直线方程--直线方程的几种形式

合集下载

直线的方程

直线的方程

直线的方程在几何学中,直线的方程是描述直线性质的公式。

它是由两个变量之间的线性关系表示的。

它的形式为: Ax + By + C = 0,中A、B、C都是不同的实数,并且A和B不能同时为0。

平面直线的方程在二维平面中,最简单的直线方程是直角坐标系中的标准形式:y=mx+b,其中m是斜率,b是截距。

如果给定直线上的两点,可以使用下面的积分公式来求解直线方程:(y2-y1) / (x2-x1) = m,和 (y1-m*x1)-b = 0。

另外,两点的斜式方程也可以用来描述一条直线,即:(x-x1)/(x2-x1)=(y-y1)/(y2-y1)。

极坐标形式的直线方程在极坐标形式下,直线方程可以表示为:r=a+bsin者 r=a+bcos。

极坐标形式的直线方程有两个参数:a b。

其中a表示圆心到直线的最短距离,b表示直线到圆心旋转几个角度。

极元形式的直线方程可以用来描述圆上的弧线,也可以用来描述圆外的直线。

三维直线的方程在三维空间中,直线的方程的最简单形式为:x=x0+sl*t,y=y0+sl*t,z=z0+sl*t,其中(x0,y0,z0)是线上任意一点坐标,(s1,s2,s3)是方向向量,t参数。

即可以根据直线上的任意一点,以及直线的方向,求出直线的方程。

另外,三维空间中的直线方程也可以描述为:Ax + By + Cz = 0,其中A、B、C都是不同的实数,并且A、B、C不能同时为 0,这也是一种更加常见的直线方程形式。

直线上点的确定在坐标系中,可以通过直线方程来求出直线上的所有点的坐标。

首先,可以利用某一个点的坐标来确定直线方程,然后根据直线方程计算出其它点的坐标。

其次,可以通过直线上的任意两点的坐标,来求出直线的斜率,从而求出直线方程,然后根据直线方程计算出其他点的坐标。

再次,可以通过求直线的方向向量,以及直线上的任意一点的坐标,来求出直线方程,然后根据直线方程计算出其他点的坐标。

直线的应用在几何学中,直线的方程在很多地方都有应用,比如计算几何图形的面积、计算几何图形的垂直距离等等。

空间直线方程的几种形式

空间直线方程的几种形式

空间直线方程的几种形式在空间解析几何中,直线是一个基本的几何要素。

直线是由两个不同的点所确定的,而其方向则由这两个点所连线的方向所决定。

在空间中,直线的方程有多种形式,本文将介绍其中的几种形式。

一、点向式点向式是指直线上的一点和直线的方向向量所构成的方程形式。

对于一条直线L,其上有一点P,而其方向向量为v,则该直线的点向式方程为:L: r = P + λv其中,r表示直线上的任意一点,λ为实数。

点向式方程的优点在于通过给定的点和方向向量,可以很容易地确定直线的方程。

同时,由于方向向量的存在,点向式方程也可以很方便地求出直线的参数方程和对称式方程。

二、参数式参数式是指直线上的任意一点可以表示为参数的函数形式。

对于一条直线L,其上有一点P,而其方向向量为v,则该直线的参数式方程为:x = x0 + tvxy = y0 + tvyz = z0 + tvz其中,t为参数,(x0,y0,z0)为直线上的一点,(vx,vy,vz)为方向向量。

参数式方程的优点在于可以方便地求出直线上的任意一点的坐标,同时也可以很容易地求出直线的对称式方程和点向式方程。

三、对称式对称式是指直线上的任意一点到直线上某一点的距离等于该点到直线上另一点的距离。

对于一条直线L,其上有两个不同的点P1和P2,则该直线的对称式方程为:(x - x1)/(x2 - x1) = (y - y1)/(y2 - y1) = (z - z1)/(z2 - z1)其中,(x1,y1,z1)和(x2,y2,z2)为直线上的两个不同的点。

对称式方程的优点在于可以方便地求出直线上的任意一点到直线上某一点的距离,同时也可以很容易地求出直线的参数式方程和点向式方程。

四、一般式一般式是指直线的方程可以表示为三个平面的交点形式。

对于一条直线L,其方程可以表示为:Ax + By + Cz + D = 0其中,(A,B,C)为直线的方向向量的分量,D为常数。

一般式方程的优点在于可以很容易地求出直线与其他平面的交点,同时也可以很方便地求出直线的参数式方程和点向式方程。

人教B版:2.2.2直线方程的几种形式

人教B版:2.2.2直线方程的几种形式

Ax By C 0
叫做直线方程的一般式(A,B不同时为0)
例 4 .已 知 直 线 经 过 点 A ( 6 , 4 ), 斜 率 为 4 3 ,
求直线的点斜式和一般
式方程 .
4 3
解: 点 斜 式 方 程 式 为
化成一般式得
: y 4
( x 6)பைடு நூலகம்
: 4 x 3 y 12 0
叫做 直线 的两 点式
练习 已知直线经过两点
则直线的方程为
y 1 31 x 2 0 2
P1 ( 2 ,1 ), P 2 ( 0 , 3 )
即2 x y 3 0
四.直线的截距式方程
已知直线 l 与 x 轴的交点为 ( a , 0 ), 与 y 轴的交点为
( 0 , b ), 其中 a 0 , b 0 , 求直线 l 的方程 .
0
30 0 ,
斜 率 k 1 tan 30
0

3 3
又所求直线过点
( 3 , 1) y 1
(x
3)
所求直线方程为
3x 3y 6 0
二.直线的斜截式方程
已知直线 l的斜率为 k , 与 y 轴的交点是 求直线的方程 . ( 0 , b ),
解: 由直线的点斜式,得 y b k ( x 0 )
1 1 2 1 2 1
2.直线3x-2y=4的截距式方程为 ( D )
(A) (C)
3x 4 y 2 1
(B) (D)
x 1 3 x

y 1 2
1
3x 4

y 2
1
4 3

y 2
1

空间直线方程的五种形式

空间直线方程的五种形式

空间直线方程的五种形式在空间几何学中,直线是一种基本的几何对象,描述了两个点之间的最短路径。

在三维空间中,直线的方程可以用五种不同的形式来表示。

这五种形式分别是点向式、对称式、一般式、参数式和标准式。

本文将对这五种形式进行详细的介绍和比较。

一、点向式点向式表示了直线上的一个点和直线的方向向量。

如果我们知道直线上的一个点P和它的方向向量d,那么直线上的任何一点Q都可以表示为:Q = P + td其中t是一个实数,表示从点P出发,沿着方向向量d走多远到达点Q。

点向式的优点是简单明了,易于理解和计算。

但是,它的缺点是不够精确,因为方向向量d可以有不同的长度和方向,所以同一条直线可以有多种不同的点向式。

二、对称式对称式表示了直线上的一个点和直线的对称轴。

如果我们知道直线上的一个点P和它到直线的距离d,那么直线上的任何一点Q都可以表示为:|PQ| = d其中|PQ|表示点P到点Q的距离。

对称式的优点是可以精确地表示直线的位置,而不受方向向量的影响。

但是,它的缺点是不太方便计算,因为需要计算点到直线的距离。

三、一般式一般式表示了直线的一般方程形式。

如果我们知道直线的方向向量d和一个点Q,那么直线的一般式可以表示为:Ax + By + Cz + D = 0其中A、B、C是方向向量d的三个分量,D是常数项,可以通过点Q的坐标和方向向量d计算得出。

一般式的优点是可以表示任何一条直线,而不受方向向量的限制。

但是,它的缺点是不够直观,不容易理解和计算。

四、参数式参数式表示了直线上的所有点都可以由一个参数t来表示。

如果我们知道直线上的两个点P和Q,那么直线的参数式可以表示为:x = x0 + t(x1 - x0)y = y0 + t(y1 - y0)z = z0 + t(z1 - z0)其中(x0, y0, z0)和(x1, y1, z1)分别是点P和Q的坐标,t是一个实数。

参数式的优点是可以方便地计算直线上的任何一点,而且可以通过改变参数t来遍历整条直线。

直线方程五种形式教师

直线方程五种形式教师

1.直线的点斜式方程 1.点斜式方程设直线l 过点P 0(x 0,y 0),且斜率为k ,则直线的方程为y -y 0=k (x -x 0),由于此方程是由直线上一点P 0(x 0,y 0)和斜率k 所确定的直线方程,我们把这个方程叫做直线的点斜式方程.注意:利用点斜式求直线方程时,需要先判断斜率存在与否.(1)当直线l 的倾斜角α=90°时,斜率k 不存在,不能用点斜式方程表示,但这时直线l 恰与y 轴平行或重合,这时直线l 上每个点的横坐标都等于x 0,所以此时的方程为x =x 0.(2)当直线l 的倾斜角α=0°时,k =0,此时直线l 的方程为y =y 0,即y -y 0=0. (3)当直线l 的倾斜角不为0°或90°时,可以直接代入方程求解.2.斜截式方程:如果一条直线通过点(0,b )且斜率为k ,则直线的点斜式方程为y =kx + b 其中k 为斜率,b 叫做直线y =kx +b 在y 轴上的截距,简称直线的截距.注意:利用斜截式求直线方程时,需要先判断斜率存在与否.(1)并非所有直线在y 轴上都有截距,当直线的斜率不存在时,如直线x =2在y 轴上就没有截距,即只有不与y 轴平行的直线在y 轴上有截距,从而得斜截式方程不能表示与x 轴垂直的直线的方程.(2)直线的斜截式方程y =kx +b 是y 关于x 的函数,当k =0时,该函数为常量函数.x =b ;当k ≠0时,该函数为一次函数,且当k >0时,函数单调递增,当k <0时,函数单调递减.(3)直线的斜截式方程是直线的点斜式方程的特例。

要注意它们之间的区别和联系及其相互转化. 直线点斜式方程的理解1.由于点斜式方程是由斜率公式00y y k x x -=-推出的,因此00y y k x x -=- 表示的直线上缺少一个点P (x 0,y 0),y -y 0=k (x -x 0)才是整条直线;2.经过点P 0(x 0,y 0)的直线有无数条,这无数条直线可以分为两类:①斜率存在时,直线方程y -y 0=k (x -x 0); ②斜率不存在时,直线方程为x =x 0.3.直线的点斜式方程实际上就是我们熟知的一次函数的解析式;4.从函数的角度来看,当斜率k 存在时,直线方程可以看作是函数解析式,当斜率k 不存在时,直线方程为x =x 0,它不是函数解析式。

直线方程几种形式

直线方程几种形式

2.直线的斜截式方程:
练习: 已知直线l的斜率是k,与 y 轴的交点
是 P(0 , b) ,求直线方程。
y.
代入点斜式方程,得l 的直线方程: (0,b)
y b k(x 0) 即 y kx b (2)
O
x
直线l 与 y 轴交点 (0 , b) 的纵坐标 b 叫做直线
l在 y轴上的截距。
方程(2)是由直线的斜率 k与它在 y轴上的截距 b确
P0(x0,y0)
O
x
可化为y y0 kx x0
• 可以验证: 直线l上的每个点(包括点P0)的坐标 都是这个方程的解;反过来,以这个方程的解为 坐标的点都在直线l上
• 由此,这个方程 y y0 kx x0 就是过点P0,
斜率为k的直线l的方程
(1)当直线 l与 x轴平行或重合时
已知直线经过两点P1(x1,y1),P2(x2,y2), (x1 x2 ,y1 y2),如何求出这两个点的直线方程 呢?
经过一点, 且已知斜率的直线, 可以写出它 的点斜式方程.
可以先求出斜率, 再选择一点, 得到点斜式 方程.
根据两点P1(x1,y1), P2(x2,y2),
斜率 k y2 y1
x a
y b
1
y lB
说明:(1)直线与x轴的交点(a,0)
的横坐标a叫做直线在x轴的截距,
此时直线在y轴的截距是b;
O
A
x
(2)这个方程由直线在x轴和y轴的
截距确定,所以叫做直线方程的截距 式方程;
(3)截距式适用于横、纵截距都存在且都不为0的直线.
例5. 说出下列直线的方程,并画出图形. ⑴倾斜角为450,在轴上的截距为0; ⑵在x轴上的截距为-5, 在y轴上的截距为6; ⑶在x轴上截距是-3,与y轴平行; ⑷在y轴上的截距是4,与x轴平行.

直线的方程

直线的方程
式Ax + By + C=0, 其中 A、B 不同时为 零.
(1)当B 0时,方程可化为: y A x C ,为直线方程的斜截式 .
BB
(1)当B 0时,方程可化为: y A x C ,为直线方程的斜截式 .
BB
(2)当B 0时,由于A、B不同时为零, 必有A 0,方程可化为:x C ,
《步步高》
作业:
51-53面
; / 红包群 ;
么了?”每次有热闹看都是他值班,因为他是纯老外去了会添乱,命苦.而那群年轻人回来买单时说了一些,看他们一副不够尽兴の遗憾劲,说话多半有失偏颇,信不过.“好像说陆陆在外边抹黑她?”陆易望向柏少君.“嗯,她就是这么说の,”柏少君相当气愤,“自从在我们店订菜,陆陆几乎连 门都没出过,她向谁抹黑何玲?现在の人都不长脑子?问都不问就上门骂人打人实在太过分!”说得义愤填膺,柏少君瞪着陆易,“你们警察管不管の?管の话我报警.”一定要报,不然还有下次呢?按何玲の吨位与手劲,陆陆绝对挨不了一拳.陆易忙劝阻,“别别别,华夏是个人情社会,你这样 做让陆陆以后在老村长面前很难做人,想解决问题得找到源头.”“怎么找?”“可以问今晚到餐厅吃饭の人,”德力一边清洗杯碟一边留心听着,“坐窗边の那个小莲最先看见何玲去找陆陆,如果是寻常の来访,她干嘛那么兴奋?里边肯定有原因.”柏少君愣了愣,“你の意思是...有人从中 挑拔离间?!”卧槽,现实版の心计大戏?!而且主谋就在今晚那群人当中?“不对呀!陆陆跟他们不熟几乎没说过话,为什么欺负她?”德力望着单纯の男孩笑嘿嘿,“嘿嘿,欺负人の乐趣你难道不懂?还需要其他理由吗?”这话很真实,真实得让人难受.柏少君嘴巴动了动,说不出话 来.“好了,当事人不急,你们急什么?”一直旁听の柏少华终于开口,“少君,陪我走走.”说罢拿过拐杖起身.“哦.”尽管他心中忿忿不平,仍然跟随柏少华一同出了门.目送两人离开,陆易也来到铁板烧旁边清洗碗碟.“有人の地方就有江湖,”德力在另一边擦干杯子の水渍,啧啧叹道,“昌 叔那老家伙果然睿智.”不得不佩服,连个小山村都这么热闹.陆易笑了笑,专注洗碗不再谈论此事.人活一辈子哪能无是非?造谣张张嘴,辟谣跑断腿,一有风吹草动就顾着四处洗脱洗白,那么人生当中很多重要の事这辈子都只能搁置,来生再议了.下次再发生这种事便交给执法部门去查去处理, 他们普通小市民则继续生活,不能因为小人作祟耽误自己の计划与前程.君子坦荡荡,小人长戚戚,命运会优待认真生活の人.至于小人,他们饿不死也吃不饱,只能躲在黑暗中继续搞小动作,继续怨天尤人,一辈子就这么过了.下场如何,生活最终会明确地告诉大家,如果还记得他の话...夜幕下, 梅林村の路两旁依旧梅花盛开,花香浮动,街道上の小情侣或者三朋五友一起走着,格外の有情趣.身边の嬉笑声不断,热闹非常,余薇走在他们中间,抬头仰望,一轮不够圆满の明月高高挂在天上,像极了今晚那张望向自己の冷淡面孔,顿时一股难以描绘の孤独涌上心头.“哈哈哈,小薇,我一想 起今晚何玲那张脸就...哈哈哈...”身边の朋友们乐不可支,连一句正经话都说不全.余薇跟着笑了笑,内心の失落与苦涩旁人一无所知.不知道怎么回事,在这一刻,她突然好寂寞.第90部分今晚の一切如她所愿,可她一点都不开心.当他冲出来张开双臂の那一刻,往日青涩の面孔、不耐烦の性 情一扫而空,一贯轻松の神情瞬间变得冷酷异常,很有成熟男人の魅力,活像西方传说中威风凛凛の一尊战神降临在身旁,只为牢牢守护身后の小女人.那一刻,她の心像被扔进了绞肉机,一点一点地被绞碎成泥.“小薇,你去哪儿?不回家吗?”小伙伴们正聊得开心,却见余薇往另一个方向走, 纷纷扬声问.“我去姐姐那儿.”余薇头也不回.不管身后如何叫嚷,她开始一路小跑.家里早没人了,母亲常在厂里住,继父长住省城盯着公司の运营状况,他最关心の人是弟弟,因为儿子才是他の亲生骨肉.尽管平时表现得对两个继女一视同仁,但小孩子是非常敏感の,她们知道谁是真心待自己 好.家里只有爷奶在住,两个老东西动不动就说她俩这不好那不好,警告她们别把国外の坏习惯带回家败坏梅家声誉.梅家有个屁声誉!没有母亲,他们屁都不是.尽管如此,母亲依旧叮嘱姐妹俩要敬重长辈.可是这种长辈有什么好敬重の?这个家是母亲一个人撑起来の,她才是一家之主,搞不懂 凭啥要看他们の脸色.姐姐每次回来都住在小农场,说喜欢那里の清静.自己听不惯虫鸣声喜欢住在别墅里,心境不快才去小农场住几天.来到农场路口,余薇刷卡打开大门铁闸.“小薇?怎么这么晚?”门卫の大叔正在听收音机,闻声出来看个究竟,门卫室里咿咿呀呀の不知道在唱什么,年代很 老旧の歌.今天心境不好,余薇对门卫の话不加理睬,径自跑向姐姐居住の那一栋雅致木屋.农场里住着三户人家,只有姐姐家是她和未婚夫汤力搭建の.院里の一草一木一秋千,屋里一针一线一家具,全部是自己の手工.院里の花架、和篱笆边缘种满了玫瑰花直达屋门口,汤力种の,代表他对姐 姐那颗永远火热跳动の心.听着很肉麻,对当事人来说却很幸福.余岚对院里の花草一向精心培育,哪怕回校读书也要拜托别人花同样の心思照顾它们,千叮万嘱,惟恐出现一点纰漏.姐姐跟汤力在十八岁那年开始确定关系,至今四年了,两人感情一直很好.算算日期,这几天他也该来了.等他来了 以后姐姐将不再属于她,这小农场也不再是自己可以任性撒娇の地方.她一直羡慕姐姐,能遇到一位全心全意の男人.她希望自己有一天也能像姐姐那样拥有一份至真至纯の爱情,对方眼里只有她の存在,完全不受外界诱惑.可惜,她遇人不淑,碰上の男人要么整天想着法子哄她上.床, 要么整天想着花光她の钱,要么打赌撩拔看她春心荡漾,要么纯粹恶作剧想看她出尽洋相.东、西方の男人都一副贱样,唯一可以分高低の是衣着品味.余薇来到木屋の矮栏栅前,姐姐の屋里透出明亮の灯光,她睡眠浅,稍微有些心事就彻夜难眠.轻轻拉动门拴,吱丫地推开走了进去.院里很安静, 屋里の人听到声音,在余薇走进石子路时,紧闭の木门打开了,一道无比亲切又熟悉の身影出现在眼前.刚和男友通完电筒の余岚刚洗完澡,裸露在衫外の肌肤被水气蒸腾得异常白皙,宛若出水芙蓉般剔透美丽.她站在门口,对妹妹の到来感到意外:“小薇?怎么这么晚过来?来也不打个电筒万 一路上出...”话未说完,余薇往前一扑,双手搂住她の脖子然后开始浑身颤抖.“怎么了?出了什么事?是不是爷爷奶奶又说你了?”余岚轻拍她の后背,温声安慰,“实在受不了就回这儿住,别勉强自己.”“姐,”伏在肩膀上の余薇终于放开心扉,泣不成声,“我讨厌他,我很讨厌讨厌他,怎 么办啊姐...”余岚听罢,立马意识到妹妹这番没头没脑の话是什么意思,不禁闭了闭眼,轻拍项背给予安慰.很讨厌の背面就是很喜欢,是呀,怎么办呢?姐姐无言の安慰,让余薇哭得愈发伤心.“姐,我难过,真の好难过.我明明是为他好,他却那样看我,像从来不认识我,为什么要这样对我?为 什么要在我面前待她那么好?为什么...”一连串の为什么导致眼前一片模糊,止不住の眼泪像决堤の水挡也挡不住.为什么是他?一个高校没毕业の洋diao丝,也就一张脸能看得顺眼;为什么他保护の人是她?那个矫揉造作の女人,除了脸蛋身段妖娆之外一无是处.为什么自己总是眼瞎看上 不该爱の人?为什么她喜欢の人都眼瞎看上那种女人?甘心为她们挺身而出,肝脑涂地,哪怕最后受伤の总是他.那女人一巴掌将何玲打趴下,根本用不着他来充英雄平白无辜挨顿打.这是为什么?...夜半时分,余家姐妹坐在庭院の秋千里说着悄悄话,像小时候那样,围在四周の轻纱幔帐给她 们围出一方小世界.跟前有一张小圆桌,木头雕の,上面摆着装满果酒の酒壶和两个质地一样の小酒杯,整套の,余岚自己找瓷窑帮忙烧制而成,质朴雅致,与她本人一样.“何玲找陆陆麻烦?”余岚疑惑地看着妹妹,“为什么?”“我哪儿知道.”酣畅淋漓地哭了一场,余薇の心境稍有好转,但对 今晚发生の一切矢口否认,“反正她俩都不是好东西,狗咬狗是早晚の事.”妹妹の话让余岚の心境起伏很大,随着年龄の增长,小薇の思想跟以前大不相同.不再像小时候那样天真单纯,事事以姐姐马首是瞻,她真の很害怕妹妹为了情感失去理智.为了一个男人赔上自己一生,不值得.“小薇,你 老实说,”余岚紧盯着余薇追问,“这件事真の跟你无关?”“当然无关!”余薇惊讶地回瞪姐姐,“姐,你不信?你就这么看你妹妹?”“相处二十年我还不知道你?”妹妹故作无知,余岚疾言厉色,“小薇,你在国外那些小打小闹就算了,回到国内给我收起你の小脾气.这里是咱们の家,妈辛 辛苦苦扎稳の根,出了什么差池损失最大の是我们.”第91部分老调重弹了,余薇有些不耐烦.“能出什么差池?就凭一个小小の外来户?她谁呀?老爸是李刚吗?”余薇一贯の伶牙利齿给予反驳,“姐,你连个外来户都怕怎么帮妈打天下?我看你不如跟汤力回国好了,免得自寻烦恼.”她烦, 自己也烦.小小の外来户?余岚不敢相信地看着妹妹一脸の轻蔑,眼里含着一丝隐痛.“小薇,你忘了?我们也是外来户.”在这个村子,在这个家里,她姐妹俩一直是外来户.不管妈有多么努力始终无法改变这个事实,改变不了她俩与村民们格格不入处处受欺の尴尬处境.只好努力赚钱送她俩出 国读书,希望女儿们能在国外成家立室过上自在安稳の日子.要不是母亲遭受各方质疑与刁难,她不会回来.回来是为了帮妈保住心血,替弟弟保住家业,不是为了跟外来户斗气和炫耀财力权势の.打压一个外地来の女生,跟当年那些欺负她们の村霸有什么区别?一旦事发经有心人大肆渲染,母 亲在当地の威信将一落千丈,神仙来也救不了.道理谁都懂,可是...“可我受不了,他们天天在我眼前晃...”余薇再一次被触动伤心之处,“姐,要不你帮帮我,帮我把她撵走,我真の不想看到他俩在一起.”姓陆の走了,她一定能取而代之成为他身后の小女人.她将拼尽全力支持他,鼓励他,同 时享受他全心全意の守护.余岚头一次对妹妹板起脸,神色清冷,“我不可能帮你,小薇,他不是合适の对象.”在外边看得太多,知道嫁给一个在朋友家蹭吃蹭喝の无业游民有多累.哪怕是天仙下凡,也会在三十岁前熬成四五十岁の肥婆娘,或者骨瘦如柴受尽折磨被吸尽血汗の小可怜.她妹妹如 花似玉,不能落得那种下场.“你有两个选择,要么继续回校把高校读完,要么去京大和小弟作伴.明天开始我让妈停掉你所有の卡,直到你想清楚为止.”余岚起身,“汤力和他の朋友后天就到,我很忙,你在家好好布置一番别丢了我和妈の脸.”余岚深深看了妹妹一眼,只见她环抱双膝,两眼无 神.“多想想我学姐の下场,想想那些吸.毒躺在街头の无业游民,那

直线方程的五种形式 包括哪五种

直线方程的五种形式 包括哪五种

直线方程的五种形式包括哪五

从平面解析几何的角度来看,平面上的直线是平面直角坐标系中由一个二元线性方程表示的图形。

线性方程组主要分为五种类型:点斜型、斜截型、两点型、截距型和一般型。

直线方程的五种形式
1:点斜式:已知直线过点(x0,y0),斜率为k,则直线方程为y-y0=k(x-x0)。

2:斜截式:已知直线在y轴上的截距为b,斜率为k,则直线方程为y=kx+b
3:两点式:已知一条直线经过P1(x1,y1),P2(x2,y2)两点,则直线方程为x-x1/x2-x1=y-y1/y2-y1,但不包括垂直于坐标轴的直线。

4:截距式:已知直线在x轴和y轴上的截距为a,b,则直线方程为x/a+y/b=1
5:一般式:任何直线均可写成Ax+By+C=0(A,B不同时为0)的形式。

五种形式的注意事项
一般式为ax+by+c=0,它的优点就是它可以表示平面上的任意一条直线,仅此而已。

其它式都有特例直线不能表示。

比如:
1:斜截式y=kx+b,就不能表示垂直x轴的直线x=a.
2:点斜式y-y0=k(x-x0),也不能表示垂直x轴的直线x=a
3:两点式(y-y1)/(y2-y1)=(x-x1)/(x2-x1)。

不能表示两点x1=x2或y1=y2时的直线(即垂直或水平直线)
4:截距式x/a+y/b=1不能表示截距为0时的直线,比如正比例直线。

5:一般式中要确定3个常数a,b,c(虽然其中只有两个是独立的),而其它式只需确定两个常数,所以其它式更简洁一些,实际应用中大多是根据所给的条件,主要选择其它式来做的,为了方便计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题:直线方程
教学目标:
(1)知识与技能:
掌握直线方程的点斜式、斜截式、两点式、截距式,并能根据条件熟练地求出满足已知条件的直线方程
(2)过程方法与能力:
通过让学生经历直线方程的发现过程,以提高学生分析、比较、概括、化归的数学能力,使学生初步了解用代数方程研究几何问题的思路,培养学生综合运用知识解决问题的能力
(3)情感态度与价值观:
在教学中充分揭示“数”与“形”的内在联系,体会数、形的统一美,激发学生学习数学的兴趣,对学生进行对立统一的辩证唯物主义观点的教育,培养学生勇于探索、勇于创新的精神。

教学重点:直线方程的点斜式、两点式、截距式的推导及运用
教学难点:直线与方程对应关系的说明以及运用各种形式的直线方程时,应考虑使用范围并进行分类讨论
授课类型:新授课
课时安排:2课时
教 具:多媒体
教学过程:
一、复习:
1、直线的方程
2、直线的斜率与倾斜角。

二、新授
1. 直线的点斜式方程:已知直线的斜率及直线经过一已知点,求直线的方程
问题一:已知直线l 经过点111(,)P x y ,且斜率为k 则直线方程:11()y y k x x -=- 解:设直线上任意一点(),P x y ,则k x x y y =--1
1要把它变成方程)(11x x k y y -=-.因为前者表示的直线上缺少一个点1P ,而后者才是整条直线的方程.
直线的斜率0=k 时,直线方程为1y y =;当直线的斜率k 不存在时,不能用点斜式求它的方程,这时的直线方程为1x x =.
注:斜率不存在,不能用点斜式方程。

2.直线的斜截式方程:已知直线l 经过点P (0,b ),并且它的斜率为k ,求直线l 的方程:b kx y +=
注:⑴斜截式与点斜式存在什么关系?斜截式是点斜式的特殊情况,某些情况下用斜截式比用点斜式更方便.
⑵斜截式b kx y +=在形式上与一次函数的表达式一样,它们之间有什么差别?只有当0≠k 时,斜截式方程才是一次函数的表达式.
⑶斜截式b kx y +=中,k ,b 的几何意义是什么?
3. 直线方程的两点式:已知直线上两点),(11y x A ,B (),22y x )(21x x ≠,求直线方程.
)(11
2121x x x x y y y y ---=-
由)(112121x x x x y y y y ---=-可以导出1
21121x x x x y y y y --=--,这两者表示了直线的范围是不同的.后者表示范围缩小了.但后者这个方程的形式比较对称和美观,体现了数学美,同时也便于记忆及应用.所以采用后者作为公式,由于这个方程是由直线上两点确定的,所以叫做直线方程的两点式
所以,当21x x ≠,21y y ≠时,经过),(11y x A B (),22y x 的直线的两点式方程 可以写成:1
21121x x x x y y y y --=-- 探究1:哪些直线不能用两点式表示? 答:倾斜角是00或090的直线不能用两点式公式表示
探究2:若要包含倾斜角为00或090的直线,应把两点式变成什么形式?
答:应变为))(())((121121y y x x x x y y --=--的形式
探究3:我们推导两点式是通过点斜式推导出来的,还有没有其他的途径来进行推导呢? 答:有,利用同一直线上三点中任意两点的斜率相等
4.直线方程的截距式
定义:直线与x 轴交于一点(a ,0)定义a 为直线在x 轴上的截距;直线与y 轴交于一点(0,b )定义b 为直线在y 轴上的截距.
A(a ,0) B(0, b ) (a ,b 均不为0)的直线方程为b x a b y +-
=, 将其变形为:1=+b
y a x 以上直线方程是由直线在x 轴和y 轴上的截距确定的,所以叫做直线方程的截距式. 探究4:a ,b 表示截距,是不是表示直线与坐标轴的两个交点到原点的距离? 答:不是,它们可以是正,也可以是负,也可以为0.
探究5:有没有截距式不能表示的直线?
答:有,当截距为零时.故使用截距式表示直线时,应注意单独考虑这几种情形,分类讨论,防止遗漏
例:若直线l 过点P (1,1),且在两坐标轴上的截距相等,求直线l 的方程。

122
x y y x +==和 5. 直线方程的一般形式:
点斜式、斜截式、两点式、截距式四种直线方程均可化成
0=++C By Ax (其中A 、B 、C 是常数,A 、B 不全为0)的形式,叫做直线方程的一般式
探究1:方程0=++C By Ax 总表示直线吗?
根据斜率存在不存在的分类标准,即B 等于不等于0来进行分类讨论:
若0≠B 方程可化为B C x B A y --
=,它是直线方程的斜截式,表示斜率为B A -,截距为B
C -的直线; 若B=0,方程0=++C By Ax 变成0=+C Ax .由于A 、B 不全为0,所以0≠A ,则方程变为A
C x -=,表示垂直于X 轴的直线,即斜率不存在的直线. 结论:当A 、B 不全为0220A B +≠即:时,方程0=++C By Ax 表示直线,并且它
可以表示平面内的任何一条直线.
探究2:在平面直角坐标系中,任何直线的方程都可以表示成0=++C By Ax (A 、B 不全为0)的形式吗?
三、讲解范例:
例1写出斜率是2
3,在y 轴上的距截是-2的直线的方程,并画出图形。

例2求过下列两点的直线的方程.
(1)A (2,1),B (0,-3);(2)A (-4,-5),B (0,0)
(3)A (0,5),B(5,0);(4) A(a ,0) B(0, b )(a ,b 均不为0)
例3 说出下列直线的方程,并画出图形.
⑴ 在x 轴上的截距为-5,在y 轴上的截距为6;
(2)在x 轴上截距是-3,与y 轴平行;
(3)在y 轴上的截距是4,与x 轴平行.
四、课堂练习:比赛喽!(PPT )
五、小结 :
直线方程的五种形式,每种方程的运用条件(局限性),择优选择最适合的方程。

六、课后作业:课本P246 习题9-2A 组 T3(1)(4)(5)。

相关文档
最新文档