12二次根式的性质1设计

合集下载

二次根式的定义及性质作课教案

二次根式的定义及性质作课教案
A、 B、 C、 D、
2、二次根式 中,字母a的取值范围是()
A、a<l B、a≤1 C、a≥1 D、a>1
2、已知 则x的值为
A、x>-3 B、x<-3 C、x=-3 D、x的值不能确定
3、下列计算中,不正确的是()。
A、3= B、0.5= C、 D、
作业设计
教学反思
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?
, , , , ,
2、当 为正数时 指 的,而0的算术平方根是,负数,只有非负数 才有算术平方根。所以,在二次根式 中,字母 必须满足, 才有意义。
例1、实数x在什么范围内取值时,下列各式表示二次根式?
(1) (2)
巩固练习:1、 取何值时,下列各二次根式有意义?
① ② ③
2、(1)若 有意义,则a的值为___________.
(2)若在实数范围内有意义,则 为()。
A.正数B.负数C.非负数D.非正数
3、(1)在式子 中, 的取值范围是____________.
(3)已知 ,则 = _____________。
(三)展示提升(质疑点拨)
例2、根据算术平方根意义计算:
例4、在实数范围内因式分解
(1) (2)
四、小结:
五、达标检测
(一)填空题:
1、
2、若 ,那么 =, =。
3、当x=时,代数式 有最小值,其最小值是。
4、在实数范围内因式分解:
(1) ( )2=(x+)(x-)
(2) ( )2=(x+)(x-)
(二)选择题:
1、一个数的算术平方根是a,比这个数大3的数为()
课题名称
第七课时二次根式教学目标

二次根式教学设计(通用15篇)

二次根式教学设计(通用15篇)

二次根式教学设计〔通用15篇〕篇1:二次根式教学设计【知识与技能】1.理解二次根式的概念,并利用〔a≥0〕的意义解答详细题目.2.理解〔a≥0〕是非负数和( )2=a.3.理解 =a〔a≥0〕并利用它进展计算和化简.【过程与方法】1.提出问题,根据问题给出概念,应用概念解决实际问题.2.通过复习二次根式的概念,用逻辑推理的方法推出〔a≥0〕是一个非负数,用详细数据结合算术平方根的意义导出( )2=a〔a≥0〕,最后运用结论严谨解题.3.通过详细数据的解答,探究并利用这个结论解决详细问题.【情感态度】通过详细的数据体会从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质.【教学重点】1.形如〔a≥0〕的式子叫做二次根式.2. 〔a≥0〕是一个非负数;( )2=a〔a≥0〕及其运用.【教学难点】利用“ 〔a≥0〕”解决详细问题.关键:用分类思想的方法导出a〔a≥0〕是一个非负数;用探究的方法导出一、情境导入,初步认识回忆:当a是正数时,表示a的算术平方根,即正数a的正的平方根.当a是零时,等于0,它表示零的平方根,也叫做零的.算术平方根.当a是负数时,没有意义.【教学说明】通过对算术平方根的回忆引入二次根式的概念.二、考虑探究,获取新知概括:〔a≥0〕表示非负数a的算术平方根,也就是说,〔a≥0〕是一个非负数,它的平方等于a.即有:〔1〕≥0;〔2〕( )2=a〔a≥0〕.形如〔a≥0〕的式子叫做二次根式.注意:在中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数.考虑:等于什么?我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的的值,看看有什么规律.概括:当a≥0时, =a;当a<0时, =-a.三、运用新知,深化理解1.x取什么实数时,以下各式有意义?2.计算以下各式的值:【教学说明】可由学生抢答完成,再由老师总结归纳.四、师生互动,课堂小结1.师生共同回忆二次根式的概念及有关性质:〔1〕( )2=a〔a≥0〕;〔2〕当a≥0时, =a;当a<0时, =-a.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【教学说明】老师引导学生回忆知识点,让学生大胆发言,进展知识提炼和知识归纳.1.布置作业:从教材相应练习和“习题21.1”中选取.2.完成练习册中本课时练习的“课时作业”局部.本节课从复习算术平方根入手引入二次根式的概念,再通过特殊数据的计算,理解二次根式的有关性质,经历观察、归纳、分类讨论等思维过程,从中获得数学知识与技能,体验教学活动的方法.篇2:二次根式乘法教学设计两个含有二次根式的代数式相乘,假如他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式。

二次根式教案(实用7篇)

二次根式教案(实用7篇)

二次根式教案(实用7篇)二次根式教案第1篇一、教学目标1.理解分母有理化与除法的关系.2.掌握二次根式的分母有理化.3.通过二次根式的分母有理化,培养学生的运算能力.4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想二、教学设计小结、归纳、提高三、重点、难点解决办法1.教学重点:分母有理化.2.教学难点:分母有理化的技巧.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习小结,归纳整理,应用提高,以学生活动为主七、教学过程【复习提问】二次根式混合运算的步骤、运算顺序、互为有理化因式.例1 说出下列算式的运算步骤和顺序:(1)(先乘除,后加减).(2)(有括号,先去括号;不宜先进行括号内的运算).(3)辨别有理化因式:有理化因式:与,与,与…不是有理化因式:与,与…化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?引入新课题.【引入新课】化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.例2 把下列各式的分母有理化:(1);(2);(3)解:略.注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.二次根式教案第2篇1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。

二次根式的概念、性质(第1、2课时 教案)

二次根式的概念、性质(第1、2课时 教案)

第十六章二次根式16.1二次根式第1课时二次根式的概念【知识与技能】是一个非负数.【过程与方法】通过新旧知识的联系,培养学生观察、演绎能力,发展学生的归纳概括能力.【情感态度】通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法,进而体验成功的喜悦,并通过合作学习增进终身学习的信念.≥0的基本性质【教学难点】经历知识产生的过程,探索新知识.一、情境导入,初步认识问题(1)一个长方形的围栏,长是宽的3倍,面积为39m2,则它的宽为_______m;(2)面积为S的正方形的边长为_______;(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2,如果用含h的式子表示t,则t=.______【教学说明】设置上述问题的目的是让学生感受到研究二次根式是实际的需要,二次根式与实际生活联系紧密.教师提出问题后,让学生独立思考,然后相互交流,获得对二次根式的感性认识.二、思考探究,获取新知思考的式子,这些式子有什么特点?【教学说明】教师提出问题,同学生一道分析,体会这些式子的特征,从而引出二次根式的定义.a≥0)形式的式子称.针对上述定义,教师可强调以下几点:(1中,a必须是大于等于0的数或式子,否则它就没有意义了;(2=2,是一个整数,但4仍应称为一个二次根式;(3)当a≥0表示a的算术平方根,而一个非负数的算术平方根必≥0(a≥0)三、典例精析,掌握新知例1下列各式中,一定是二次根式的有_______分析:判断二次根式应关注两点:(1;(2)被开方数必须是非负数.因而在所给出四个式子中,只有②③中的式子同时符合两个要求,故应填②③.例2当x为何值时,下列各式在实数范围内有意义.解:(1)中,由x-2≥0,得x≥2;(2)中,由得2≤x≤3;(3)中,由2x-1>0,得x>1/2.【教学说明】对于例3,教师应引导学生分析题目特征,抓住解决问题的突a中a≥0及a≥0的双重非负性特征.四、运用新知,深化理解1.填空题:(1)形如_______的式子叫二次根式;(2)负数算术平方根________(填“有”或者“没有”)2.当a是怎样的实数时,下列各式在实数范围内有意义:【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.五、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识,你获得哪些解决二次根式问题的方法?你还有哪些问题?请与同伴交流.【教学说明】学生相互交流,回顾知识,反思问题,共同发展提高.1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.1.教师创设情境,给出实例.学生积极主动探索,教师引导与启发,师生互动.体现教师的组织者、引导者与合作者地位.2.注意知识之间的衔接,在温故知新的过程中引导出新知,讲练结合旨在巩固学生对新知的理解.第十六章二次根式16.1二次根式第2课时二次根式的性质【知识与技能】理解并掌握二次根式的性质,正确区分=a(a≥0)与2a=a(a ≥0),并利用它们进行化简和计算.【过程与方法】在探索二次根式性质的学习活动中,进一步增强学生的参与意识,培养学生的计算能力和解决问题的能力.【情感态度】通过创设问题情境,激发学生学习兴趣,培养学生主动探究意识和创新精神,形成良好的心理品质,促进身心健康发展.【教学重点】2a=a(a≥0)2a(a≥0)及其应用.【教学难点】用探究的方法探索2a=a(a≥02a(a≥0)的结论.一、情境导入,初步认识试一试:请根据算术平方根填空,.猜一猜:通过对上述问题的思考,你能猜想出2a(a≥0)的结论是什么?说说你的理由.【教学说明】让学生通过具体实例所展示的特征,猜想出结果,然后再利用算术平方根的意义对所猜测结论进行分析,由感性认识到理性思考,培养学生利用代数语言进行推理的能力.二、思考探究,获取新知在学生相互交流的基础上可归纳出:2=a(a≥0).探究(1)填空:(2)通过(1)的思考,你能确定a≥0)的化简结果吗?说说你的理由.【教学说明】教师应尽力引导学生积极主动进行探究思考,让学生经历知识的发现与完善的过程,深化对所学知识的理解和记忆,最后师生共同完成对知识的归纳总结.(a≥0).最后,教师给出代数式的概念.代数式:用运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子称为代数式.(代数式的定义只要求学生了解就行,不必深究.)三、典例精析,掌握新知例1计算:(1))2;(2)(2【教学说明】以上例1、例2可由学生自主完成,教师巡视,对有困难的学生及时予以指导,让每个学生都能得到发展.例3教师引导学生看懂数轴,结合数轴确定a、b的符号.四、运用新知,深化理解【教学说明】以上1~3题可试着让学生自主完成,第4题稍有难度,教师适时点拨.(22a进行化简.然后再根据x>2的这个范围,来判断x-2与1-2x的正负,最后化简掉绝对值符号.∵x>2,∴x-2>0,1-2x<0.3.(1)原式=5-5+1=1(2)原式=7+49×2/7=7+14=21(2)首先利用a2=|a|化简掉二次根号,再根据x的取值范围来判断绝对值中的代数式的正负,化掉绝对值的符号.五、师生互动,课堂小结1.本节知识可这样归纳:2.通过这节课的学习,你有哪些收获和体会?与同伴交流.1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.1.注意前后知识的联系,在复习旧知的过程中导入本节课的数学内容,按照由特殊到一般的规律,降低学生理解的难度.2.在总结二次根式的性质过程中,由学生经过观察、分析的过程,让学生在交流中体会成功.3.几个例题,旨在帮助学生对二次根式的性质的理解,在练习和作业中都增加了难度,主要给能力较好的学生提供更大的发展空间.。

二次根式教案三篇

二次根式教案三篇

二次根式教案三篇二次根式教案三篇二次根式教案篇1 一、内容解析本节教材是在学生学习二次根式概念的根底上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和考虑得到二次根式的两个根本性质.对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个详细问题,让学生学生根据算术平方根的意义,就详细数字进展分析^p 得出结果,再分析^p 这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析^p ,确定本节课的教学重点为:理解二次根式的性质.二、目的和目的解析1.教学目的〔1〕经历探究二次根式的性质的过程,并理解其意义;〔2〕会运用二次根式的性质进展二次根式的化简;〔3〕理解代数式的概念.2.目的解析〔1〕学生能根据详细数字分析^p 和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;〔2〕学生能灵敏运用二次根式的性质进展二次根式的化简;〔3〕学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.三、教学问题诊断分析^p二次根式的性质是二次根式化简和运算的重要根底.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵敏运用二次根式的性质进展二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的.灵敏运用存在一定的困难,打破这一难点需要老师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵敏运用的才能.本节课的教学难点为:二次根式性质的灵敏运用.四、教学过程设计1.探究性质1问题1 你能解释以下式子的含义吗?师生活动:老师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.问题2 根据算术平方根的意义填空,并说出得到结论的根据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的根据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:〔≥0〕.【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的才能.例2 计算〔1〕〔2〕师生活动:学生独立完成,集体订正.【设计意图】稳固二次根式的性质1,学会灵敏运用.2.探究性质2问题4 你能解释以下式子的含义吗?师生活动:老师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.问题5 根据算术平方根的意义填空,并说出得到结论的根据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的根据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:〔≥0〕【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的才能.例3 计算〔1〕〔2〕师生活动:学生独立完成,集体订正.【设计意图】稳固二次根式的性质2,学会灵敏运用.3.归纳代数式的概念问题7 回忆我们学过的式子,如 ___________〔≥0〕,这些式子有哪些共同特征?师生活动:学生概括式子的共同特征,得得出代数式的概念.【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括才能.4.综合运用〔1〕算一算:【设计意图】设计有一定综合性的题目,考察学生的灵敏运用的才能,第〔2〕、〔3〕、〔4〕小题要特别注意结果的符号.〔2〕想一想:中,的取值范围是什么?当≥0时,等于多少?当时,又等于多少?【设计意图】通过此问题的设计,加深学生对的理解,开阔学生的视野,训练学生的思维.〔3〕谈一谈你对与的认识.【设计意图】加深学生对二次根式性质的理解.5.总结反思〔1〕你知道了二次根式的哪些性质?〔2〕运用二次根式性质进展化简需要注意什么?〔3〕请谈谈发现二次根式性质的考虑过程?〔4〕想一想,到如今为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.6.布置作业:教科书习题16.1第2,4题.二次根式教案篇2 活动1、提出问题一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。

新版湘教版秋八年级数学上册第五章二次根式课题二次根式的概念及性质教学设计

新版湘教版秋八年级数学上册第五章二次根式课题二次根式的概念及性质教学设计

新版湘教版秋八年级数学上册第五章二次根式课题二次根式的概念及性质教学设计一. 教材分析湘教版秋八年级数学上册第五章二次根式,主要介绍了二次根式的概念及性质。

这一章节的内容是学生学习二次根式的基础,对于后续学习二次根式的运算和应用具有重要意义。

教材从实际问题出发,引导学生认识二次根式,并探究其性质,使学生能够在理解的基础上掌握二次根式的基本概念和性质。

二. 学情分析八年级的学生已经学习了实数、代数式等基础知识,具备一定的逻辑思维能力和推理能力。

但对于二次根式这一概念,学生可能较为陌生,需要通过具体实例和实际问题来引导学生理解和掌握。

同时,学生对于数学概念的理解往往需要从具体到抽象的过程,因此在教学过程中,需要注重从实际问题出发,引导学生逐步抽象出二次根式的概念和性质。

三. 教学目标1.理解二次根式的概念,掌握二次根式的性质。

2.能够运用二次根式的性质解决实际问题。

3.培养学生的逻辑思维能力和推理能力。

四. 教学重难点1.二次根式的概念的理解。

2.二次根式的性质的掌握和运用。

五. 教学方法1.情境教学法:通过实际问题引出二次根式,使学生能够在具体的情境中理解和掌握二次根式。

2.引导发现法:引导学生通过观察、分析和归纳,自主发现二次根式的性质。

3.巩固练习法:通过大量的练习,使学生熟练掌握二次根式的概念和性质。

六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示二次根式的概念和性质。

2.练习题:准备适量的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题引入二次根式的概念,如:一个正方形的对角线长为8cm,求正方形的面积。

引导学生思考如何表示这个对角线的长度,从而引出二次根式的概念。

2.呈现(10分钟)讲解二次根式的定义,并用PPT展示一些二次根式的例子。

引导学生观察和分析这些例子,发现二次根式的共同特点,从而归纳出二次根式的性质。

3.操练(10分钟)让学生分组讨论,互相出题,运用二次根式的性质进行解答。

初中数学_二次根式的性质教学设计学情分析教材分析课后反思

初中数学_二次根式的性质教学设计学情分析教材分析课后反思

一、学习目标1、掌握二次根式的基本性质:)0(2≥a)a,并能灵=a≥a(a和)0(0≥活应用;2、掌握二次根式的基本性质:a2,能利用上述性质对二次根式a=进行化简.ab3、掌握二次根式的性质: = ba并能化解一些二次根式二、学习重点、难点重点:掌握二次根式的三个基本性质.利用二次根式的性质进行化简难点:综合运用性质解决生活的问题三、学习过程(一)知识回顾:1.二次根式概念)0a≥a(0≥2、二次根式基本性质1)0aa)=a(2≥(牛刀小试1、已知,求x+y的值130x y2、已知求x+y 的值。

3、若x 、y 都是实数,且 时,求代数式5x — 6y 值。

4、二、合作学习 请比较左右两边的式子,议一论与∣a ∣有什么关系?当0≥a 时 = 当a<0时 =性质二:一般地,二次根式有下面的性质:___,___,___,===()02922=++-y x x 11331+---=x x y ()()()()(()222221______,2______,3________,4________,5________.===⎛=-= ⎝|2|___;|5|___;|0|___.=-==2a 2a 2a总结规律1:从运算顺序来看,2.从取值范围来看,3.从运算结果来看: 例题1=2)2)(1(=-2)2)(2(=-2)2()3(=-2)2()4(=22)5(=--2)2()6(_______)3)(2(______)1()1(22=-=-______)4()4(______)311()3(22=-=2.数a 在数轴上的位置如图, 课内练习1三、探索发现:性质三:火眼金睛 _____.=22)7()7()1(--22)13()11)(2(-+-.____94_____,94)1(=⨯=⨯_____4925______,4925)2(=⨯=⨯._____32______,32)3(=⨯=⨯)0,0(≥≥⨯=⨯b a b a b a :.2化简下列各二次根式例题=⨯259=300=-⨯-=-⨯-2418)24()18()1(312四、提高引申2.实数a 、b 、c 在数轴上的位置如图所示,化简五、小结 二次根式的性质及它们的应用:1、)0()(2≥=a a a ⎪⎩⎪⎨⎧<-=>==0a a 0a 00a a 2 a a 平方在外面,直接去括号 平方在里面,加上绝度值,分类来讨论2、性质三:注意这个二次根式的存在条件;性质的逆运用。

浙教版数学八年级下册《1.2 二次根式的性质》教案1

浙教版数学八年级下册《1.2 二次根式的性质》教案1

浙教版数学八年级下册《1.2 二次根式的性质》教案1一. 教材分析《二次根式的性质》是浙教版数学八年级下册的教学内容,这部分内容主要让学生了解和掌握二次根式的性质,包括二次根式的定义、运算规则、性质等。

通过这部分的学习,为学生后续学习二次根式的应用打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数、无理数等基础知识,对数学运算有一定的基础。

但是对于二次根式的概念和性质可能还存在一定的困惑,因此,在教学过程中,需要引导学生从实际问题出发,理解和掌握二次根式的性质。

三. 教学目标1.让学生了解二次根式的定义,掌握二次根式的性质。

2.培养学生运用二次根式的性质解决实际问题的能力。

3.提高学生的数学思维能力和运算能力。

四. 教学重难点1.二次根式的定义和性质。

2.二次根式的运算规则。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生从实际问题出发,探索和理解二次根式的性质。

六. 教学准备1.准备相关的教学案例和问题。

2.准备教学PPT,包括二次根式的定义、性质、运算规则等内容。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题引入二次根式的概念,例如:一个正方形的对角线长为8,求这个正方形的面积。

让学生思考如何解决这个问题,从而引出二次根式的概念。

2.呈现(15分钟)通过PPT展示二次根式的定义、性质、运算规则等内容,让学生理解和掌握二次根式的基本知识。

3.操练(15分钟)让学生进行一些二次根式的运算练习,巩固所学知识。

教师可以设置一些有关二次根式的性质的问题,让学生通过运算来验证这些性质。

4.巩固(5分钟)通过一些练习题,让学生运用二次根式的性质解决问题,巩固所学知识。

5.拓展(5分钟)引导学生思考:二次根式在实际生活中有哪些应用?可以让学生举例说明,从而拓展学生的知识视野。

6.小结(5分钟)对本节课的内容进行小结,让学生明确二次根式的性质及其应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2二次根式的性质(1)
二中南区 尹恩芳
教学目标: 1、
会用

的性质,化简二次根式.
2、
通过二次根式性质
的运用,初步掌握分类讨论的思想方法.
教学重点:
,
的性质.
教学难点::例2的化简 教学过程:
一、复习引入:(口答)
1. 面积分别为4,9,16,15,17,a 时的正方形的边长是多少?
2.得出性质1:2
()(0)a a ≥= .
3.快速判断:
二、探究新知
1. 合作学习:
23______=,
3=________;
=_______,
5-=________;

______02= 0=________;
请比较左右两边的式子,议一议:2
a 与a 有什么关系? 当a ≥022______0_____.a a a =〈=;当时,
a
()()()()(()22
22
22113______,2______,32________,73245________,5________.3===⎛-=--= ⎝
2.归纳性质2:
3.梳理新知
(1)二次根式的性质:(1
)2
=


(2) 请比较两者的异同点。

(小组交流)
4.

5.教师归纳二次根式的性质及应用口诀:
平方在外面,直接去根号;平方在里面,夹上绝对值,分类来讨论.
6.口答:
(0)
(0)
a a a a a ≥⎧⎪==⎨
⎪-<⎩
2学生主动归纳2=
2(2)(=2(3)-==
=(6)=
三、例题教学 例1计算
:
2
(2)(让学生独立完成后进行小组内交流批改,用红笔圈出错误之处并订正.)
巩固练习: 计算:(
1 (
(2
2(学生独立完成后,小组内校对批改,圈出错处订正.) 例
224253
+- (学生独立完成后进行小组交流批改,用红笔圈出错误之处,让学生说出错误原因并订正.)
练习:
四、拓展提高
例3 求下列二次根式的值:
跟踪练习
()
()
=
-
2
2
11
(2)
()
=
+-2223y xy x
五、课堂小结
1.怎样的式子叫二次根式?
2.怎样判断一个式子是不是二次根式? (1) 形式上含有二次根号 (2)被开方数a 为非负数
3.如何确定二次根式中字母的取值范围?
①分母不为0 ②被开方数大于等于0 ③结合数轴,写出解集来
4.真正理解
这两个性质的含义,我们才能灵
活地去解决有关二次根式的问题。

(2)x =其中212
83
+-.的式子叫做二次根式(0)a ≥0,0.a ≥≥(双重非负性)
2
(0)
a a =≥a ==(0)
(0)
a a a a ≥-<{
解决二次根式类问题时特别注意条件,有时还得挖掘隐含条件.
六、课堂练习
A组题:
1.下列各式正确的是( )

. 2
(3
=-
B. 23
=-
C. 3
=
D.
23
-=-
2.
= , (2
=,(3
=
B组题:
化简及求值:
(1
(2)
(a<0,b>
0)
(4)

七、引申提高
1.
3
x
=-,则x的取值范围是
.
2.下列式子一定是二次根式的是( )
D.
3.如图,实数a,b在数轴上的位置
化简
4. 在实数范围内分解因式:
()2
12
x-()2
23
x-+
八、能力提升
1.已知a,b,c为△ABC的三边长,化简:
(先独立思考,然后小组讨论交流,共同完成.)
2.化简:
2
3.0x y
===
时,( ),( ) 
()2
4.520,
x z xyz
++=
已知求的值。

九、思维拓展
先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数
a,b ,使,a b m ab n +==,使得22m +==,那么便有:
)
a b ==>
解:这里7,12m n ==,由于4+3=7,4×3=12
即22
+==
2==
=
试用上述例题的方法化简
十、当堂检测:
1.计算:(1)2
=
, (2)
= ,
= .
2.化简:
2
-。

相关文档
最新文档