方给出。
4. 不确定性原理如何表述?答案:不确定性原理表述为,粒子的位置和动量不能同时被精确测量,它们的不确定性的乘积总是大于或等于某个常数,即 $\Delta x\Delta p \geq \frac{\hbar}{2}$。
5. 薛定谔方程的形式是什么?答案:薛定谔方程的形式为 $i\hbar\frac{\partial}{\partialt}\Psi(r,t) = \hat{H}\Psi(r,t)$,其中 $\Psi(r,t)$ 是波函数,$\hat{H}$ 是哈密顿算符,$\hbar$ 是约化普朗克常数。
6. 泡利不相容原理的内容是什么?答案:泡利不相容原理指出,一个原子中不能有两个或更多的电子处于相同的量子态,即具有相同的一组量子数。
7. 什么是波函数的归一化?答案:波函数的归一化是指波函数的模方在整个空间的积分等于1,即$\int |\psi|^2 d\tau = 1$,其中 $d\tau$ 是体积元素。
8. 描述量子力学中的隧道效应。
答案:隧道效应是指粒子通过一个势垒的概率不为零,即使其动能小于势垒的高度。
这是量子力学中粒子波性质的体现。
9. 什么是自旋?答案:自旋是量子力学中粒子的一种内禀角动量,它与粒子的质量和电荷有关,但与粒子的轨道角动量不同。
10. 什么是能级和能级跃迁?答案:能级是指量子系统中粒子可能的能量状态,能级跃迁是指粒子从一个能级跃迁到另一个能级的过程,通常伴随着能量的吸收或发射。
量子力学经典题目及解答

8 a1
a2
a3
2 a1
a2
a3
第一章
补充:1.设 1 af1(x)ei(x和t) 2 bf2 (x)ei分(x别t表) 示
微观粒子的两个可能状态,求当粒子处于叠加态 1 2
时的相对几率分布。a,b为复常数, f1, f2为实函数。 解: 2 1 2 2 af1ei( xt) 2 bf2ei( xt) 2
n1
x
2
, px
h
x
n1h , 2a1
同理, py n2h / 2a2, pz n3h / 2a3 n1, n2, n3 1, 2,3
E
p2
2
1
2
(
px2
py2
pz2 )
h2
2
(
n1 2a1
)2
( n2 2a2
)2
( n3 2a3
)2
E h2 [( n1 )2 ( n2 )2 ( n3 )2 ] 2 2 [( n1 )2 ( n2 )2 ( n3 )2 ]
1
hv kT
1 c2
v T
d
c1v3dv ec2v/T 1
c1v3dv c2v /T
c1 c2
Tv2dv
----R-J公式
2.由玻尔角动量量子化条件导出氢原子能级公式 En
解: 角动量量子化条件,
es2 r2
Ln
v2
r
rnv
(向心力)
(1) (2)
r * (2) :
es2
(v2
)
(1)
(
的两组超越方程,经图解法求出束缚态的 后, k,可由(15)
得 2.8出分对子应间的的能范级德瓦E。n耳斯力所产生的势能可以近似的表示为
《量子力学》基本概念考查题目以及答案

《量子力学》基本概念考查题目以及答案1. 量子力学中,粒子的状态由什么描述?A. 位置B. 动量C. 波函数D. 能量答案:C2. 海森堡不确定性原理表明了什么?A. 粒子的位置和动量可以同时准确知道B. 粒子的位置和动量不能同时准确知道C. 粒子的速度和动量可以同时准确知道D. 粒子的位置和能量可以同时准确知道答案:B3. 量子纠缠是指什么?A. 两个粒子之间的经典相互作用B. 两个粒子之间的量子相互作用C. 两个粒子的量子态不能独立于彼此描述D. 两个粒子的量子态可以独立于彼此描述答案:C4. 在量子力学中,一个粒子通过一个势垒的隧穿概率是由什么决定的?A. 粒子的能量B. 势垒的宽度C. 势垒的高度D. 所有以上因素答案:D5. 量子力学的基本方程是什么?A. 牛顿第二定律B. 麦克斯韦方程组C. 薛定谔方程D. 热力学第二定律答案:C6. 在量子力学中,一个系统的波函数坍缩通常发生在什么情况下?A. 当系统处于叠加态时B. 当系统被测量时C. 当系统与环境相互作用时D. B 和 C答案:D7. 量子力学中的泡利不相容原理指出,一个原子中的两个电子不能具有完全相同的一组量子数,这主要影响什么?A. 电子的质量B. 电子的自旋C. 电子的能级D. 电子的电荷答案:C8. 量子退相干是什么?A. 量子态的相干性增强的过程B. 量子态的相干性丧失的过程C. 量子态的叠加态减少的过程D. 量子态的不确定性减少的过程答案:B9. 在量子力学中,哪个原理说明了全同粒子不能被区分?A. 泡利不相容原理B. 量子叠加原理C. 量子不确定性原理D. 量子对称性原理答案:D10. 量子力学中的“观测者效应”指的是什么?A. 观测者的存在改变了被观测系统的状态B. 观测者的存在增强了被观测系统的能量C. 观测者的存在减小了被观测系统的不确定性D. 观测者的存在导致了被观测系统的量子坍缩答案:A11. 在量子力学中,一个粒子的波函数通常是复数还是实数?A. 实数B. 复数C. 整数D. 可以是复数也可以是实数答案:B12. 量子力学中的“粒子-波动二象性”指的是什么?A. 粒子有时表现为波动,有时表现为粒子B. 粒子和波动是两种完全不同的实体C. 粒子和波动是同一种实体的不同表现形式D. 粒子的存在需要波动作为媒介答案:C13. 在量子力学中,一个粒子的动量和位置可以同时被准确测量吗?A. 是的,可以同时准确测量B. 不可以,这受到海森堡不确定性原理的限制C. 只有在特定条件下可以D. 只有使用特殊仪器才可以答案:B14. 量子力学中的“超定性”是指什么?A. 系统的状态由多个波函数描述B. 系统的多个性质可以独立测量C. 系统的波函数可以有多个解D. 系统的多个状态可以共存答案:A15. 在量子力学中,一个粒子的自旋是什么?A. 粒子旋转的速度B. 粒子的量子态的一个内在属性C. 粒子的角动量D. 粒子的动能答案:B16. 量子力学中的“测量问题”指的是什么?A. 如何测量量子系统的尺寸B. 如何测量量子系统的动量C. 测量过程如何影响量子系统的状态D. 测量结果的统计性质答案:C17. 量子力学中的“波函数坍缩”是指什么?A. 波函数在空间中的扩散B. 波函数在时间中的演化C. 波函数从叠加态突然转变为某个特定的状态D. 波函数的数学表达式变得复杂答案:C18. 在量子力学中,一个系统的能量通常是量子化的,这意味着什么?A. 系统的能量可以连续变化B. 系统的能量可以是任何值C. 系统的能量只能取特定的离散值D. 系统的能量只能增加或减少特定的量答案:C19. 量子力学中的“非局域性”指的是什么?A. 量子系统的状态不能在空间中定位B. 量子系统的状态不能在时间中定位C. 量子系统的状态不受空间距离的限制D. 量子系统的状态不受时间距离的限制答案:C20. 在量子力学中,一个粒子的波函数的绝对值平方代表什么?A. 粒子的总能量B. 粒子的总动量C. 粒子在某个位置被发现的概率密度D. 粒子的电荷密度答案:C这套选择题覆盖了量子力学的多个基本概念,适合用于检验学生对量子力学基础知识的掌握情况。
量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。
2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。
3. 描述量子隧道效应,并解释它在实际应用中的重要性。
三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。
求该粒子的能量E。
2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。
求该电子的动量分布。
答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。
这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。
2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。
例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。
3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。
量子力学真题总结

1 im m ( ) e , 其 中 数。 2 1 来自于在一个周期内 2
对波函数积分的归一化。因 为波函数的周期为 2 , 指数 函数要满足这样的周期必然 有 m 0,1,2 ~~~ , 能量由
2 R 2 E 决定 m
2.坐标平移到对称区间, 就得 到了对称位势的 势垒问 题。我们有基态为偶宇称, 第一激发态为奇宇称,粒子 本来就不在原点位置出现, 故此时得到任何的和无势阱 无异。
f ( k ) f ( k ) f ( n)
k n k
是一个关键哇! 再利用
n n i ( A An ) n
再带入能级二级修正公式
( 2) (1) En n H n
k
k
k 1 得到了
n 的简明形式很厉害。
能量二级修正也是一样, 注意 直接等于 0 的量
现 ,解一阶微 f 密度是一个不错的选择! 一个以速度 f 传播的一个 t p
分方程可以得到个波包 3.1 将电场势能表达式里面的 x 拿到谐振子的二次项里面 去, 合并成一个 x x x0 的 关于 x 位移, 并不改变能级的 量,后面还减去一个常量。 波包,坐标为 p 的。要是在 坐标表象呢? 对于谐振子, x 方向加上电场 后对于谐振子的能级是有一
一维谐振子是重中之重, 一定 能够要把它里面的东西都挖 熟,来龙去脉! 位力定理, 海尔曼定理要熟了 又熟,超级熟,这是基本。 对于 Hamiltonian 变换到球坐 标形式, 有角动量可以得其平 方的本征态也要熟啊熟啊啊! 对本征方程求导, 再来求平均 值应该是个主要方法。 这样的 构造可以得出新的关系式, 特 别是在某个量的本征方程里 面最好用这个。
H 对两个参量的微分都为
量子力学经典八十题(推荐版本)【含答案】

ψ
nxnynz
(x,
y,
z)
=
⎧ ⎪ ⎨ ⎪⎩0
8 abc ,
sin
nxπx a
sin
nyπ b
y
sin
nzπ c
z
, 0 < x < a,0 其余区域
<
y
<
b
,
0
<
z
<
c
n = 1, 2,3,""
9. 粒子在一维 δ 势阱
V (x) = −γ δ (x) (γ > 0)
中运动,波函数为ψ (x) ,写出ψ ′(x) 的跃变条件。
2
量子力学复习题答案(安徽大学)
( ) 解: L2 , L z 的共同本征函数是球谐函数Ylm (θ ,ϕ) 。
L2Ylm (θ ,ϕ) = l(l + 1)= 2Ylm (θ ,ϕ ) , LzYlm (θ ,ϕ ) = m=Ylm (θ ,ϕ)
15. 写出电子自旋 s z 的二本征态和本征值。
V (x)
=
−
n= 2 mx0 x
+
=2 2m
n (n −1) x2
10. 一 个 质 量 为 m 的 粒 子 在 势 V (x) 作 用 下 作 一 维 运 动 。 假 定 它 处 在 E = =2α 2 的 能 量 本 征 态 2m
ψ
(
x)
=
⎛ ⎜ ⎝
α2 π
⎞1/ ⎟
4
e−γ
2x2
⎠
2,
( a )求粒子的平均位置; ( b )求粒子的平均动量;
22. 使用定态微扰论时,对哈密顿量 H 有什么样的要求?
量子力学试题及答案

量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。
A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。
答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。
答案:±1/23. 薛定谔方程描述的是粒子的_________。
答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。
答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。
答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。
答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。
在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。
波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。
2. 请简要说明量子力学中的不确定性原理。
答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在势阱中的波函数带有系数
A, B ,两边的可直接设为 eikx
解出方程为 0 的时候千万不 能乱消去哦
自旋不能直观显化地理解。 Sz 表象,带波函数算就是了
微扰项给得这么巧,从它的样 数理方法的变量代换是关键。
子我们都可以看出有轮换关 化成独立的谐振子后能量直
系。
接相加,波函数进行相乘。
以组成两个独立的谐振子
6.2 微扰法,先得能量表达式。 两个独立的谐振子,总的波函 这么大一坨,敢不敢写也是一
再把 H 00,00 0 ,
前面求出来了有 (σ L)2 L2 (σ L) ,然后有耦合后角动
量和未耦合之间关系 (σ L) J2 L2 S2 ,其中耦合后的
态 j(l)m j 是 J2 , L2 , S2 的共同本征态,其本征值你懂的!
并度为 N 1想也想得到。 量对外表现出一致的性质。 能够要把它里面的东西都挖
宇称为 (1)N ,基态为偶。
如能级,宇称等等可以让他看 熟,来龙去脉! 上去是一个整体。
4.用拉通了的位力定理可以 位力拉通第一哥,
位力定理,海尔曼定理要熟了
求得 r 1 。
海尔曼加角动量本征为二哥, 又熟,超级熟,这是基本。 对于三弟,我们先有能量本征 对于 Hamiltonian 变换到球坐
H nxny ,00
2
nx ,1 ny ,1 ,
数都是两个直接相乘的形式, 个关键。
那么在微扰中就可以分开来 各自和各自作用。
像
(0) 11
这
种
可
以
直
接
表
出
最神奇的是,发现只有两个态 来的项我可以直接用。
后面就可以带微扰公式了 的系数都等于零的时候,微扰 警惕一维谐振子的微扰,应该
到了对称位势的 势垒问
题。我们有基态为偶宇称, 第一激发态为奇宇称,粒子 本来就不在原点位置出现, 故此时得到任何的和无势阱 无异。
基态能量随着 A 的变化是正
相关,要非负那哥哥先来解出
能量为 0 得到的 A ,非负要 求比此时的 A 大即可。
再利用基态偶宇称和坐标倒
数在原点跳跃条件求得!
移动坐标,把 x 移动成 y 比较
12 年量子 1. 平 面 转 子 由 角 动 量 替 代 动 量,解出来有
m ( )
1 eim , 其 中 2
1 来自于在一个周期内 2
对波函数积分的归一化。因
为波函数的周期为 2 ,指数
函数要满足这样的周期必然
注意是 m ( ) ,是随着 m
下标取值而不同的多个波函 数。 接下来将题给的状态用各个 束缚态来进行叠加。叠加后各
果。
在波函数一级修正有了的情 况下求二级修正的直接法要
再 利 用 k k 1 得 到 了 k
n 的简明形式很厉害。
E (2) n
n
H
(1) n
引起重视!
能量二级修正也是一样,注意 直接等于 0 的量
11 年量子: 要完全穿透,可分区间列出 波函数的解,波函数及其导 数连续条件,完全透射条件
Hamiltonian 时可以发现折合
质量是
m 2
,再考虑到对
表现形式差不多,直接带解。 S 与 在总角动量的平方运
列出 Hamiltonian 的时候,要
算上要注意关系,有
S
2
自 旋 单 态 才 可 能 存 在 束 缚 用折合质量代替方程中质量 氢原子能级和基态要记熟。
态,那么再类比氢原子即可。 束缚态要存在必须去除掉自
构造可以得出新的关系式,特 别是在某个量的本征方程里
海尔曼定理对 l 偏导
好像拼了命也最多能构造到 面最好用这个。
有 n
H r
n
0 ,且由于
这一步了,以后哦至少就要平 了命构造到这。
要牢记这三个次方项的平均
是对 r 偏导,得到了 r 3
值计算过程!
5.把现在的态在 Sz 表象中直
以及 p 在此态下的关系
对易分两条路走殊途同归可
以得到 n x m 与 n p m
之间的关系,也就反映了他们 的内在关系!
第二问的求和利用这个关系带入即可!
4.转子不说了,2012 年第一题
5.先归一化得出系数 A !自旋朝上就是波函数取得上方那个
的概率~!
态失写成那种形式就是在 Sz
总自旋 z 分量 J z Lz Sz , Lz Sz 整体作用后面态!
2 x12
2 x2 2
可
自旋就是这么神奇,它可以先 这种每个态沿各自的演化因 沿着正向后来随时演化到负。 子演化的,在求能量平均的时 并且在演化过程中伴随有角 候时间因子都要消去,故能量 动量量子化,分量量子化的特 平均值不随时间改变。 性。这是自旋的特殊性质,故 要沿负轴的概率,我们就来到
量,后面还减去一个常量。
个整体减少量,为
q2E2 2 2
,
原谐振子只是平衡位置偏移
4.波函数相乘能级相加,考虑自旋带入 (Sz ) ,简并度乘 2
5. (σ A)(σ B) A B iσ (A B) ,这个公式要会证,也
就是体会了点乘叉乘的要义。也可以先在一个方向上证明一 些之间具有的代换性质,然后再三个方向轮换得到整体的表 现形式。
重要。
解 势垒以及一维无限势阱
的基本功过后,结合宇称态就 出来了。 先算能量为 0 的情况不易想 到。
3 谐振子的那个关于 x, p 作用到态上的升降关系记清楚, x 定义记清楚就得到这 30 分了!
4.有算符的矩阵表示,只需设出波函数,先解本质值再带入解本征失,over 了!
5.先选力学量完全集,列出 两粒子作用,和氢原子在空间 旋三重态。
个态乘上演化因子得 t 时刻!
带入求平均值公式知道指数 项前后正负的消掉了,能量平 均值不随时间改变。
给出转子,隐含周期性边界条 件,由此边界条件引入量子 化,直接可以严格解出各态。 将题给态来进行可能态的叠 加!
有 m 0,1,2 ~~~ ,能量由
m
2R2E 决定
2.坐标平移到对称区间,就得
谔方程,然后 E 0 ,游离态 的撒!
这个题就是喳喳!
小于则是束缚态,看题中要 解出来的能级是一个常量,我
求只讨论束缚态。再按照 应该记得波函数的形式。
函数势阱的一般方法,奇宇
称在 x 0 的边界条件死去。
3.波函数相乘,能级相加,简 二维各向同性,整体的可观测 一维谐振子是重中之重,一定
简单的态叠加原理的运用! 先列出可能有三个值,
再分清在哪个态下取值概率,
取得 ,0, 的概率分别为 a1, a0 , a1 。Lx 在 Lz 的本征态下 再进入到态里面去分析。
平权又是一个好家伙,在本征
平均值为 0,有第一个关于 a 的方程。 Lx 与 Ly 平权可以得 态下平均值为 0 值得注意,书
能量取值必须满足 n 取整
哈氏量必厄米,题眼! 厄米后公式归纳整理! 把粒子数表象的本征失写出
来 e 2 / 2 n
n0 n!
再带入 n 中得 En
似于升降算符的性质。
3.作对易关系的矩阵元 n [x, H ] m ,一次用 H m 直接作用
得 Em , En ,一个把 H 打开后来与 x 进行对易,就可以得到 x
到第二个关于他们平方的方程。解之得!
上有证明。
4.先将整个波函数用箱归一, 自旋自由度和空间坐标自由 在 (r, r dr) 里 面 的 概 率 是
N
N12
N
2 2
,然后针对
ห้องสมุดไป่ตู้
度是相互独立的。自旋我也可 以不把它叫上下,叫黑白也可
它不积分,对所有的角度积
题目求得在各个微元概率 以,阿猫阿狗也可以!
式得到基态能量值!
10 年量子;
只存在奇宇称态, n 1,2,3
在区域内将波函数 n (x) 解出来,将现有的波函数表示成它 动量平均值计算的时候注意
的叠加。按时间因子演化即可!
弄成只取复共轭的形式!
2.粒子完全透射,同 11 年第一题
3.先归一化,看系统是处在 Y00 还是 Y11 态。要是在 Y11 中的话,
分,立体角微元中,就是对所
有径失积分 (0,)
5.有了 Hamiltonian 的矩阵, 我们直接先求本征值,再带 入求本征失。初始时刻态叠 加,随演化因子演化,能量 期望值不随时间而变。随后
运动中自旋取到负 z 的概率
用复共轭积分法即可 6.1 进 行 变 量 代 换 ,
2 x 2
2 y 2
6.一维束缚态无简并,直接带 给出了 Hamiltonian,特别是
f (k) f (k) f (n)
入微扰公式得能量一级修正 有时候在一维谐振子下,带微 kn
k
为 0!
扰公式是一门技术直接得结 是一个关键哇!
代公式有波函数修正为
n n i( A An ) n
再带入能级二级修正公式
表象中的意思! 注意后面整体作用得本征值!
记得带上 啊!
6.由于是变分法,就大胆地把 通过两个参量来约束波函数, 变 分 法 的 核 心 是 找 到 这 个