分式方程解法的标准
分式方程的运算

分式方程的运算主要包括以下几个步骤:
确定分母:首先需要找到分式方程中的分母,并确保它们在运算过程中不会为零。
约分:如果分子和分母有公因式,可以进行约分,简化方程。
乘法法则:如果需要将分式相乘,需要将分子和分母分别相乘。
除法法则:如果需要将一个分式除以另一个分式,可以将其转化为乘法形式,即除以一个分式等于乘以它的倒数。
加减法则:如果需要将多个分式相加减,首先需要将它们的分母统一,然后进行加减运算。
检验:最后需要检验运算结果是否正确,可以通过将结果代入原方程进行验证。
请注意,在进行分式方程运算时,需要注意运算的顺序和符号,以及确保分母不为零。
同时,也需要注意化简和整理方程的过程,避免出现分数和小数的混淆。
分式方程的解法

分式方程的解法多年的教学,总结了一下分式方程的解法,供大家参考,希望对大家有所帮助。
方法1:计算法例 解方程 32223=-++x x x 解:移项,得()()()()是原方程的根时,检验:当计算,得4,022440164022164-032223=≠-+===+-=-++=--++x x x x x x x x x x x x原理:分式的值为0,分子为0,分母不为0.方法是把所有的项集中于方程左边,右边为0 ,从而利用分式的值为0求出未知数。
方法2:分式相等法例 解方程 32223=-++x x x 解:原方程化为()()()()()()()()()()()()416412344322322232222322222322=-=--=+--+=++--+-+=-+++-x x x x x x x x x x x x x x x x x x x经检验,x=4是原方程的解。
原理:两分式相等,分母相等,分子也相等。
方法3:等式性质法例 解方程 32223=-++x x x 解:方程两边同乘()()22-+x x 得()()()()4164123443223222322=-=--=+--+=++-x x x x x x x x x x经检验,x=4是原方程的解。
原理:利用等式性质,去分母化为整式方程。
方法2结合方法3,降低去分母的难度。
方法4:比例式法例 解方程 415+=x x解:两外项的乘积等于两內项的乘积 ()55554154-==-+=+=x x x x x x经检验,x=-5是原方程的解。
分式方程的解法

分式方程的解法在初等代数中,我们经常会遇到分式方程(或称有理方程)的求解问题。
分式方程的特点是方程中包含分式(或有理式),而其求解方法与一般的代数方程有所不同。
在本文中,我将为您介绍几种常见的分式方程的解法。
一、化简与分子分母清零法对于一些简单的分式方程,我们可以通过化简和清零的方法求解。
首先,我们需要将方程中的分母清零,然后将分子进行化简。
接下来,我们将方程化简为一个代数方程,再通过解代数方程的方法求得解。
最后,我们将得到的解代入原方程中,验证是否满足。
例如,考虑以下分式方程:\[ \frac{2}{x-3} + \frac{3}{x+2} = \frac{5}{x} \]我们首先将方程两边的分母清零,得到:\[ x(x+2) + (x-3)(x) = 5(x-3)(x+2) \]然后对方程进行化简,得到:\[ x^2 + 2x + x^2 - 3x = 5x^2 - 15x - 30 \]继续化简,得到:\[ 2x^2 - 6x = 5x^2 - 15x - 30 \]将方程转化为代数方程:\[ 3x^2 - 9x - 30 = 0 \]解代数方程,得到 x = -2 或 x = 5 。
将解代入原方程进行验证,可得:\[ \frac{2}{-2-3} + \frac{3}{-2+2} = \frac{5}{-2} \]\[ \frac{2}{-5} + \frac{3}{0} = \frac{5}{-2} \]我们发现 x = -2 不满足原方程,而 x = 5 满足原方程。
因此,分式方程的解为 x = 5 。
二、通分法当分式方程中有多项式相除时,我们可以通过通分的方法将分式方程转化为一个方程,从而求解。
例如,考虑以下分式方程:\[ \frac{x+1}{x} - \frac{1}{2} = \frac{3x-4}{2x} \]首先,我们将分数进行通分,得到:\[ \frac{2(x+1)}{2x} - \frac{x}{2x} = \frac{3x-4}{2x} \]继续化简,得到:\[ \frac{2(x+1) - x}{2x} = \frac{3x-4}{2x} \]化简后,我们得到:\[ \frac{2x + 2 - x}{2x} = \frac{3x-4}{2x} \]继续合并同类项,得到:\[ \frac{x + 2}{2x} = \frac{3x-4}{2x} \]此时,分母相同,我们可以去掉分母,得到:\[ x + 2 = 3x - 4 \]然后,我们将方程化简为代数方程,得到:\[ 2 = 2x - 4 \]解代数方程,得到 x = 3 。
高中数学中的分式方程的解法

高中数学中的分式方程的解法在高中数学中,分式方程是一个重要的内容,它是由含有分式的方程组成的。
解决分式方程需要一些特定的技巧和方法。
本文将介绍一些常见的分式方程的解法。
一、一次分式方程的解法一次分式方程是指方程中只含有一次分式的方程。
解决一次分式方程的关键是将方程化简为一个整式方程。
例如,对于方程 $\frac{1}{x+1} + \frac{2}{x-2} = \frac{3}{x-1}$,我们可以通过通分的方式消去分母,得到 $x(x-2) + 2(x+1) = 3(x+1)$。
然后,我们将方程化简为一个整式方程 $x^2 - 2x + 2x + 2 = 3x + 3$,进一步简化为 $x^2 - 3x - 1 = 0$。
最后,我们可以使用因式分解、配方法或求根公式等方法求得方程的解。
二、二次分式方程的解法二次分式方程是指方程中含有二次分式的方程。
解决二次分式方程需要将方程化简为一个二次方程。
例如,对于方程 $\frac{1}{x^2 - 1} + \frac{1}{x^2 - 4} = \frac{2}{x^2 - 9}$,我们可以先找到方程中的公共分母 $(x^2 - 1)(x^2 - 4)(x^2 - 9)$。
然后,我们将方程中的每一项乘以相应的公共分母,得到 $(x^2 - 4)(x^2 - 9) + (x^2 - 1)(x^2 - 9) = 2(x^2 - 1)(x^2 - 4)$。
进一步化简得 $x^4 - 13x^2 + 36 + x^4 - 10x^2 + 9 = 2x^4 - 6x^2$。
最后,我们将方程化简为一个二次方程 $2x^4 - 3x^2 - 45 = 0$,并使用因式分解、配方法或求根公式等方法求得方程的解。
三、分式方程的约束条件在解决分式方程时,有时需要考虑方程的约束条件。
约束条件是指方程中的变量需要满足的条件。
例如,对于方程 $\frac{x}{x+1} + \frac{2}{x-2} = \frac{3}{x-1}$,我们可以通过观察发现,当 $x=-1$、$x=1$、$x=2$、$x=3$时,方程的左边或右边的分式将无定义。
分式方程

分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.注: 解分式方程必须检验,验根时把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根。
步骤:(1)去分母(两边同时乘以最简公分母)(2)去括号(3)移项(一般般含未知数的项移到左边,常数项移到右边) (4)合并同类项(5)系数化一(两边同时除以未知数的系数) (6)检验(将所求的未知数的值代入最简公分母) (7)做结论3.确定最简公分母的方法(1)最简公分母的系数,取各分母系数的最小公倍数;(2)最简公分母的字母,取各分母所有字母因式的最高次幂的积. 4.分式方程的增根问题(1)增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根;(2)验根:因为解分式方程可能出现增根,所以解分式方程必须验根.例题讲解:1. 已知关于x 的方程81=+x mx 的解为41=x ,则m =_________ 2. 已知关于x 的方程12-=-+x ax 的根是正数,求a 的取值范围为___________3. 若分式 的值为零,则 的值为________.4. 某市对一段全长1500米的道路进行改造.原计划每天修x 米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了 天.5. 若方程322x mx x-=--无解,则m =______. 解下列分式方程:14143=-+--x x x 212423=---x x xa a 1+222334a a a a ----144222=-++-x x x . 013132=--+--xx x.231-=x xx()()31112x x x x -=--+已知:关于x 的方程xx x a --=-+3431无解,求a 的值。
分式方程的解法

第 6页
3(ቤተ መጻሕፍቲ ባይዱ +1)一 丌+3〓 0
分析:去 分母后应对分子艿+3加 小括号,正 确的结果为※丌+ll-← +ω =0.
正解 :
解 分式方程不检验 (易 忽略检验 )
獬 扛 一⊥ 例5。 解方程:±万一⊥2 =2」-男亠~2 X-2 -2 方程两边都乘以←-2)得 : 1-x=-1-2(豸 一2)
解这个 整式方程得 :
习题 1.解 方程 :
⑴白=争
⑵三=⊥ · 艿 艿一2
第 1页
⑴孟〓圭: 习题 2。 解方程 :
⑵≠⒒-爿纡砘
例⒉觞程击=砉 · 眸圭=面希习
方 程 两 边 同时乘 以 ← +lX艿 -1)得 :
X十 1=2
解这个整式方程得 :
豸=1
检验:把 丌=1代入←十1》 -D得 :
ll+1)× ll-1)=0
例⒊解方租÷1广 3=扦 · 锊爹解艮 +3=;1::
:Ξ
方程两=÷边都乘以←-⑶ 得:
2+3〓 y-1
分析:在 转化为整式方程时出错,常 数3漏 乘了最简公分母←-㈥ ,这 是不符合等
第 3页
式的性 质 的,必 然得 到一个错 解. 正解 :
例⒋幡杜÷⒈-素丢=⒐
分式方程的解法与应用

分式方程的解法与应用分式方程是含有至少一个分式的方程,其解法与整式方程有一定的区别。
本文将介绍分式方程的解法及其应用。
一、分式方程的解法解分式方程的关键在于将方程化简为整式方程,以下是常见的几种解法:1. 通分法:当分式方程中含有多个分母时,可以通过通分的方式将其转化为整式方程。
首先找到所有分母的公倍数,然后将方程两边都乘以公倍数,从而得到一个整式方程。
最后求解整式方程,即可得到分式方程的解。
2. 消去法:当分式方程中存在相同的因式时,可以通过消去的方式将其化简为整式方程。
首先找出方程中的公因式,然后将其约去,从而得到一个整式方程。
最后求解整式方程,即可得到分式方程的解。
3. 倒数法:当分式方程中含有一个分式的倒数时,可以通过倒数的方式将其转化为整式方程。
首先将方程两边的分式取倒数,然后将其化简为整式方程。
最后求解整式方程,即可得到分式方程的解。
二、分式方程的应用分式方程在实际问题中具有广泛的应用,以下是几个常见的例子:1. 比例问题:比例问题通常可以表示为分式方程。
例如,某商品的原价为x元,打折后的价格为x/2元,求折扣后的价格是多少。
可以建立分式方程x/2 = 折扣后的价格,然后通过解方程求得折扣后的价格。
2. 水箱问题:水箱问题中常涉及到进水速度、出水速度等概念,可以通过分式方程求解。
例如,一个水箱的进水口每小时进水1/3箱,出水口每小时排水1/4箱,求水箱在多长时间内装满。
可以建立分式方程1/3 - 1/4 =水箱装满的时间,然后通过解方程求得水箱装满的时间。
3. 工作效率问题:工作效率问题中常涉及到多个人或物共同工作时的效率关系,可以通过分式方程求解。
例如,甲、乙两人共同完成一项任务需要5小时,如果甲的效率是乙的2倍,那么甲独自完成此任务需要多长时间。
可以建立分式方程1/甲的效率 - 1/乙的效率 = 5,然后通过解方程求得甲独自完成任务的时间。
总之,分式方程的解法与整式方程有一定的区别,可以通过通分法、消去法、倒数法等方式来解决。
15.3.2复杂分式方程的解法 正式稿2

2x 3(x 3)
解得 x 9
小结步骤 一去 二解
检验: 当x 9时,x(x 3) 0
三验
所以:原分式方程的解为x 9. 四写
x 1
3
x 1 (x 1)( x 2)
解:方程两边同时乘 (x 1)(x 2), 得
x(x 2) (x 1)(x 2) 3
3(x-1)+6x=x+m 1、把分式方程化为整式方程。
所以8x-m-3=0.
2、令最简公分母为 0, 求出未知数的值。
因为方程的增根是x=0或x=1 3、把未知数的值
代入整式方程,从而求
所以m= -3或m=5. 出字母参数的值。
变式. 如果关于 x 的方程
的解是无解,则 a 的值为?
解:将方程两边同乘 (x-2) 得
得,x 7 x 4 x 6 x 3 (x 4)( x 7) (x 3)( x 6)
即, 3
3
(x 4)( x 7) (x 3)( x 6)
所以3x 3x 6 3x 4x 7 解得 x 5 经检验 x 5 是原方程的根
∴原方程的根是 x 5 .
1 1 1 1. x6 x8 x9 x5
移项
100v 60v 1200 2000
合并同类项
160v 800 系数化为1
v5
1 = 10 . x-5 x2 -25
去分母,两边同时乘( x 5)(x 5)
解:x 5 10
移项
x 105
合并同类项
x5
100 60 20 v 20 v
去分母,两边同时乘( 20 v)(20 v)
解:100(20 v) 60(20 v)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程解法的标准
一,内容综述:
1.解分式方程的基本思想
在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程"转化"为整式方程.即
分式方程整式方程
2.解分式方程的基本方法
(1)去分母法
去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根.所以,必须验根.
产生增根的原因:
当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解.
检验根的方法:
将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等.
为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根.必须舍去.
注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公
分母为0.
用去分母法解分式方程的一般步骤:
(i)去分母,将分式方程转化为整式方程;
(ii)解所得的整式方程;
(iii)验根做答
(2)换元法
为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程.
用换元法解分式方程的一般步骤:
(i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数
式;
(ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值;
(iii)把辅助未知数的值代回原设中,求出原未知数的值;
(iv)检验做答.
注意:(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊
方法.它的基本思想是用换元法把原方程化简,把解一个比较复杂的方程转化为解两个比较简单的方程.
(2)分式方程解法的选择顺序是先特殊后一般,即先考虑能否用换元法解,不能用换元法解的,再用去分母法.
(3)无论用什么方法解分式方程,验根都是必不可少的重要步骤.
等式。
表示相等关系的式子叫做等式。
等式的性质有三:
性质1:等式两边同时加上相等的数或式子,两边依然相等。
若a=b
那么有a+c=b+c
性质2:等式两边同时乘(或除)相等的数或式子,两边依然相等
若a=b
那么有a·c=b·c
或a÷c=b÷c
性质3:等式两边同时乘方(或开方),两边依然相等
若a=b
那么有a^c=b^c
或(c次根号a)=(c次根号b)
.不等式的基本性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:如果a>b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么
a+c>b+d.
性质4:如果a>b>0,c>d>0,那么ac>bd.
性质5:如果a>b>0,n∈N,n>1,那么an>bn,
常见的数量关系
1,每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2、1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3、速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4、单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5、工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6、加数+加数=和
和-一个加数=另一个加数
7、被减数-减数=差
被减数-差=减数
差+减数=被减数
8 、因数×因数=积
积÷一个因数=另一个因数
9、被除数÷除数=商
被除数÷商=除数
商×除数=被除数
10、总数÷总份数=平均数
11、和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
12、和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者和-小数=大数)
13、差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或小数+差=大数)
14、植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
税后利息=本金×利率×时间×(1-20%)
15、盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
16、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
17、追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
18、流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
19、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
20、利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)。