地下水渗流基本方程及数学模型共71页文档

合集下载

第章渗流-资料

第章渗流-资料

根据裘布依公式,径向渗流流速为
流量为
Q2rMkdz
dr
v kJk dz dr
浸润线方程: zh Q lnr
2kM r0
流量公式:
Q 2 .73 kM 2 H h 2 .73k 2Ms
lg R lg r 0
lg R lg r 0
影响半径:参照普通完全井
裘布依假定: ——在任一竖直线上,各点渗流方向水平; ——在同一竖直线上,各点渗流流速相等。
v k dzk dh
dl
dl
其合理性取决于 θ 的大小
dz tan
dl
单井
井是一种汲取地下水或排水用的集水建筑物,在水文地 质勘探工作和开发地下水资源中有着广泛的应用。
根据水文地质条件,可将井按其所在的位置可分为潜水 井和承压井两种基本类型。
井群
井群——多个井同时工作, 井间距离小于影响 半径,各井出水量 与单井时的出水量 不同。
普通完全井井群工作时的浸润面方程:
z2H 20 .7kQ 30 2 lg R 1 nlg r 1 r2 rn
渗流对建筑物安全稳定的影响 1.扬压力(浮力、渗透压力) 作用在建筑物基底上的力,对建筑物有倾覆的危险。
由于渗流流速很小,所流速水头忽略不计; 总水头=测压管水头;
Jp=J。
达西定律——渗流线性定律
达西定律——渗流能量损失与渗 流流速之间的关系(均匀流)。
vukJ
式中k为渗透系数。
适用范围:
Re vd1~10
式中d土壤颗粒有效直径, 取d10;即重量10%.
渗透系数k的确定:
1.实验室测定法: 2.现场测定法: 3.经验法。见相关资料

地下水渗流基本方程及数学模型总结

地下水渗流基本方程及数学模型总结
p减少 有效应力增大会引起固体颗粒的压缩变形。固 体颗粒的压缩变形比多孔介质中空隙的变形小得多,通
常可忽略。
(二)含水层的状态方程

含水层弹性存储的概念: 弹性储存:当地下水水头(水压)降低(或升高)时, 含水层、弱透水层释放(或储存)地下水的性质。 含水层弹性存储的物理意义:

(承压含水层)弹性储存与(潜水)重力储存不同;
第一步:化简方程左端项: 当渗流满足达西定律,且取坐标与各向异性主轴方向一致,有:
H v x K xx x
H v y K yy y
H v z K zz z
( v x ) H H H ( K xx ) [ K xx (K xx )] x x x x x x x
§5 描述地下水运动的数学模型及解算方法
一、各向异性含水层中地下水三维流的基本微 分方程的推导 二、地下水运动微分方程的各种形式 三、地下水运动数学模型的建立及求解
§5 描述地下水运动的数学模型及解算方法
一、各向异性含水层中地下水三维流基本微分方程的推导 为反映含水层地下水运动的普遍规律,研究选定在各向 异性多孔介质中建立地下三维不稳定流动连续性方程。 水均衡的基本思想,对某一研究对象:
描述地下水运动的数学模型及解算方法二地下水运动微分方程的各种形式zzyyxxzzyyxx使潜水面边界处理的简单化直接近似地在微分方程中处理dsdh此时1潜水面比较平缓等水头面呈铅直水流基本水平可忽略渗流速度的垂直分量v2隔水底板水平铅垂剖面上各点的水头都相等各点的水力坡度和渗流速度都相等sin可以近似地用tg代替此即著名的dupuit假设
m d( )

m
1 d d ( )

地下水数值模拟02_地下水运动的数学模型

地下水数值模拟02_地下水运动的数学模型

2
H 0
n 2
——隔水边界
第三类边界条件 H aH b n
例:弱透水边界
K H Hn H 0 n m1 / K1
溶质运移问题的边界条件
第一类边界条件
c(x,
y, z,t) 1

c1(x,
y, z,t)
——给定浓度边界
第二类边界条件 c
Di, j x j ni 2 f2 (xi , t)
u(x, y, z,t) t0 0(x, y, z)
• 2、边界条件
第一类边界条件 u(x, y, z,t) 1 1(x, y, z,t)
第二类边界条件
u n
2
1(x, y, z,t)
第三类边界条件
u



u n
3
3x,
y, z,t
水流问题的边界条件
Reynolds数小于1~10
• 有些情况下,用液体压强表示更为方便
– 例如:油水两相流动
vx

K
H x
vy

K
H y
vz

K
H z
K g k
H z p
g

k p
vx



x
v y


k
p y
vz


k


K ( d
)
dhc
C

t

x
K( )
x


y
K
(

)
y


z
K (

2地下水渗流基本方程及数学模型

2地下水渗流基本方程及数学模型

安徽理工大学 地球与环境学院 水资源与规划系
Ch2 地下水渗流微分方程及数学模型
地下水动力学
安徽理工大学 地球与环境学院 水资源与规划系
Ch2 地下水渗流微分方程及数学模型
*范围值:n×10-3~ n×10-5; 范围值:0.05~ 0.30。实际测出的值往往小于理论值。
上述两参数之间的不同,还在于潜水含水层存在滞后疏干现象。 弹性释水与重力给水: 对于含水层而言,由于受埋藏条件的限制,抽水时,水的给 出存在着不同。 潜水含水层在抽水过程中,大部分水在重力作用下排出,疏干作用于水位变动带(
为反映含水层地下水运动的普遍规律,我们选定在各向异性多孔介 质中建立地下三维不稳定流动连续性方程。
地下水动力学
安徽理工大学 地球与环境学院 水资源与规划系
Ch2 地下水渗流微分方程及数学模型
由于渗流场中各点的渗流速度大小、方向都不同,为了反映液体运动的 质量守恒关系,需要在三维空间中建立微分方程形式表达的连续性方程。
则有:
即:

代入整理得:
地下水动力学
安徽理工大学 地球与环境学院 水资源与规划系
Ch2 地下水渗流微分方程及数学模型
所以有
上式为三维流微分方程,也可写成:
物理意义:渗流空间内任一单位体积含水层在单位时间内流入与流出该体 积含水层中的弹性水量的变化量,即单位体积含水层的水量均衡方程。
地下水动力学
安徽理工大学 地球与环境学院 水资源与规划系
= =
由含水层状态方程,
地下水动力学
安徽理工大学 地球与环境学院 水资源与规划系
Ch2 地下水渗流微分方程及数学模型
因为 则可得到: 所以有 ,Z为定值,则
于是连续性方程变为:

地下水运动的数学模型

地下水运动的数学模型

第四章 地下水运动的数值模型解析解虽然具有精确可靠的特点,但采用解析解反映自然状态和复杂人类活动干扰下的地下水运动是相当困难的。

因此,当含水层的条件严重偏离现有解析模型的简化假设时,人们通过数值模型来获得近似的地下水流场及演变趋势。

第一节 地下水流数值方法概述地下水流的数学模型采用偏微分方程描述地下水流的时间和空间连续状态,而数值模型则是采用离散(非连续)时空模型中水头的分布与演变对数学模型进行近似描述。

从精确数学模型到近似数值模型的转化,虽然会损失一些精度,但使复杂地下水流问题的分析得以通过机械计算实现,而且误差也是可控的。

把偏微分方程求解的数值方法引入到地下水流问题的求解始于20世纪70年代,主要方法包括有限差分法、有限元法和边界元法,此后又发展了有限分析法、多重网格法和无网格法等。

这些方法的共同特点是将模型空间及边界离散为由一系列的节点以及联系这些节点的单元(无网格法除外),含水层的水头在这些节点上定义,从而实现了水头分布空间连续函数向离散变量的转化,表示为2121211122111221202()02()02()002(0)k k k k k k k k k k k k k k k k k k k k k k k kkk f f f f a b c e x L x x t t t t f x f f f f a b c e x L x x t t f f f f a b c x L e x xd f dfe ef a b f c x L dx dx t t f x u---------∂∂-++=<<∂∂∆∆=-∂∂-++=<<∂∂∆∆∂∂=+++<<∂∂+-++=<<∆∆==,,,,{}(,,);1,2,3,,p H x y z H p M ⇒=⋅⋅⋅ (4.1.1)式中;H 为含水层的水头;x 、y 、z 为空间坐标;p 为数值模型的节点;M 为节点的数目。

地下水渗流基本方程及数学模型

地下水渗流基本方程及数学模型

安徽理工大学 地球与环境学院 水资源与规划系
Ch2 地下水渗流微分方程及数学模型
*范围值:n×10-3~ n×10-5; 范围值:0.05~ 0.30。实际测出的值往往小于理论值。
上述两参数之间的不同,还在于潜水含水层存在滞后疏干现象。 弹性释水与重力给水: 对于含水层而言,由于受埋藏条件的限制,抽水时,水的给 出存在着不同。 潜水含水层在抽水过程中,大部分水在重力作用下排出,疏干作用于水位变动带(
在水位下降为Δ H时,有
即作用于固体骨架上的力增加了H。

作用于骨架上力的增加会引起含水层的压缩,而水压力的减少将导 致水的膨胀。
含水层本来就充满了水,骨架的压缩和水的膨胀都会引起水从含水 层中释出,前者就象用手挤压充满了水的海绵会挤出水—样。
地下水动力学
安徽理工大学 地球与环境学院 水资源与规划系
Vv=nVb;Vs=(1-n)Vb
式中 ——多孔介质固体颗粒压缩系数,表示多孔介质中固 体颗粒本身的压缩性的指标,s<<p; ——多孔介质中孔隙压缩系数 (Compressibility of the pores of a porous medium),表示多孔介质中孔 隙的压缩性的指标。 n——多孔介质的孔隙度。 因 ,故 。
Ch2 地下水渗流微分方程及数学模型
§2-1 渗流连续方程
一、含水层的状态方程 含水层的状态方程主要包括地下水的状态方程和多孔介质的状态方程。 1、地下水的状态方程 Hooke定律:
式中:E——体积弹性系数(体积弹性模量),20℃时,
E=2.1×105N/cm2。其倒数为压缩系数。 等温条件下,水的压缩系数(coef. of compressibility)为
多孔介质压缩系数的表达式为:

1渗流基本理论-7

1渗流基本理论-7

§6 渗流基本微分方程
§6 渗流基本微分方程
2、假设 除与承压含水层基本微分方程有相同假设条件外: (1)当弱透水层的渗透系数K1比主含水层的渗透系数 K小很多时,近似认为水基本上是垂直地通过弱透水 层,折射90º 后在主含水层中基本上是水平流动的。 (如K1与K相差较小时,用等效渗透系数,非越流) (2)主含水层中水头看作是整个含水层厚度上水头的 平均值,即: 1 M H H ( x, y , t ) H ( x, y, z , t )dz M 0 (3)和主含水层释放的水及相邻含水层的越流量相比 ,弱透水层本身释放的水量小到可以忽略不计。
§6 渗流基本微分方程
(2)渗流场中任何一个局部,都必须满足质量守恒和 能量守恒。 4、数学意义 表示渗流空间内任一点任一时刻的渗流规律。 5、讨论 (1)各向同性介质
∂ ∂H ∂ ∂H ∂ ∂H ∂H ( K )+ ( K )+ ( K ) =μ s ∂x ∂x ∂y ∂y ∂z ∂z ∂t
§6 渗流基本微分方程
上次课复习
1、渗流连续性方程—地下水质量守恒定律 (1)表达式
ρ v y ) ∂( ∂( ρ v x ) ∂( ρ vz ) ∂ [ + + ] Δ xΔ yΔ z = ( ρ nΔ xΔ yΔ z ) ∂x ∂y ∂z ∂t
(2)物理含义 某一渗流场中,流入流出单元体的质量差等于单元 体内液体质量的变化。 (3)实质(机理) 水头变化引起含水层弹性释水(贮水)
§6 渗流基本微分方程
3、微分方程的物理意义
∂ ∂H ∂ ∂H ∂ ∂H ∂H ( K xx )+ ( K yy )+ ( K zz ) =μ s ∂x ∂x ∂y ∂y ∂z ∂z ∂t

地下水动力学(第一章_渗流理论基础-3-专)

地下水动力学(第一章_渗流理论基础-3-专)
H H * H T W T x x y y t
H H * H T yy W T xx x x y y t
H
2
x
2
v x v y v z H x y z x y z g n t x y z
根据Darcy定律: 1. 在各向同性介质中,有:
vx K H x ; vy K H y ; vz K H z

p t
x y z
于是连续性方程变为:
v x v y v z p n x y z x y z y z t x

p t
化为
H z
H t

,故有:p=γ(H-z)=ρg(H-z)
因为
p t
p

g
p t
H t
Hg
H t
t
zg
t
g
H t
H z g
t
或:
g
p
t
p t
将dρ=ρβdp代入,得: p g H 即,
t 1 p t
g
H t
p
p t
n x y z t
消去Δt得
v x v y v z n x y z x y z y z t x
此式为渗流的连续性方程(研究地下水运动的基本方程)。
§1—7 承压水运动的基本微分方程
由水的压缩系数: 得: V V dp 所以,dρ=ρβdp 前面给出了含水层厚度Δz和孔隙度n随压力p的变 化关系: d(Δz)= Δzαdp ;dn=(1-n) αdp 式中:α为多孔介质压缩系数。 将三式代入连续方程右端项得:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档