第5章地下水的稳定渗流运动

合集下载

5地下水运动的基本规律

5地下水运动的基本规律

第五章地下水运动的基本规律5. 1 港流基本概念渗流一地卞水在岩石空隙中的运动称为渗流(渗透,地下径流)。

渗流场一发生渗流的区域。

层流运动——水的质点作有秩序的、互不混杂的流动。

紊流运动——水的质点无秩序的、互相混杂的流动。

稳定流一各个运动要素(水位、流速、流向等)不随时间改变的水流运动。

非稳定流——运动要素随时间变化的水流运动。

地卜•水总是从能量校高处流向能量较低处。

能态差异是地卜水运动的驱动力。

地下水的机械能包括动能和势能,水力学中用总水头(hydiaulic head)H表示,水总是从总水头高的地方流向总水头低的地方。

5. 2重力水运动的基本规律1.达西定律(Darcy'sLaw)1856年达西通过实验得到达西定律。

实验在砂柱中进行(P36:图4-1),根据实验结果(流量):Q=KA(H r H2)/L=KAI(5.1)式中:Q为渗透流童(出口处流量,即通过砂柱各断面的体枳流量):A为过水断面的面积(砂柱的横断面积,包括砂颗粒和孔隙面积);Hi比分别为上、卜•游过水断面的水头:L为渗透途径(上、卜•游过水断面的距离):图5. 1达西实验装置示意图I为水力梯度;(据Bear, 1979)K 为渗透系数。

由水力学:Q=vA达西定律也可以另一种形式表达(流速): 由公式(5.1)及Q=\A 得:v=KI式中:£ --- 渗透流速,m/d, cm/s ;K ----- 渗透系数,nVd, cm/s :I —水力梯度,无量纲(比值)。

具体到实际问题:计算流最:H _ HQ =川F ---------- (单位一•般为:m 3/d, L/s)L微分形式:式中:负号表示水流方向与水力梯度方向相反,水流方向(坐标方向):由水位高一 低:而水力梯度方向:由等水位线低一高。

在三维空间中(向量形式):■\v = -K x ^-i-K v ^- j-K,-51k = -KgradH dy dz或V = -KVH ,式中:K 一为渗透系数张量:gradH =更 i +更* 更 Amdy dz若用标量表示,V 的三个分最分别为:得到 v=Q/A(对地下水也适用)(5.2) (5.3)v=-KdH £Vy= ~K - dy—呻**■ dz2. 渗透流速(V ) (seepage velocity, Daicy velocity )与实际流速(u )渗透流速一水流通过整个过水断面(包括砂砾和孔隙)的流速。

地下水运动的基本规律

地下水运动的基本规律

地下水运动的基本规律
因为流速V=Q/A,故达西定律也可以用式(56)来表达。 V=Ki(5-6) 式中,V为渗透流速(m/d或cm/s)。
由式(5-6)可知,K是水力坡度为1时的 渗透流速,称为渗透系数。渗透系数可以用来 比较不同岩石的透水性,是水文地质学中一个 非常重要的水文地质参数。
地下水运动的基本规律
地下水运动的基本规律
在满足生产要求和方便研究的前提下,可以不将含 水层概括为均质各向同性、均质各向异性、非均质各向 同性和非均质各向异性的含水层。所谓均质各向同性就 是指渗透系数在含水层的任何空间位置上、任何渗透方 向上均为一个常数;如不为常数则属非均质各向异性, 其余可类推。
对于渗透系数的测定,一般采用室内土柱试验(达 西试验)和野外抽水试验两种方法。一些松散岩石的渗 透系数参考值见表5-4,表见下页。
应该明确,渗透系数不仅取决于 岩石的空隙性质及水在空隙中的存在 形式,而且与地下水的一些物理性质 ,如黏滞性等有关。在具有同样空隙 的岩石中,当水力坡度相等时,黏滞 性大的水(或液体)渗透系数小。
一般情况下,当地下水的黏 滞性相近时可以不予考虑,但在 研究卤水时,不可忽视。因此, 除个别特殊情况外,可以把渗透 系数看作衡量岩石透水性能的参 数。岩石的透水性能在不同空间 位置和渗透方向上是不一致的, 即渗透系数是不相等的。
地下水运动的基本规律
工程地质Βιβλιοθήκη 工程地质地下水运动的基本规律
地下水在岩石空隙(孔隙、裂隙及溶穴) 中的运动称为渗流(渗透),地下水运动的 场所称为渗流场。渗流是在与介质发生密切 联系的条件下进行的,由于受到介质的阻滞, 地下水的运动远较地表水缓慢。
在岩层空隙中渗流时,水的质点有秩序 地、互不混杂地流动,称为层流运动。水的 质点无秩序地、互相混杂地流动,称为紊流 运动。一般认为渗流属于层流。

工程地质学第五章-地下水

工程地质学第五章-地下水

硬 度
M C2 2 a g 2 H3 C O M Ca3 3 g C C H 2 O O O C2 O
2021/永8/2 久硬度:煮沸时未发生碳酸盐沉淀的那部分Ca2+、Mg2+含量 44
②根据硬度对地下水进行分类:
极软水、软水、微硬水、硬水、极硬水
5、地下水的侵蚀性
地下水对混凝土的侵蚀破坏类型包括分解性侵蚀、结晶性侵蚀和分解结晶
如挖排水、截水沟,筑挡水坝,开凿输
水隧洞改道等等。
2021/8/2
30
5、泉:地下水在地表的天然出露
泉的类型按补给源可分为三类:包气带泉、潜水泉、 自流水泉,按水头性质分为上升泉和下降泉,按出露 原因分为侵蚀泉、接触泉和断层泉。
河谷切割到潜水含水层时,潜水出露成侵蚀下降泉。河 谷切穿承压含水层的隔水顶板时,承压水喷涌成泉,称 为侵蚀上升泉。透水性不同的岩层接触,地下水沿接触 面出露称为接触泉。断层使承压含水层被隔水层阻挡, 当断层导水时沿地面出露的承压水称为断层泉。
隔水层(aquiclude): 不透水但可含水的岩土层。
含水层的形成条件:
一是岩石中要有空隙存在,并充满足
够数量的重力水;二是这些重力水能够在 岩石空隙中自由运动。
2021/8/2
10
3、岩土的水理性质
1.含水性
• 容水度:岩土空隙完全被水充满时的含水
量。
• 持水度:岩土在重力作用下释水时仍能保
持的含水量。
C、H、O为主的有机质
2、氢离子浓度
氢离子浓度是指水的酸碱度,用PH值表示:PH = lg[H+]
根据PH值可将地下水分为5类:
强酸性水、弱酸性水、中性水、弱碱性水、强碱性水
20地21/下8/2水的氢离子浓度为一般酸性侵蚀指标。

工程地质 第5章 地下水及其对工程的影响

工程地质 第5章 地下水及其对工程的影响
I —— 水力坡度
断面1
断面2
Q O
h L
H1 H2
O’
A
5.5 地下水运动与动态
二、地下水向集水建筑物运动的计算
基坑开挖时,流入 坑内的地下水和地表水 如不及时排除,会使施 工条件恶化、造成土壁 塌方,亦会降低地基的 承载力。施工排水可分 为明排水法和人工降低 地下水位法两种。
5.5 地下水运动与动态
<4.2 4.2~8.4 8.4~16.8 16.8~25.2
>25.2
meq/L
<1.5 1.5~3.0 3.0~6.0 6.0~9.0
>9.0
mol/L
<7.5×10-4 7.5×104~1.5×108 1.5×10-3~3×10-3 3×10-3~4.5×10-3
>4.5×10-3
5.4地下水分类
1 岩土的空隙性
概念:将岩土空隙的大小、多少、形状、连通程度,以及分布 状况等性质统称为岩土的空隙性。
5.2 地下水的基本概念
1 岩土的空隙性
意义:是地下水赋存场所和运移通道,其多少、大小及其分布规 律,决定着地下水的分布与运动特点
分类:岩土空隙的成因不同
孔隙
裂隙
溶隙
5.2 地下水的基本概念
5.1 概述
1 什么叫地下水
赋存和运移于地面以下岩石空隙中的水。狭义上指赋存于地下水面以下饱和含 水层的水。
2 地下水的功能
地下水是一种宝贵的资源
不工
地下水是地球内部地质演变的信息载体
良程 地地
质质
地下水是极其重要的生态环境因子
现问 象题
地下水是一种很活跃的地质营力
5.2 地下水的基本概念

5地下水PPT课件

5地下水PPT课件
6
2020/12/6
7
概念(掌握)
➢ 含水层
能够给出并透过相当 数量重力水的岩土层。
如砂岩、灰岩
➢ 隔水层
不能给出并透过水, 或者透过的水是微不 足道的岩土层。
如泥岩、粉砂岩
2020/12/6
8
• (二)岩土的主要水理性质
容水性 持水性 给水性 透水性
2020/12/6
9
容水性 ——指岩土能容纳一定水量的性能。
⑶当含水层厚度变大时,潜水面坡度变缓;
⑷当岩层透水性变好,潜水面坡度变缓。
2020/12/6
20
⑴ 潜水面一般呈倾斜的各种形态的曲面。
2020/12/6
21
2020/12/6
地表地形的影响
⑵ 潜水面的起伏经常与地形一致,只是比 地形起伏平缓一些;潜水面与地表面的 形态具有相似性。
22
⑶当含水层厚度变大时,潜水面坡度变缓;
潜水的排泄 ——向地表水排泄
2020/12/6
潜水补给河流
34
承压水
埋藏并充满在两个隔水层之间的含水层中 的地下水,是一种有压重力水。
2020/12/6
35
➢承压水的形成
最适宜形成承压水的地质构造有:
向斜构造 单斜构造
承压盆地 承压斜地
2020/12/6
36
承压盆地
此类承压水的水位受到气候及地形的控制,
2020/12/6
12
透水性
——岩土允许水透过的性能称为透水性。 透水的 半透水的 不透水的
2020/12/6
13
概念
➢ 水力坡度Ⅰ(掌握)
沿渗流途径的水头损失与相应渗透途径长度的 比值。
水头损失

达西定律

达西定律

三、达西定律的适用条件
适用条件
雷诺数(Re)小于1-10之间某一数值的层流才符合达西定律;
Vd Vd Re
天然条件下地下水的渗流速度通常很缓慢,绝大部分为层流运动,一般 可用线性定律描述其运动规律。
当地下水流速相当大时,呈紊流运动,此时的渗透服从非线性渗透定 律称为哲才(A.Chezy)定律:
V——I 曲线
V
1
砂样
2
O
I
V=K· I ——(3)
思考:1和2哪个代表砾样和砂砾混合样的V-I曲线?
二、达西公式各物理量的含义
过水断面ω 与实际过水断面ω ' 过水断面ω :砂柱的横切面积,是指水流通过的包括岩石 骨架与空隙在内的整个断面。 实际过水断面ω ′:扣除结合水所占据范围以外的空隙面积, 也就是重力水所占据的空隙面积 。
影响渗透系数的因素—— 以松散岩石
,等径孔隙为例来分析
V u ne K I I
多孔介质(概化为等径的平行毛细管束):
I d u 32
K
2 0

32
d ne
2 0
K k
K表示渗透率
K与液体的物理性质有关,与液体的容重γ成正比,与动 力粘滞系数μ成反比。 K与岩石的性质有关,与空隙大小(d0)成2次方,与空 隙多少(ne)成一次方。
中间内插,画其它流线 等单宽流量控制流线根数; 等水头差绘制等水头线
以河间地块为例,考虑稳定均匀降雨条件下,均质 各向同性介质稳定信手流网的绘制。
思考题:河流完全切割含水层至隔水底板,其它条件不 变时流网形态?
流网的应用
确定任意点的水头值(H)及变化规律; 确定水力梯度 I 的大小及变化规律; 等水头线愈密, 水力梯度愈大! 确定渗透流速V的大小及变化规律; V KI 确定流量Q的大小及变化规律。 流线愈密,径流愈强!

第五章 地下水

第五章 地下水
(3)水力坡度I:水力坡度为沿渗流途径的水头损失 与相应渗透途径长度的比值。 地下水在空隙中运动时,受到空隙壁以及水质点 自身的摩阻力,克服这些阻力保持一定流速,就要消 耗能量,从而出现水头损失。
§5.2 地下水类型及其主要特征
地下水按埋藏条件可分为三大类:即包气带水、 潜水、承压水 。根据含水层的空隙性质,地下水可分为 三个亚类:孔隙水、裂隙水、岩溶水。
二、地下水及含水层 1. 基本概念
地下水的来源:大气降水。降落的水分,一部分渗
入地下,另一部分沿地面汇集于低处,成为河流、湖泊、 海洋的地表水,而地表水也可以通过岸边或谷底渗入地 下。这些渗入的水,就是地下水的主要补给来源。
地下水:存在于地壳表面以下岩土空隙(如岩石裂
隙、溶穴、土孔隙等)中的水称为地下水。
§5.1 地下水概述
一、地下水的地质作用 地下水能降低岩上强度和地基承载力; 对砂性土、粉性土产生潜蚀作用,破坏土体的 结构; 会使粉细砂和粉性土产生流砂现象,影响建筑 物和地下设施的稳定性,甚至引起破坏,同时 给地下工程施工带来许多麻烦; 当深基坑下部有承压水时,若不降低承压水头 压力,可能会冲毁坑底土体造成突涌危害; 地下水对其水位以下的岩土会产生静水压力作 用; 有些地下水会腐蚀钢筋混凝土。
▲矿化度:地下水中所含各种离子、分 子与化合物的总量称为矿化度,以g/L表示。 习惯上用105~110℃温度将地下水样品 蒸干后所得的干涸残余物总量来表示矿化度。 可以将分析所得阴阳离子含量相加,求得 理论干涸残余物总量。
注意: 由于在蒸干时有将近一半的HCO3-了分解 生成CO,及H2O而逸失。所以,阴阳离子相加 时, HCO3只取重量的50%。
毛细水对建筑工程的意义主要有:
(1) 产生毛细压力, 对于砂性土特别是细 砂、粉砂,由于毛细压力作用使砂性土具有一 定的粘聚力(称假粘聚力)。

第5章 地下水

第5章 地下水

第二节 地下水类型及其主要特征
3. 承压水的补给与排泄 承压水的补给源有大气降水、地表水及潜水; 承压水的排泄方式有:向潜水排泄、泉的排泄及向地表 水排泄。 4. 承压水对工程建设的影响 (1)良好的城市供水水源; (2)基坑突涌; (3)排水比较困难,井深,范围广,水量大。
运动多属于非层流运动。
第二节 地下水类型及其主要特征
地下水按照埋藏条件可以分为包气带水、潜水和承压水 三类;按照含水层的空隙性质可分为孔隙水、裂隙水和岩溶 水三类。
第二节 地下水类型及其主要特征
5.2.1 包气带水 处于地表面以下潜水位以上的包气带岩土层中,包括土 壤水、沼泽水、上层滞水以及基岩风化壳(粘土裂隙)中季节 性存在的水。主要特征是受气候控制,季节性明显,变化大, 雨季水量多,旱季水量少,甚至干涸。包气带水对农业有很 大意义,对工程建筑有一定影响。
第二节 地下水类型及其主要特征
承压斜地
第二节 地下水类型及其主要特征
承压含水层在同一区域内均可在不同深度有着若干层 同时存在的情况,它们之间的水头高度与地形和构造二者 有关。 当地形和构造一致时称为正地
形。下部含水层压力高,若有裂隙
穿透上下含水层,下部含水层的水 通过裂隙补给上部含水层。如山东
济南的承压斜地,地下水通过近20m厚的第四系覆盖层出
水下施工。若潜水对施工有危害,宜用排水、降低水位、隔离(包括冻结法
等)等措施处理。
第二节 地下水类型及其主要特征
5.2.3 承压水 承压水是指埋藏并充满在两个稳定隔水层之间的含水层 中的地下水,是一种有压重力水。
第二节 地下水类型及其主要特征
1. 承压水的形成 最适宜形成承压水的地质构造有向斜构造盆地和单斜构 造。 承压盆地 此类承压水的水 位受到气候及地形的 控制,往往有较好的 径流条件。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• A=2pxy
• 从图5.5亦可看出:地下水向潜水完整井的流动过程中水 力坡度J是个变数,但任意断面处的水力坡度J均可表示为: J=dy/dx
• 故地下水通过任意过水断面B—B/的运动方程为:
Q kJA k 2px y dy
dx
将上式分离变量并积分:
R
Q
dx
H
2pk
ydy
r0 x
h0
5.3.1地下水流向潜水完整井 根据裘布依的理论,当在潜水完整井中进行长时间的抽 水后,井中的动水位和出水量都会达到稳定状态,同时在抽
水井周围亦会形成有规律的稳定的降落漏斗,漏斗的半径R 称为影响半径,井中的水面下降值s称为降深,从井中抽出
的水量称单井出水量。
潜水完整井稳定流计算公式(裘布依公式)的推导假设 条件:
• A =2pxM;i=dy/dx
地下水通过任意过水断面的流量为
Q kJA k 2pxM dy
dx
R
Q
dx
2pkM
H
dy
r0 x
h0
Q = 2p kM (H - h0 ) ln R r0
因h0=H-s0
Q = 2πkMs0 = 2.73k Ms0
ห้องสมุดไป่ตู้
ln R
lg R - lg r0
r0
反映地下水向承压完整井运动规律的方程式,亦称裘布依公式。
• 推导公式的方法是从达西公式开始的,因为有:Q=kJA • 假设地下水向潜水完整井的 • 流动仍属缓变流,井边附近 • 的水力坡度不大于1/4;这样 • 就可使那些弯曲的过水断面 • 近似地被看作直面,如把 • B—B曲面近似地用B—B/直 • 面来代替,地下水的过水断 • 面就是圆柱体的侧面积:
第5章 地下水的稳定渗流运动
本书只讨论液态重力地下水的运动。
5.1 地下水运动特征和渗透基本规律
达西定律:
kJ
K—渗透系数; J—水力坡度; — 渗透流速。
当Re<1~10时,k≈C,故曲线基本呈直线,此时地下水运动为 层流运动,服从达西定律。当Re>10时,曲线偏离直线,此时地 下水运动仍可为层流,但不服从达西定律。
渗流量:
qi
k
H si
i
kH
i si
H H n
i和Δsi可从流网图中量出。
q kH m i i1 si
kH n
m i i1 si
取各网格的边长比例为常数、并等于1,则:q
kH
m n
s
kH
m n
自己看P52[例5.2] 。
• 5.3 地下水向完整单井的稳定渗流运动 • 提取地下水的工程设施称为取水构筑物。当取水构筑物 中地下水的水位和抽出的水量都保持不变,这时水流称为稳 定渗流运动。
天然情况下,绝大多数地下水运动是服从达西定律的。
5.1.2 非线性渗透定律:
1
km J m
1 —流态指数,1≤m≤2
m
• 5.2平面渗流问题的流网解法
• 渗流场内的水头及流向是空间的连续函数,因此可作出一 系列水头值不同的等水头线(面)和一系列流线(面),由 一系列等水头线(面)与流线(面)所组成的网格称为流网。
• 1.天然水力坡度等于零,抽水时为了用流线倾角的正切代 替正弦,则井附近的水力坡度不大于1/4;
• 2.含水层是均质各向同性的,含水层的底板是隔水的; • 3.抽水时影响半径的范围内无渗入、无蒸发,每个过水断
面上流量不变;在影响半径范围以外的地方流量等于零; 在影响半径的圆周上为定水头边界;
• 4.抽水井内及附近都是二维流(抽水井内不同深度处的水 头降低是相同的)。
在各向同性介质中,地下水必定沿着水头变化最大的方向 即垂直于等水头线的方向运动,因此,流线与等水头线构成
正交网格。通常把流网绘成曲边正方形。
位于同一等势线上的各测压管中 的水面一样高,相邻等势线间 的势差相等。
F1 1
F2
23
4
1.流线 2.等水头线 3.断层 4.抽水井
• 5.2.2应用流网求解渗流
该点的水头。
作用在地下轮廓上的垂直渗透总压力为P = r gWb ,式中
为渗透压强水头分布图的面积,b为建筑物宽度。总压力作用线
通过该面积的形心。
• 渗透流速与水力坡度

渗流区内各点的水力坡度可从下式求出:J
H s
H ns


式中ΔH为该处网格两边相邻等势线的水头差
H
H
n ,Δs
为该网格内流线长度,渗流区内各点的渗透流速为 u kJ
ln R
lg R
r0
r0
• 公式表明潜水完整井的出水量Q与井内水位降深s0的二次
方成正比,这就决定了Q与s0间的抛物线关系。即随着s0
值的增大,Q的增加值将越来越小。
5.3.2地下水流向承压水完整井
根据裘布依稳定流理论,在承压完整 井中抽水时,经过一个相当长的时段, 从井内抽出来的水量和井内的水头降 落同样均能达到稳定状态,这时在井 壁周围含水层内就会形成抽水影响范 围,这种影响范围可以由承压含水层 中的水头的变化表示出来,承压水 头线的变化具有降落漏斗的形状,
• 已知渗流上、下游水头h1和h2 ,水头差H= h1 - h2 ,
流网共有n+1条等势线,则两相邻等势线间的水头 H H ,
n
流网共有m+1条流线 。见图5.2。
从上游算起的第i条等势线上的水头为hi,则
hi
h1
i 1H n
设从水头基准线(注:以AB线为基准面)向下到计算点的垂
直距离为y,则作用在该点的渗透压强为p=rg(hi+y) ,式中hi为
Q = 2πkMs0 = 2.73k Ms0
ln R
lg R - lg r0
r0
• Q与s0间为直线关系
0
Q
承压井
潜水井
5.3.3裘布依(Dupuit)公式的讨论 s 1.抽水井流量与水位降深的关系
这里所讨论的降深,仅仅考虑地下水在含水层中流动的结果。 但实际上降深是多种原因造成的水头损失的叠加。另外主要还有: (2)由于水井施工时泥浆堵塞井周围的含水层,增加了水流阻 力所造成的水头损失。 (3)水流通过过滤器孔眼时所产生的水头损失。 (4)水流在滤水管内流动时的水头损失。 (5)水流在井管内向上流动至水泵吸水口的沿程水头损失。 这些损失,有些与流量的一次方成正比,有的与流量的二次方成 正比。 由于上述原因,承压水的出水量Q与s的线性关系也是不多见的。
Q = pk(H 2 - h02 ) = 1.36k H 2 - h02
ln R
lg R
r0
r0
因 h0 H s0
Q=
p k(2H - s0 )s0 ln R
=
1.36k
(2H lg
s0 R
)s0
r0
r0
AB AB
地下水向潜水完整井运动规律的方程式,亦称裘布依公式。
Q = p k(2H - s0 )s0 = 1.36k (2H - s0 )s0
相关文档
最新文档