平均数和加权平均数
平均数和加权平均数

(95+90+90+85) ÷ 4=90
二班的卫生成绩为:
(90+95+85+90) ÷4 =90
三班的卫生成绩为:
(85+90+95+90) ÷ 4=90
因此,三个班的成绩一样高
算术平均数与加权平均数的区别和联系是: 算术平均数是加权平均数的一种特殊情况 当各项权重相等时,计算平均数时就要采 用算术平均数 当各项权重不相等时,计算平均数时就要 采用加权平均数
(1)如果根据三项测试的平均成绩 72 50 88 70 A 3 xB 85 74 45 68 3 xC 67 70 67 68 3
候选人A将被录用 .
例题
某广告公司欲招聘广告策划人员一名,对A, B,C三名候选人进行了三项素质测试。他们 的各项测试成绩如下表所示: 测试项目 测试成绩 A B C 72 85 67 创新 综合知识 语言 50 88 74 45 70 67
D)
x1, x2 ,, xn
,我们把
1 ( x1 x2 xn ) n
叫做这 n个数的算术平均数,简称平均数,记为 读作 x 拔. x ,
甲、乙两名学生进行射击练习,两人在相同条 件下各射靶5次,射击成绩如下: 第1次 第2次 第3次 第4次 第5次 甲命中的环数 乙命中的环数 7 8 7 9 7 8 8 8 10 7
(2)如果小明先骑自行车2小时,然后步行3小时, 那么他的平均速度是多少?
15 1 5 1 平均速度是 10 (千米/时) 2
15 2 5 3 平均速度是 9 (千米/时) 23
2、小明所在班级的男同学的平均体重是45kg,小亮所 在班级的男同学的平均体重是42kg,则下列判断正确 的是( C )
平均数与加权平均数

平均数与加权平均数平均数和加权平均数是数学中常用的统计概念,用于对一组数据或事件进行概括和描述。
平均数指的是一组数值的总和除以这组数值的个数,而加权平均数是根据每个数据的重要程度对其进行加权后得到的平均数。
下面将详细介绍平均数和加权平均数的计算方法、应用场景以及它们的特点。
一、平均数的计算方法平均数通常用于概括一组数据的集中趋势,计算方法简单、直观。
对于给定的一组数据x1,x2,x3,......,xn,平均数的计算公式为:平均数= (x1 + x2 + x3 + … + xn) / n其中,x1,x2,x3,......,xn表示数据集合中的各个数据,n表示数据的个数。
举例来说,对于数据集合{1,2,3,4,5},其中包含5个数据,它们的平均数计算公式为:平均数 = (1 + 2 + 3 + 4 + 5) / 5 = 15 / 5 = 3二、加权平均数的计算方法加权平均数是考虑到数据的重要程度后进行计算的一种平均数。
在实际应用中,不同数据可能具有不同的权重,因此简单的平均数无法全面反映数据的真实特征。
加权平均数通过给不同数据赋予不同的权重来解决这个问题,计算公式为:加权平均数= (x1*w1 + x2*w2 + x3*w3 + … + xn*wn) /(w1 + w2 + w3 + … + wn)其中,x1,x2,x3,......,xn表示数据集合中的各个数据,w1,w2,w3,......,wn表示相应数据的权重。
权重可以根据数据的重要程度或其他因素进行设定。
举例来说,假设一个学生的期末成绩由作业成绩(权重为40%)、考试成绩(权重为60%)组成,他的作业成绩为80分,考试成绩为90分,那么他的加权平均成绩计算公式为:加权平均成绩 = (80*0.4 + 90*0.6) / (0.4+0.6) = (32 +54) / 1 = 86三、平均数和加权平均数的应用场景平均数和加权平均数在实际生活中有广泛的应用。
平均数与加权平均数课件

选手 演讲内容 演讲能力 演讲效果
A 85
95பைடு நூலகம்
95
B 95
85
95
解 : 选手A的最后得分是 85 50% 95 40% 9510% =90. 50% 40% 10%
选手B的最后得分是 95 50% 85 40% 9510% =91. 50% 40% 10%
由上可知选手B获得第一名 , 选手A获得第二名 .
平均数与加权平均数
数据2 , 3 , 4 , 1 , 2的平均数是___2_._4___, 这个平均数叫做___算__术____平均数 .
日常生活中 , 我们常用平均数表示一组数据的“平均水平” .
例1 : 某市三个郊县的人数及人均耕地面积如下表 : 这个市郊县 的人均耕地面积是多少 ? (精确到0.01公顷)
显然甲的成绩比乙高 , 所以从成绩看 , 应该录取甲 . (2)听、说、读、写的成绩按照2:2:3:3的比 确定,则甲的平均成绩为
85 2 83 2 78 3 75 3 79.5 2 2 3 3
乙的平均成绩为
73 2 80 2 85 3 82 3 80.7 2 2 3 3
郊县 A B C
人数/万 15 7 10
人均耕地面积/公顷 0.15 0.21 0.18
问题1 小明求得这个市郊县的人均耕地面积为 :
x
0.15
0.21
0.18
0.18(公顷).
3
你认为小明的做法有道理吗 ? 为什么 ?
问题2 这个市郊县的总耕地面积是多少 ? 总人口是多少 ? 你能算出这个市郊县的人均耕地面积是多少吗 ? 0.1515 0.21 7 0.1810 0.17(公顷) 15 7 10
说、读、写成绩按照2:2:3:3的比确定 , 计算两
《平均数与加权平均数》PPT课件

__ 加权平均数.
3.假设n个数据x1,x2,…xn的权重分别是w1,w2,…wn,那
么这n个数的加权平均x1w数1+为x2w2+…+xnwn w1+w2+…+wn
23.1 平均数与加权平均数(一)
1.(5分)某市某一周的日最高气温(单位:℃)分别为:25,28,30,29, 31,32,28,这周的日最高气温的平均值为( B )
《平均数与加权平均数 》PPT课件
平均数与加权平均数
23.1 平均数与加权平均数(一)
1.一般地,我们把n个数x1,x2,…,xn的和与n的比,叫做这n
个数的_ 算术平均数
,简称__ 平均数
记作x,读作“x拔〞.
2.一组数据里的各个数据的重要程度不一定相同,在计算它们
的平均数时,往往给每个数据一个“权〞,由此求出的平均数叫做
远眺图使用方法
第一步、首先在能把远眺图都看清的位置,熟悉 一下最远处几个框细微的纹路,
第二步、然后逐渐加大距离至远眺图最远处的几 个框处于模糊与清晰之间的位置停止。
第三步、思想集中,认真排除干扰,精神专注, 开始远眺,双眼看整个图表,产生向前深进的感 觉,然后由外向内逐步辨认最远处几个框每一层 的绿白线条。
(1)风景区是这样计算的:调整前的平均价格:
10+10+155+20+25=16(元)
调整后的平均价格:5+5+155+25+30=16(元),
∴调整后的平均价格不变,平均日人数不变, ∴平均日总收入持平
23.1 平均数与加权平均数(一)
(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价 前,实际上增加了约9.4%.问游客是怎样计算的?
可爱的同学,找资料眼 睛累了吧!长时间屏幕,眼 睛会干涩、酸痛、疲劳的。
平均数和加权平均数

23.1平均数和加权平均数【学习目标】1.会求加权平均数,并体会权的不同对结果的阻碍.2.明白得算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题. 【重点难点】1.会求加权平均数,并体会权的不同对结果的阻碍,熟悉到权的重要性.2.探讨算术平均数和加权平均数的联系和区别. 【知识链接】在上节课咱们学习了什么叫算术平均数和加权平均数,及如何求一组数据的算术平均数和加权平均数.本节课咱们继续研究生活中的加权平均数,及算术平均数和加权平均数的联系与区别. 【学法指导和利用说明】注意:运用双色笔,第一次完成用蓝色,第二次课堂生成改动用红色。
认真试探学案中所提设的问题,并加以总结归纳。
【学习流程】自主学习一样的:在求n 个数的算术平均数时,若是1x 显现1f 次,2x 显现2f 次,…k x 显现k f 次(那个地址1f +2f +…k x =n )那么着n 个数的算术平均数是x = .x 也叫这k 个数的加权平均数,其中1f , 2f …k f 别离叫 的权。
1.某中学一次数学期中考试前10名同窗的成绩为129,133,125,120,107,125,107,129,120,125.求这10名同窗的平均成绩.2.某鱼塘放养鱼苗10万条,依照这几年的体会明白,鱼苗成活率为95%,一段时刻后预备打捞出售,第一次从中网出40条,称得平均每条鱼重2.5千克;第二次从中网出25条,称得平均每条鱼重2.2千克;第三次从中网出35条,称得平均每条鱼重2.8千克,请估量鱼塘中鱼的总重量约是多少?合作探讨·展现提升1.某学校对各个班级的教室卫生情形的考察包括如下几项:下:(1)小明将黑板、门窗、桌椅、地面这四项的得分依次按15%,10%,35%,40%的比例计算各班的成绩,那么哪个班的成绩最高?(2)你以为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案。
依照你的方案,哪个班的成绩最高?同组比较,发觉什么?2.小颖家去年的饮食支出为3600元,教育支出为1200 元,其他支出为7200 元。
《平均数与加权平均数》

在预测股票市场时,加权平均数可以 用来考虑不同股票的权重和价格变化 ,从而预测市场的整体趋势。
03
数据分析
在数据分析中,加权平均数可以用来 分析不同类别的数据,例如人口统计 数据、考试成绩等,以反映整体的状 况。
03
平均数与加权平均数 的比较
定义与计算
平均数
定义为数据集中所有数值的和除以数值的数量,通常用算术平均数来表示。计算公式为: $\frac{\sum_{i=1}^{n} x_i}{n}$。
加权平均数是描述一组数据中不同数值的 相对重要性的指标,通常用于衡量数据的 综合水平。计算方法为将每个数值乘以对 应的权重后求和,再除以权重的总和。
平均数和加权平均数广泛应用于统计学、 经济学、管理学等领域,用于分析数据的 整体特征和不同数据之间的相对关系。
平均数和加权平均数也存在一定的局限性 ,如易受极端值影响、无法反映数据的分 布情况等。
展望:未来在数据分析中的应用和发展趋势
数据分析技术的进步
随着数据分析技术的不断发展, 未来平均数和加权平均数将更多 地与其他数据分析方法结合使用 ,以提供更全面、准确的数据分 析结果。
数据质量与数据源的 改善
随着数据质量不断提高和数据源 不断丰富,平均数和加权平均数 将有更多应用场景,如金融风控 、社会治理等领域。
平均数与加权平均数
2023-11-11
目 录
• 平均数 • 加权平均数 • 平均数与加权平均数的比较 • 平均数与加权平均数的实际应用 • 总结与展望
01
平均数
定义与计算
定义
平均数是所有数值的和除以数值的数量。
计算方法
将一组数据相加后除以数据的个数。
平均数的性质和特点
平均数与加权平均数

平均数与加权平均数平均数与加权平均数是统计学中常用的概念,用于描述一组数据的中心位置。
本文将详细介绍平均数和加权平均数的定义、计算方法以及它们在实际应用中的意义。
一、平均数平均数是一组数据的总和除以数据的个数,用于表示这组数据的中心位置。
它是最常见、最简单的描述中心位置的指标。
计算平均数的公式如下:平均数 = 数据的总和 / 数据的个数平均数的计算方法简单直观,但在某些情况下并不能很好地描述一组数据的中心位置。
这时就需要引入加权平均数的概念。
二、加权平均数加权平均数是对一组数据进行加权处理后得到的平均值。
在加权平均数中,不同的数据具有不同的权重,权重越大表示该数据对平均值的贡献越大。
计算加权平均数的公式如下:加权平均数 = (数据1 × 权重1 + 数据2 × 权重2 + ... + 数据n × 权重n)/ (权重1 + 权重2 + ... + 权重n)加权平均数在实际应用中具有重要意义。
它常用于计算指标的平均值,如学生成绩的加权平均分、产品的加权平均价格等。
通过给不同的数据赋予不同的权重,加权平均数能够更准确地反映数据的实际情况。
三、平均数与加权平均数的应用平均数和加权平均数在各个领域都有广泛的应用。
以下是一些常见的应用场景:1. 统计数据分析:在统计学中,常常使用平均数和加权平均数来分析数据的中心位置。
通过计算平均数和加权平均数,可以获得对数据整体特征的初步了解。
2. 经济学:在经济学中,加权平均数常用于计算价格指数,如消费者物价指数(CPI)和生产者物价指数(PPI),以反映物价的变动情况。
3. 财务管理:在财务管理中,加权平均数被广泛应用于计算企业的成本和投资回报率。
例如,加权平均成本资本(WACC)被用来衡量企业的资金成本,从而影响决策者的投资决策。
4. 市场营销:在市场营销中,平均数和加权平均数被用于计算市场份额和顾客满意度指数。
这些指标可以帮助企业了解市场的竞争力和顾客对产品或服务的评价。
平均数和加权平均数

解:x甲 =
85
2+78
1+85 2+1+3+4
3+73
4
=79.5
,
x乙 =
73
2+80
1+82 2+1+3+4
3+83
4
权
=80.4 .
因为乙的成绩比甲高,所以应该录取乙.
2 :1 : 3:4
应试者 听 说 读 写
甲 85 78 85 73 乙 73 80 82 83
思考:能把这种加权平均数的计算方法推广到一般吗?
x1w1+x2w2 + w1+w2 +
+xnwn +wn
2.x x1 f1 x2 f2 xk fk n
应试者 听 说 读 写 甲 85 78 85 73 乙 73 80 82 83
(4)将问题(1)、(2)、(3)比较,你能体会 到权的作用吗?
数据的权能够反映数据的相对重要程度!
应试者 听 说 读 写 甲 85 78 85 73 乙 73 80 82 83
同样一张应试者的应聘成绩单,由于各个数据 所赋的权数不同,造成的录取结果截然不同.
xA 72 30% 85 60% 67 10% =79.3 30% 60% 10%
xB 85 30% 74 60% 7010% =76.9 30% 60% 10%
所以,此时第一名是选手A
课堂小结
平均数与加 权平均数
算术平均数:x x1 x2 ... xn
n
加权平均数:1.x =
一般地,对于n个数x1, x2, …, xn,我们把
x x1 x2 ... xn
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测试项目
测试成绩
A
B
C
创新
72
85
67
综合知识
50
74
70
语言
88
45
67
(1) 如果根据三项测试的平均成绩确定录用人选,那么谁 将被录用?
解:(1) A的平均成绩为(72+50+88)÷3=70(分) B的平均成绩为(85+74+45)÷3=68(分)
C的平均成绩为(67+70+67)÷3=68(分) 因此候选人A将被录用.
幸福的三大指标
健康 + 关爱 + 学业
请将你的幸福指数先四舍五入到个位,再算一 下你所在小组的幸福平均数。(结果最多保留两位 小数)
写一下般地你,对的x于n=幸个1n福数(xx1指1, x数x22, ,,咱xn 也,xn我)来们把算算!
叫做这n个数的算术平均数,简称平均数,记为 x 。
幸福的三大指标
健康 + 关爱 + 学业
请将你的幸福指数先四舍五入到个位,再算一 下你所在小组的幸福平均数。(结果最多保留两位 小数)
我们班的幸福平均数,咱也来算算!
仁者见仁
健康 + 关爱 + 学业
6 6
6 1
: : : :
3 2
7 1
: : : :
1 1
1 1
仁者见仁
健康 + 关爱 + 学业
8分
8分
5分
如果将健康、关爱、学业三项指标的得分按 6:3:1的比例来确定自己的幸福指数,我有几分?
B为
85×4+74×3+45×1 4+3+1
=75.875(分)
C为
67×4+70×3+67×1 4+3+1
=68.125(分)
因此候选人B将被录用.
生活中的数学
(3) 如果公司将创新、综合知识和语
言三项测试得分依次按10%,50%,40%的 项目 测试成绩
比例确定各人的测试成绩,谁将被录用?
ABC
我的幸福指数:
8×6+8×3+5×1 =7.7(分) 6+3+1
加权平均数
一般的, 若n个数 x1 , x2 ,..., xn的权分别是 ω1, ω2 ,...,ωn
x 则
=
x1ω1 x2 ω2 ... xn ωn ω1 ω2 ... ωn
叫做这 n 个数的加权平均数。
加权平均数让数据分析更客观!
我的幸福指数: 8×6+8×3+5×1 =7.7(分) 6+3+1 加权平均数
加权平均数
一般的, 若n个数 x1 , x2 ,..., xn的权分别是 ω1, ω2 ,...,ωn
x 则
=
x1ω1 x2 ω2 ... xn ωn ω1 ω2 ... ωn
叫做这 n 个数的加权平均数。
我的幸福指数: 8×6+8×3+5×1 =7.7(分) 6+3+1
加权平均数
的“实重健际要8康问程题度中+”,未一关必组8爱相数同据+,里因的学而各5业,个在数计据
算这组数据的平均数时,往往给每个数
据一个如果“将权健”康、.这关样爱、算学得业的三数项指据标就的是得分这按组4:
数3:据1的的比“例加来确权定平自均己的数幸”福. 指数,你又有几分?
中国人幸福感提升,个人幸福指数平均数达5.27分
第六章 数据的分析
6.1 平均数
主讲: 梁平一中 程晓山
什么是幸福
健康 + 关爱 + 学业
如果健康、关爱、学业三项幸福指标的满分均 为10分,用三项得分的平均数来表示自己的幸福指 数,你有几分?(结果最多保留两位小数)
写下你的各项指数,咱也来算算!
1.课本第138页 习题6.1; 2.利用本节课所学,回家帮家
人计算一下他们的幸福指数
(3) 根据题意,三人的测试成绩如下: 创 新 72 85 67
A为 72×10%+50×50%+88×40% =67.4(分) 综合 50 74 70
10%+50%+40%
知识
语言
B为 85×10%+74×50%+45×40% =63.5(分)
88
45
67
10%+50%+40%
C为 67×10%+70×50%+67×40% =68.5(分)
加权平均数
健康 + 关爱 + 学业
如果让你自己来确定健康、关爱、学业三项 指标的权,你会怎样给?请根据你所确定的权再计算 一下自己的幸福指数.
加权平均数和算术平均数有可能相等吗?
生活中的数学
某广告公司欲招聘广告策划人员一名,对A,B,C三名候选 人进行了三项素质测试。他们的各项测试成绩如下表所示:
幸福的三大指标
健康 + 关爱 + 学业
如果健康、关爱、学业三项幸福指标的满分均 为10分,用三项得分的平均数来表示自己的幸福指 数,你有几分?(计算结果最多保留两位小数)
写一下般地你,对的x于n=幸个1n福数(xx1指1, x数x22, ,,咱xn 也,xn我)来们把算算!
叫做这n个数的算术平均数,简称平均数,记为 x 。
10%+50%+40%
因此候选人C将被录用.
畅谈收获
知识
能力
疑惑
幸福
课堂幸福感调查
和谐平等的 收获知识与 个性发展与 充满活力与 师生关系 提升能力 积极合作 轻松高效
打分
各项得分最高为10分,分别按20%、30%、30%、20%的
比例计算,则本节课我的课堂幸福指数为
。
(结果最多保留两位小数)
业精于勤荒于嬉
生活中的数学
(2) 根据实际需要,公司将创新、综 合知识和语言三项测试得分按4:3:1的比 例确定各人的测试成绩,谁将被录用?
(2) 根据题意,三人的测试成绩如下:
项目 测试成绩
ABC 创 新 72 85 67
A为
72×4+50×3+88×1 4+3+1
综合
=65.75(分) 知识
Байду номын сангаас50
74
70
语 言 88 45 67