二次函数模型

合集下载

数学建模—函数模型及其应用

数学建模—函数模型及其应用

(k为常数,k≠0);
(4)指数型函数模型:f(x)=abx+c(a,b,c为常数,a≠0,b>0,b≠1);
(5)对数型函数模型:f(x)=mlogax+n(m,n,a为常数,m≠0,a>0,a≠1);
(6)幂型函数模型:f(x)=axn+b(a,b,n为常数,a≠0);
1 (),∈1 ,
了该车相邻两次加油时的情况.
加油时间
2020年5月1日
2020年5月15日
加油量(升)
12
48
加油时的累计里程(千米)
35 000
35 600
注:“累计里程”指汽车从出厂开始累计行驶的路程.
在这段时间内,该车每100千米平均耗油量为(
A.6升 B.8升
C.10升 D.12升
)
答案 B
解析 因为第一次油箱加满,所以第二次的加油量即为该段时间内的耗油量,
3
log 4 8 + = 1,
+ = 1,
解析依题意得
即 2
解得 a=2,b=-2.则
log 4 64 + = 4,
3 + = 4.
y=2log4x-2,当 y=8 时,即 2log4x-2=8,解得 x=1 024.
关键能力 学案突破
考点1
利用函数图像刻画实际问题
【例1】 (2020北京东城一模,10)
故耗油量V=48升.而这段时间内行驶的里程数S=35 600-35 000=600千米.
所以这段时间内,该车每100千米平均耗油量为
48
×100=8升,故选B.
600
3.(2020北京平谷二模,9)溶液酸碱度是通过pH计算的,pH的计算公式为

专题01 二次函数的定义五种模型全攻略(解析版)

专题01 二次函数的定义五种模型全攻略(解析版)

专题01 二次函数的定义五种模型全攻略【考点导航】目录【典型例题】 (1)【考点一二次函数的识别】 (1)【考点二二次函数中各项的系数】 (2)【考点三利用二次函数的定义求参数】 (3)【考点四已知二次函数上一点,求字母或式子的值】 (5)【考点五列二次函数的关系式】 (6)【过关检测】 (8)【典型例题】【考点一二次函数的识别】【变式训练】1.(2023·浙江·九年级假期作业)以下函数式二次函数的是()【考点二 二次函数中各项的系数】例题:(2023·全国·九年级假期作业)二次函数221y x x =--+的二次项系数是( )A .1B .1-C .2D .2-【答案】B【分析】根据二次函数的定义“一般地,形如2y ax bx c =++(a 、b 、c 是常数,0a ¹)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项”作答即可.【详解】解:二次函数221y x x =--+的二次项系数是1-.故选:B .【点睛】此题主要考查了二次函数的定义,关键是注意在找二次项系数,一次项系数和常数项时,不要漏掉符号.【变式训练】1.(2023·浙江·九年级假期作业)二次函数()32-=x x y 的二次项系数与一次项系数的和为( )A .2B .2-C .1-D .4-【答案】D 【分析】将函数解析式化简,得到各系数,计算即可.【详解】解:()23622x y x x x --==,∴二次项系数是2,一次项系数是6-,∴264-=-,故选:D .【点睛】此题考查了二次函数定义,正确理解二次函数的各项的系数是解题的关键.2.(2022·全国·九年级假期作业)二次函数2(1)y x x =-的二次项系数是________.【答案】2【分析】首先把二次函数化为一般形式,再进一步求得二次项系数.【详解】解:y =2x (x -1)=2x 2-2x .所以二次项系数2.故答案为:2.【点睛】本题主要考查了二次函数的定义,一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.【考点三 利用二次函数的定义求参数】例题:(2023·全国·九年级假期作业)若函数()2231y m x mx =+++是二次函数,则( )A .2m ³-B .2m ¹C .2m ¹-D .2m =-【答案】C 【分析】根据二次函数的定义,即可求解.【详解】解:根据题意得20m +¹,解得2m ¹-,故选:C .【点睛】本题主要考查了二次函数的定义,熟练掌握形如2y ax bx c =++(a ,b ,c 是常数,0a ¹)的函数,叫做二次函数是解题的关键.【变式训练】【点睛】本题考查了二次函数的定义,解题关键是掌握二次函数的定义条件:二次函数2y ax bx c =++的定义条件是:a 、b 、c 为常数,0a ¹,自变量最高次数为2.【考点四 已知二次函数上一点,求字母或式子的值】例题:(2022秋·浙江温州·九年级校考阶段练习)若抛物线223y ax x =-+经过点(1,2)P ,则a 的值为( )A .0B .1C .2D .3【答案】B【分析】将点P 代入函数表达式中,解方程可得a 值.【详解】解:将(1,2)P 代入223y ax x =-+中,得:22=121+3a -´´,解得:=1a ,故选B .【点睛】本题考查了二次函数图象上的点,熟知二次函数图像上的点的坐标满足函数表达式是解题的关键.【变式训练】1.(2022秋·天津西青·九年级校考阶段练习)抛物线23y ax bx =+-过点(2,4),则代数式84a b +的值为( )A .14B .2C .-2D .-14【答案】A【分析】将点(2,4)的坐标代入抛物线y=ax 2+bx -3关系式,再整体扩大2倍,即可求出代数式的值.【详解】解:将点(2,4)代入抛物线y=ax 2+bx -3得4a +2b -3=4,整理得8a +4b =14.故选:A .【点睛】本题考查了二次函数图象上点的坐标特征,熟悉整体思想是解题的关键.2.(2022秋·山东泰安·九年级统考阶段练习)若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( )A .6B .7C .8D .20【答案】B【分析】先把点()2,3-代入解析式,得到2=7c b -,然后化简247=2c b --(c-4b )-7,整体代入即可得到答案.【详解】解:把点()2,3-代入2y x bx c =-++,得:2=7c b -,∵247=2c b --(c-2b )-7277=7=´-;故选择:B .【点睛】本题考查了一元二次方程,解题的关键是灵活运用整体代入法解题.【考点五 列二次函数的关系式】【变式训练】1.(2022秋·九年级单元测试)一台机器原价为50万元,如果每年的折旧率是()0x x >,两年后这台机器的价格为y 万元,则y 与x 之间的函数关系式为_____.【答案】()2501y x =-【分析】根据题意列出函数解析式即可.【详解】解:∵一台机器原价为50万元,每年的折旧率是()0x x >,两年后这台机器的价格为y 万元,∴y 与x 之间的函数关系式为()2501y x =-.故答案为:()2501y x =-.【点睛】本题主要考查了列二次函数关系式,解题的关键是理解题意,掌握两年后价格=原价()21x ´-.2.(2023·浙江·九年级假期作业)某市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克70元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当60x =时,8050y x ==;时,100y =.在销售过程中,每天还要支付其它费用450元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围.(2)求该公司销售该原料日获利润w (元)与销售单价x (元)之间的函数关系式.【答案】(1)2200y x =-+(3070x ££);(2)222606450w x x =-+-(3070x ££)【分析】(1)根据y 与x 写成一次函数解析式,设为y kx b =+,把x 与y 的两对值代入求出k 与b 的值,即可确定出y 与x 的解析式,并求出x 的范围即可;(2)根据利润=单价´销售量列出w 关于x 的二次函数解析式即可.【详解】(1)设y 与x 的函数关系式为y kx b =+.60x =Q 时,80y =,50x =时,100y =,608050100k b k b +=ì\í+=î,解得2200k b =-ìí=î,2200y x \=-+,根据部门规定,得3070x ££.(2)22(30)450(30)(2200)45030702260600045022606450w x y x x x x x x x =--=--+-=-+--=-£-£+()【点睛】本题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.【过关检测】一、选择题二、填空题6.(2023秋·江西宜春·九年级统考期末)二次函数2=23y x x --中,当=1x -时,y 的值是________.【答案】0【分析】把=1x -代入2=23y x x --计算即可.【详解】解:当=1x -时,2=23=123=0y x x ---+,故答案为:0.【点睛】本题考查了求二次函数的值,解题的关键是把=1x -代入2=23y x x --计算.7.(2022春·全国·九年级专题练习)把y =(2-3x )(6+x )变成y =ax ²+bx +c 的形式,二次项为____,一次项系数为______,常数项为______.【答案】23x - -16 12【解析】略8.(2023秋·河南洛阳·九年级统考期末)已知函数||1(1)45m y m x x +=++-是关于x 的二次函数,则一次函;【答案】二次函数关系【分析】根据矩形面积公式求出y 与x 之间的函数关系式即可得到答案.【详解】解:由题意得()()2302050600y x x x x =++=++,∴y 与x 之间的函数关系是二次函数关系,故答案为;二次函数关系.【点睛】本题主要考查了列函数关系式和二次函数的定义,正确列出y 与x 之间的函数关系式是解题的关键.三、解答题。

专题01 二次函数的定义压轴题五种模型全攻略

专题01 二次函数的定义压轴题五种模型全攻略

专题01 二次函数的定义压轴题五种模型全攻略考点一 二次函数的识别 考点二 二次函数的二次项系数、一次项系数、常数项考点三 根据二次函数的定义求参数 考点四 已知二次函数一点求代数式的值考点五 列二次函数关系式考点一 二次函数的识别例题:(2022·江苏·盐城市初级中学一模)下列函数中为二次函数的是( )A .31y x =-B .231y x =-C .2y x=D .323y x x =+-【变式训练】1.(2020·陕西·西安市大明宫中学三模)观察:①26y x =;②235y x =-+;③2200400y x x =+;④32y x x =-;⑤213y x x=-+;⑥()221y x x =+-.这六个式子中二次函数有( )个.A .2B .3C .4D .52.(2022·全国·九年级课时练习)下列函数①55y x =-;②231y x =-;③3243y x x =-;④2221y x x =-+;⑤21y x =.其中是二次函数的是____________.考点二 二次函数的二次项系数、一次项系数、常数项例题:(2022·福建省福州外国语学校八年级期末)二次函数223y x x =-+的一次项系数是( )A .1B .2C .2-D .3【变式训练】1.(2022·全国·九年级)设a ,b ,c 分别是二次函数y =﹣x 2+3的二次项系数、一次项系数、常数项,则( )A .a =﹣1,b =3,c =0B .a =﹣1,b =0,c =3C .a =﹣1,b =3,c =3D .a =1,b =0,c =32.(2022·全国·九年级)已知二次函数y =1﹣5x +3x 2,则二次项系数a =___,一次项系数b =___,常数项c =___.考点三 根据二次函数的定义求参数例题:(2022·全国·九年级课时练习)已知y =21(1)m m x +-+2x ﹣3是二次函数式,则m 的值为 _____.【变式训练】1.(2021·黑龙江·塔河县第一中学校九年级期中)已知(2)21m y m x x =-+-是y 关于x 的二次函数,那么m 的值____.2.(2021·广东广州·九年级期中)关于x 的函数()21mmy m x -=+是二次函数,则m 的值为__________.考点四 已知二次函数一点求代数式的值例题:(2022·全国·九年级)若点(m ,0)在二次函数y =x 2﹣3x +2的图象上,则2m 2﹣6m +2029的值为 ____.【变式训练】1.(2022·全国·九年级课时练习)已知抛物线21y x x =--与x 轴的一个交点为()0m ,,则代数式2332022m m -++的值为______.2.(2022·全国·九年级课时练习)点(),1m 是二次函数221y x x =--图像上一点,则236m m -的值为__________考点五 列二次函数关系式例题:(2022·上海市青浦区教育局二模)为防治新冠病毒,某医药公司一月份的产值为1亿元,若每月平均增长率为x ,第一季度的总产值为y (亿元),则y 关于x 的函数解析式为________________.【变式训练】1.(2021·山东滨州·九年级期中)某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品的售价为x 元,则可卖出()35010x -件,那么卖出商品所赚钱y 元与售价x 元之间的函数关系为________.2.(2022·全国·九年级课时练习)如图,正方形ABCD 的边长是10cm ,E 是AB 上一点,F 是AD 延长线上的一点,BE DF =.四边形AEGF 是矩形,矩形AEGF 的面积()2cm y 与BE 的长cm x ()010x <£的函数关系是______.一、选择题1.(2021·湖南湘西·九年级期中)下列函数解析式中,一定为二次函数的是( )A .y =3x +1B .y =ax 2+bx +cC .s =2t 2﹣2t ﹣1D .y =x 2+1x2.(2020·浙江杭州·九年级阶段练习)二次函数y =x (1﹣x )﹣2的一次项系数是( )A .1B .﹣1C .2D .﹣23.(2021·安徽·休宁县洪里初级中学九年级期中)若y =(m -2)22m x -+5x -3是二次函数,则常数m 的值为( ).A .-2B .2C .±2D .不能确定4.(2022·全国·九年级课时练习)已知|1|(1)2m y m x m -=++是y 关于x 的二次函数,则m 的值为( )A .1-B .3C .1-或3D .05.(2022·全国·九年级课时练习)在一个边长为2的正方形中挖去一个边长为()02x x <<的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数解析式为( )A .22y x x =+B .24y x =-C .24y x =-D .42y x=-6.(2022·全国·九年级课时练习)已知函数:①y =2x ﹣1;②y =﹣2x 2﹣1;③y =3x 3﹣2x 2;④y =2(x +3)2-2x 2;⑤y =ax 2+bx +c ,其中二次函数的个数为( )A .1B .2C .3D .4二、填空题7.(2021·全国·九年级专题练习)二次函数2231y x x =--的二次项系数与常数项的和是__________.8.(2021·全国·九年级课时练习)把y =(3x -2)(x +3)化成一般形式后,一次项系数与常数项的和为________.9.(2019·陕西·西安高新一中实验中学九年级期末)若函数27(3)1m y m x x -=--+是二次函数,则m 的值为_________.10.(2021·四川·广汉市教学研究教师培训中心九年级期中)若函数y =(m -2)x |m |+2x +1是关于x 的二次函数,则m 的值为________.11.(2021·上海市罗星中学九年级期中)一个边长为2厘米的正方形,如果它的边长增加()0x x >厘米,则面积随之增加y 平方厘米,那么y 关于x 的函数解析式为____.12.(2021·全国·九年级课时练习)观察:①26y x =;②235y x =-+;③2200400200y x x =++;④22y x x =-;⑤21132y x x =-+;⑥()221y x x =+-.这六个式子中二次函数有___________________.(只填序号)三、解答题13.(2021·内蒙古·奈曼旗新镇中学九年级阶段练习)已知函数()273m y m x -=+.(1)当m 为何值时,此函数是正比例函数?(2)当m 为何值时,此函数是二次函数?14.(2021·江苏·九年级专题练习)已知y 关于 x 的函数y =(m 2+2m )x 2+mx +m +1.(1)当m 为何值时,此函数是一次函数? (2)当m 为何值时,此函数是二次函数?15.(2021·全国·九年级专题练习)已知函数()()2211y m m x m x m =-+-++.(1)当m 为何值时,这个函数是关于x 的一次函数;(2)当m 为何值时,这个函数是关于x 的二次函数.16.(2022·重庆市巴川中学校八年级期中)如图,在Rt △ABC 中,∠B =90°,AC =30cm ,∠A =60°,动点D 从点C 出发沿CA 方向以4cm /s 的速度向点A 匀速运动,同时动点E 从点A 出发沿AB 方向以2cm /s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是ts ,过点D 作DF ⊥BC 于点F ,连接EF .(1)若四边形AEFD为菱形,则t值为多少?(2)在点D、E的运动过程中,设四边形ADFE的面积为y,请求出y与t的函数关系式?。

二次函数(一)——常见二次函数模型

二次函数(一)——常见二次函数模型

二次函数(一)——所描述的关系、结识抛物线、刹车距离与二次函数一、 知识点回顾1.函数概念小结2.待定系数法求函数解析式3.图像平移法则二、 典例剖析考点1【二次函数的相关概念】例1下列函数中,哪些是二次函数?y=3(x-1)²+1 (2)y=x +x 1 (3)s=3-2t (4)y=21x x- (5)y=(x+3)²-x² (6) v=10πr²随堂练习11.下列结论正确的是A .y =ax 2是二次函数B .二次函数自变量的取值范围是所有实数C .二次方程是二次函数的特例D .二次函数的取值范围是非零实数2.下列函数中:①y =-x 2;②y =2x ;③y =22+x 2-x 3;④m =3-t -t 2是二次函数的是______(其中x 、t 为自变量).3.下列各关系式中,属于二次函数的是(x 为自变量)A .y =81x 2 B .y C .y =21x D .y =a 2x考点2【二次函数的一般式】例2-1若y=(m +1)x 267m m --是二次函数,则m=( )A .-1B .7C .-1或7D .以上都不对例2-2.已知抛物线y=ax²经过点A (-2,-8).(1)求此抛物线的函数解析式;(2)判断点B (-1,-4)是否在此抛物线上.(3)求出此抛物线上纵坐标为-6的点的坐标.随堂练习21.函数y =ax 2+bx +c (a ,b ,c 是常数)是二次函数的条件是A .a ≠0,b ≠0,c ≠0B .a <0,b ≠0,c ≠0C .a >0,b ≠0,c ≠0D .a ≠02.已知函数y =(m 2-m )x 2+(m -1)x +m +1.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,则m 的值应怎样?3.如果函数y=x 232k k -++kx+1是二次函数,则k 的值一定是______考点3【常见的二次函数模型】例3-1【面积问题】如图5,一块草地是长80 m 、宽60 m 的矩形,欲在中间修筑两条互相垂直的宽为x m 的小路,这时草坪面积为y m 2.求y 与x 的函数关系式,并写出自变量x 的取值范围.例3-2【密植问题】某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子. 假设果园增种x 棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?如果果园橙子的总产量为y 个,那么请你写出y 与x 之间的关系式.例3-3【利率问题】人民币一年定期储蓄的年利率是x ,一年到期后,银行将本息合计自动转存,到支取时,银行将扣除利息的20%作为利息税,我如果将10000元存入银行,请写出两年后支取时的本息和y(元)与年利率x的函数表达式。

二次函数弓形模型

二次函数弓形模型

二次函数弓形模型二次函数是一种常见的数学模型,它的图像形状可以是一条抛物线,也可以是一个弓形。

二次函数的一般形式是y=ax^2+bx+c,其中a、b、c 是常数,且a不等于0。

本文将探讨二次函数弓形模型的特点、应用以及解析方法。

首先,我们来讨论二次函数弓形模型的特点。

当a大于0时,二次函数的图像开口朝上,形状为一个弓形。

当a小于0时,二次函数的图像开口朝下,形状也是一个弓形。

无论开口朝上还是朝下,二次函数的图像都具有对称轴,对称轴的方程为x=-b/2a。

对称轴将图像分为两个对称的部分,称为左半部分和右半部分。

弓形模型的顶点是二次函数图像的最低点(当a大于0时)或最高点(当a小于0时),顶点的坐标为(-b/2a,f(-b/2a))。

其次,我们来探讨二次函数弓形模型的应用。

弓形模型常用于描述一些现实生活中的问题,例如抛物线的轨迹、物体的运动轨迹等。

在物理学中,二次函数弓形模型可以用来描述自由落体运动中物体的高度随时间的变化,以及抛体的轨迹。

在经济学中,二次函数弓形模型可以用来描述成本、收益、供求关系等。

在工程学中,二次函数弓形模型可以用来描述一些曲线的形状,例如拱桥的形状等。

最后,我们来介绍二次函数弓形模型的解析方法。

对于给定的二次函数y=ax^2+bx+c,我们可以通过以下步骤来解析该函数的图像:1.计算对称轴的坐标:对称轴的方程为x=-b/2a,计算得到对称轴的x坐标为-b/2a。

2.计算顶点的坐标:将对称轴的x坐标代入二次函数的表达式中,计算得到顶点的坐标为(-b/2a,f(-b/2a))。

3.计算y轴截距:将x=0代入二次函数的表达式中,计算得到y轴截距为c。

4.根据对称轴、顶点和y轴截距的坐标,绘制二次函数的图像。

当我们了解了二次函数弓形模型的特点、应用和解析方法后,就可以更好地理解和应用这一数学模型。

无论是在学术研究中还是在实际应用中,二次函数弓形模型都具有重要的地位和作用。

它不仅可以帮助我们理解自然界和社会现象中的规律,还可以用于解决一些实际问题,为我们的生活和工作带来便利和效益。

人教版中职数学基础模块上册:3.2.2二次函数模型 课件

人教版中职数学基础模块上册:3.2.2二次函数模型 课件
事实上,
f 4 h 1 4 h2 4 4 h 6
2
1 h2 2, 2
f 4 h 1 4 h2 4 4 h 6
2 1 h2 2,
2
所以f(-4-h)=f(-4+h).
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
从上表和函数的图象容易推测,该函数的图象是以 过点M(-4,0)且平行于y轴的直线(即直线x=-4)为对 称轴的轴对称图形.下面我们来证明这个事实.
从这个例子我们可以看到,一元二次方程、一元二次 不等式与二次函数有着密切的关系:
对于二次函数y=ax2+bx+c(a≠0): (1)求满足y=0时x的值,等价于求一元二次方程 ax2+bx+c=0的解; (2)求满足y<0时x的取值范围,等价于求一元二次 不等式ax2+bx+c<0的解集;求满足y>0时的取值范围, 等价于求一元二次不等式ax2+bx+c>0的解集.
其中,h b , k 4ac b2 .
2a
4a
从(*)式,我们就可得到二次函数有如下性质:
(1)函数的图象是一条抛物线,抛物线顶点的坐标
是(-h,k),抛物线的对称轴是直线x=-h; (2)当a>0时,函数在x=-h处取最小值k;在区间

二次函数建立二次函数模型课件

二次函数建立二次函数模型课件
确定变量
确定实际问题中的自变量和因变量。
转化条件
将实际问题中的条件转化为数学方程中的 限制条件。
建立方程
根据实际问题中的条件和规律,建立二次 函数方程。
求解模型
利用数学知识和计算方法,求解二次函数 模型,得到解或最优解。
04
求解二次函数模型
利用公式求解二次函数模型
了解二次函数的标准形式 理解二次函数系数a、b、c的含义及其对函数图像的影响
二次函数建立二次函数模型 课件
2023-11-05
目录
• 引言 • 二次函数的概念及表达式 • 建立二次函数模型 • 求解二次函数模型 • 案例分析
学生们已经学习了一次函数,对于函数的图像、性质及表达 式有了初步的了解。
在此基础上,进一步学习二次函数,掌握其图像、性质及表 达式的特点和规律。
案例二:交通流量问题
总结词
二次函数模型可以用来描述交通流量的变 化。
VS
详细描述
在交通工程中,二次函数模型可以用来描 述交通流量与时间的关系。例如,假设初 始流量为Q0,流量变化率为k,那么交通 流量Q可以通过二次函数模型表示为 Q=Q0-kt^2。这个模型可以帮助交通工 程师更好地规划交通网络,提高交通效率 。
转化条件
将实际问题中的条件转化为数学方 程中的限制条件。
利用二次函数解决实际问题
01
02
03
分析实际问题
分析实际问题的特点,确 定需要解决的问题和目标 。
建立数学模型
根据实际问题的特点,建 立二次函数模型。
求解模型
利用数学知识和计算方法 ,求解二次函数模型,得 到解或最优解。
建立二次函数模型的步骤
案例三:房屋按揭贷款问题

二次函数最值模型总结

二次函数最值模型总结

二次函数最值模型总结二次函数是数学中一种基本的函数形式,其形式为f(x) = ax^2 +bx + c,其中a、b、c为常数,且a ≠ 0。

二次函数有着许多重要的特点和性质,其中一个重要的应用就是最值模型。

最值模型能够帮助我们求解二次函数的最值问题,如最大值、最小值等。

在这篇文章中,我将对二次函数最值模型进行总结,以帮助读者更好地理解和应用这一概念。

首先,我们先回顾一下二次函数的一般形式f(x) = ax^2 + bx + c。

其中a决定了二次函数的开口方向,a>0时开口向上,a<0时开口向下;b和c则决定了二次函数在坐标系中的位置。

为了简化分析,我们通常假设a>0。

在最值模型中,我们通常要求解二次函数的最大值和最小值。

最大值对应二次函数的开口向下的情况,最小值对应二次函数的开口向上的情况。

接下来,我们将分别讨论这两种情况下的最值模型。

首先,考虑开口向下的情况,即a<0。

对于这种情况,我们可以通过求导数来找到二次函数的最大值。

一般来说,设f(x) = ax^2 + bx + c,其中a<0,我们可以先求导数f'(x) = 2ax + b。

接着,我们令f'(x) = 0,解得x = -b / (2a)。

将x带入原本的函数f(x)中,我们可以找到对应的最大值。

需要注意的是,由于二次函数是一个抛物线,所以在开口向下的情况下,最大值一定存在。

这是因为当x趋向于正无穷或负无穷时,二次函数的值趋向于负无穷,而当x = -b / (2a)时,二次函数的值最大。

接下来,我们来看开口向上的情况,即a>0。

对于这种情况,我们无法直接通过求导数来找到最小值。

不过,我们可以通过另一种方法来求解,即利用二次函数的顶点。

二次函数f(x) = ax^2 + bx + c的顶点坐标可以通过公式(-b / (2a), f(-b / (2a)))求得。

那么,最小值就是最顶点的纵坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

价在每个18元的基础上每提高1元,则日销售量就减少5个;若将这种
商品的售价在每个18元的基础上每降低1元,则日销售量就增加10个, 为了获得每日最大利润,此商品售价应该定为每个多少元?
练习
一段长为30 m的篱笆围城一个一边靠墙的矩形菜园,墙长18 m,问:
这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
二次函数模型
例1 某商店将进货价每个10元的商品按每个18元出售时,每天可卖
出60个.商店经理到市场上做了一番调查后发现,若将这种商品的售

价在每个18元的基础上每提高1元,则日销售量就减少5个,为了获
得每日最大利润,此商品售价应该定为每个多少元?
变1 某商店将进货价每个10元的商品按每个18元出售时,每天可卖
出60个.商店经理到市场上做了一番调查后发现,若将这种商品的售
价在每个18元的基础上每降低1元,则日销售量就增加10个,为了获
得每日最大利润,此商品售价应该定为每个多少元?
例1 某商店将进货价每个10元的商品按每个18元出售时,每天可卖
出60个.商店经理到市场上做了一番调查后发现,若将这种商品的售
相关文档
最新文档