2019高考全国各地数学卷文科解答题分类汇编-函数与导数
2019年全国高考数学·分类汇编 专题20 函数与导数综合(解析版)

专题20函数与导数综合【母题来源一】【2019年高考全国Ⅱ卷理数】已知函数11()ln x f x x x -+=-.(1)讨论()f x 的单调性,并证明()f x 有且仅有两个零点;(2)设0x 是()f x 的一个零点,证明曲线ln y x =在点00,l ()n A x x 处的切线也是曲线e xy =的切线.【答案】(1)函数()f x 在(0,1)和(1,)+∞上是单调增函数,证明见解析;(2)证明见解析.【母题来源二】【2018年高考全国Ⅱ卷理数】已知函数2()e xf x ax =-. (1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a . 【答案】(1)证明见解析;(2)e 24.【母题来源三】【2017年高考全国Ⅱ卷理数】已知函数2()ln f ax a x x x x =--,且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220e ()2f x --<<.【答案】(1)1a =;(2)证明见解析.【命题意图】1.导数概念及其几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算(1)能根据导数定义求函数y=C(C为常数),21,,y x y x yx===的导数.(2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.3.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).4.生活中的优化问题会利用导数解决某些实际问题.5.考查数学式子变形能力、运算求解能力、分类讨论思想、函数与方程思想、化归与转化思想及分析问题与解决问题的能力.【命题规律】从全国看,高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一般有三个层次:(1)主要考查求导公式,求导法则与导数的几何意义;(2)导数的简单应用,包括求函数的单调区间、极值、最值等;(3)综合考查,如零点、证明不等式、恒成立问题、求参数等,包括解决应用问题,将导数内容和传统内容中有关不等式、数列及函数单调性有机结合,设计综合题.【答题模板】 1.曲线的切线的求法若已知曲线过点P (x 0,y 0),求曲线过点P 的切线,则需分点P (x 0,y 0)是切点和不是切点两种情况求解. (1)当点P (x 0,y 0)是切点时,切线方程为y −y 0=f ′(x 0)(x −x 0); (2)当点P (x 0,y 0)不是切点时,可分以下几步完成: 第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过P ′(x 1,f (x 1))的切线方程为y −f (x 1)=f ′ (x 1)(x −x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y −f (x 1)=f ′(x 1)(x −x 1),可得过点P (x 0,y 0)的切线方程.2.利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式()0f x '>(()0f x '<)在给定区间上恒成立.一般步骤为: (1)求f ′(x );(2)确认f ′(x )在(a ,b )内的符号;(3)作出结论,()0f x '>时为增函数,()0f x '<时为减函数.注意:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论. 3.由函数()f x 的单调性求参数的取值范围的方法(1)可导函数在某一区间上单调,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()f x '在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而得参数的取值范围;(2)可导函数在某一区间上存在单调区间,实际上就是()0f x '>(或()0f x '<)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;(3)若已知()f x 在区间I 上的单调性,区间I 中含有参数时,可先求出()f x 的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围. 4.函数极值问题的常见类型及解题策略(1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号. (2)求函数()f x 极值的方法: ①确定函数()f x 的定义域. ②求导函数()f x '. ③求方程()0f x '=的根.④检查()f x '在方程的根的左、右两侧的符号,确定极值点.如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果()f x '在这个根的左、右两侧符号不变,则()f x 在这(3)利用极值求参数的取值范围:确定函数的定义域,求导数()f x ',求方程()0f x '=的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围. 5.求函数f (x )在[a ,b ]上最值的方法(1)若函数f (x )在[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值.(2)若函数f (x )在区间(a ,b )内有极值,先求出函数f (x )在区间(a ,b )上的极值,与f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(3)函数f (x )在区间(a ,b )上有唯一一个极值点时,这个极值点就是最大(或最小)值点. 注意:(1)若函数中含有参数时,要注意分类讨论思想的应用.(2)极值是函数的“局部概念”,最值是函数的“整体概念”,函数的极值不一定是最值,函数的最值也不一定是极值.要注意利用函数的单调性及函数图象直观研究确定. 6.利用导数解决不等式恒成立问题的“两种”常用方法:(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,()f x a ≥恒成立,只需min ()f x a ≥即可;()f x a ≤恒成立,只需max ()f x a ≤即可. (2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解. 【方法总结】1.常见基本初等函数的导数公式1()0();(),n n C C x nx n -+''==∈N 为常数;(sin )cos ;(cos )sin x x x x ''==-;(e )e ;()ln (0,1)x x x x a a a a a ''==>≠且; 11(ln );(log )log e(0,1)a a x x a a x x''==>≠且.2.常用的导数运算法则法则1:[()()]()()u v u v x x x x ±'='±'.法则2:[()()]()(·()())x x x x x u u u v x v v '='+'. 法则3:2()()()()()[](()0)()()u x u x v x u x v x v x v x v x ''-'=≠. 3.复合函数的导数复合函数y=f (g (x ))的导数和函数y=f (u ),u=g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.4.求曲线y =f (x )的切线方程的类型及方法(1)已知切点P (x 0, y 0),求y =f (x )过点P 的切线方程:求出切线的斜率f ′(x 0),由点斜式写出方程;(2)已知切线的斜率为k ,求y =f (x )的切线方程:设切点P (x 0, y 0),通过方程k =f ′(x 0)解得x 0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y =f (x )的切线方程:设切点P (x 0, y 0),利用导数求得切线斜率f ′(x 0),再由斜率公式求得切线斜率,列方程(组)解得x 0,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k =f ′(x 0)求出切点坐标(x 0, y 0),最后写出切线方程.(5)①在点P 处的切线即是以P 为切点的切线,P 一定在曲线上.②过点P 的切线即切线过点P ,P 不一定是切点.因此在求过点P 的切线方程时,应首先检验点P 是否在已知曲线上.5.导数与函数的单调性 一般地,在某个区间(a ,b )内:(1)如果()0f x '>,函数f (x )在这个区间内单调递增; (2)如果()0f x '<,函数f (x )在这个区间内单调递减; (3)如果()=0f x ',函数f (x )在这个区间内是常数函数.注意:(1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号;(2)在某个区间内,()0f x '>(()0f x '<)是函数f (x )在此区间内单调递增(减)的充分条件,而不是必要条件.例如,函数3()f x x =在定义域(,)-∞+∞上是增函数,但2()30f x x '=≥.(3)函数f (x )在(a ,b )内单调递增(减)的充要条件是()0f x '≥(()0f x '≤)在(a ,b )内恒成立,且()f x '在(a ,b )的任意子区间内都不恒等于0.这就是说,在区间内的个别点处有()0f x '=,不影响函数f (x )在区间内的单调性. 6.函数的极值一般地,对于函数y =f (x ),(1)若在点x =a 处有f ′(a )=0,且在点x =a 附近的左侧()0f 'x <,右侧()0f 'x >,则称x=a 为f (x )的极小值点,()f a 叫做函数f (x )的极小值.(2)若在点x =b 处有()f 'b =0,且在点x=b 附近的左侧()0f 'x >,右侧()0f 'x <,则称x=b 为f (x )的极大值点,()f b 叫做函数f (x )的极大值.(3)极小值点与极大值点通称极值点,极小值与极大值通称极值.7.函数的最值函数的最值,即函数图象上最高点的纵坐标是最大值,图象上最低点的纵坐标是最小值,对于最值,我们有如下结论:一般地,如果在区间[,]a b 上函数()y f x =的图象是一条连续不断的曲线,那么它必有最大值与最小值.设函数()f x 在[,]a b 上连续,在(,)a b 内可导,求()f x 在[,]a b 上的最大值与最小值的步骤为: (1)求()f x 在(,)a b 内的极值;(2)将函数()f x 的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.8.函数的最值与极值的关系(1)极值是对某一点附近(即局部)而言,最值是对函数的定义区间[,]a b 的整体而言;(2)在函数的定义区间[,]a b 内,极大(小)值可能有多个(或者没有),但最大(小)值只有一个(或者没有); (3)函数f (x )的极值点不能是区间的端点,而最值点可以是区间的端点; (4)对于可导函数,函数的最大(小)值必在极大(小)值点或区间端点处取得.9.在利用导数求函数的单调区间时,首先要确定函数的定义域,解题过程中,只能在定义域内讨论,定义域为实数集R 可以省略不写.在对函数划分单调区间时,除必须确定使导数等于零的点外,还要注意在定义域内的不连续点和不可导点.10.利用导数解决函数的零点问题时,一般先由零点的存在性定理说明在所求区间内至少有一个零点,再利用导数判断在所给区间内的单调性,由此求解.11.导数与函数变化快慢的关系:如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.12.导函数为正的区间是函数的增区间,导函数为负的区间是函数的减区间,导函数图象与x 轴的交点的横坐标为函数的极值点.13.实际生活中利润最大,容积、面积最大,流量、速度最大等问题都需要利用导数来求解相应函数的最大值.若在定义域内只有一个极值点,且在极值点附近左增右减,则此时唯一的极大值就是最大值.14.实际生活中用料最省、费用最低、损耗最小、最节省时间等问题都需要利用导数求解相应函数的最小值.用料最省、费用最低问题出现的形式多与几何体有关,解题时根据题意明确哪一项指标最省(往往要从几何体的面积、体积入手),将这一指标表示为自变量x 的函数,利用导数或其他方法求出最值,但一定要注意自变量的取值范围.(1)若0a >,求()f x 的单调区间;(2)证明:存在正实数M ,使得()0f M >.【答案】(1)()f x 的单调递增区间为,单调递减区间为)+∞;(2)证明见解析.2.【西藏自治区拉萨中学2019届高三第五次月考】已知函数()(1)e 1xf x x =--.(1)求函数()f x 的最大值; (2)设()(),1f x g x x x=>-,且0x ≠,证明:()1g x <. 【答案】(1)0;(2)证明见解析.3.【辽宁省抚顺市2019届高三第一次模拟】已知函数()ln 3(0)f x x ax a =--≠. (1)讨论函数()f x 的单调性;(2)若函数()f x 有最大值M ,且5M a >-,求实数a 的取值范围.【答案】(1)当0a <时,函数()f x 在(0,)+∞上单调递增;当0a >时,函数()f x 在1(0,)a上单调递增,在1(,)a+∞上单调递减;(2)(0,1).4.【甘、青、宁2019届高三5月联考】已知函数23()2f x ax x=+-. (1)若2a =,求()f x 的单调区间;(2)若函数()f x 存在唯一的零点0x ,且00x >,则a 的取值范围.【答案】(1)函数()f x 在(,0)-∞,)+∞上单调递增,在上单调递减;(2)(,9-∞-.5.【陕西省2019届高三第三次联考】已知函数()ln f x x ax =-,a ∈R ,2()g x x =.(1)求函数()f x 的极值点;(2)若()()f x g x ≤恒成立,求a 的取值范围. 【答案】(1)见解析;(2)[1,)-+∞.(1)若函数()y f x =图象上各点切线斜率的最大值为2,求函数()f x 的极值点; (2)若不等式()2f x <有解,求a 的取值范围. 【答案】(1)函数()f x 的极小值点为12x =,无极大值点;(2)(0,2)(2,)+∞U .7.【陕西省延安市2019届高考模拟一】已知函数()1ln f x ax x x =+-的图象在点(1,(1))f 处的切线与直线0x y -=平行.(1)求函数()f x 的极值;(2)若对于12,(0,)x x ∀∈+∞,且12x x ≠,121212()()()f x f x m x x x x ->+-,求实数m 的取值范围. 【答案】(1)极大值为e 1+,无极小值;(2)21(,]2e -∞-.8.【甘肃、青海、宁夏2019届高三上学期期末联考】已知函数22()e e x x f x a a x =+-.(1)当2a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)当0a ≥时,讨论函数()f x 的零点个数. 【答案】(1)3y =;(2)见解析.9.【新疆乌鲁木齐地区2019届高三第三次质量检测】已知函数()ln 21af x x x a x=+--+. (1)若2a =-,求函数()f x 的单调区间;(2)若函数()f x 有两个极值点1x ,2x ,求证:12()()0f x f x +<.【答案】(1)函数()f x 的单调递增区间为(0,2),单调递减区间为(2,)+∞;(2)证明见解析.10.【陕西省2019届高三第三次联考】已知函数f(x)=lnx −ax ,g(x)=x 2,a ∈R .(1)求函数f(x)的极值点;(2)若f(x)≤g(x)恒成立,求a 的取值范围.【答案】(1)极大值点为1a ,无极小值点;(2)(−1,+∞).(2)若对任意0x >,21()()2f x x a >-,求a 的取值范围.【答案】(1)证明见解析;(2)[.12.【甘肃省白银市靖远县2019届高三第四次联考】已知函数()(1)e xf x x =-.(1)求函数()f x 的单调区间和零点;(2)若()e f x ax ≥-恒成立,求a 的取值范围.【答案】(1)单调递减区间为(,0)-∞,单调递增区间为(0,)+∞,零点为1x =;(2)[0,e].13.【山东省济宁市2019届高三二模】已知函数f(x)=lnx −xe x +ax(a ∈R).(1)若函数f(x)在[1,+∞)上单调递减,求实数a 的取值范围; (2)若a =1,求f(x)的最大值. 【答案】(1)2]1(,e -∞-;(2)−1.14.【东北师大附中、重庆一中、吉大附中、长春十一中等2019届高三联合模拟】已知函数3()f x ax x=--(31)ln ,a x a a ++∈R .(1)若0a >,求函数()f x 的单调区间;(2)当1a =时,试判断函数()f x 的零点个数,并说明理由. 【答案】(1)见解析;(2)只有一个零点,理由见解析.15.【北京市西城区2019届高三4月统一测试一模】设函数f(x)=me x −x 2+3,其中m ∈R .(1)当f(x)为偶函数时,求函数ℎ(x)=xf(x)的极值;(2)若函数f(x)在区间[−2 ,4]上有两个零点,求m 的取值范围. 【答案】(1)极小值ℎ(−1)=−2,极大值ℎ(1)=2;(2)43136(2e,){}e e-U .(1)当1a =时,求()f x 的单调区间;(2)当0x <时,()0f x ≤恒成立,求实数a 的取值范围.【答案】(1)单调递增区间为(,1)-∞-,(ln 2,)+∞,单调递减区间为(1,ln 2)-;(2)1(0,]e.17.【重庆市巴蜀中学2019届高三适应性月考七】已知函数()(1)e xf x x a =+-,a ∈R .(1)当1a =时,求函数()f x 的极值; (2)若函数21()()2g x f x x ax =--在区间[0,)+∞上只有一个零点,求a 的取值范围. 【答案】(1)极小值为1e-,无极大值;(2)(,1]-∞.18.【黑龙江省齐齐哈尔市2019届高三第二次模拟】已知函数ln ()(,)x af x bx a b x-=-∈R . (1)当0b =时,讨论函数()f x 的单调性;(2)若函数()()f x g x x=在x =e 为自然对数的底)时取得极值,且函数()g x 在(0,e)上有两个零点,求实数b 的取值范围.【答案】(1)函数()f x 在1(0,e )a +上单调递增,在1(e ,)a++∞上单调递减;(2)211(,)e 2e. 19.【陕西省榆林市2019届高考第三次模拟】已知函数2()e 1x f x x =--.(1)设()()f x g x x=,(0,)x ∈+∞,求函数()g x 的极值; (2)若k ∈Z ,且21()(33)02f x x x k ++-≥对任意的x ∈R 恒成立,求k 的最大值.【答案】(1)极小值为e 2-,无极大值;(2)1-.20.【辽宁省大连市2019届高三第二次模拟】已知1x =是函数2()ln 2xf x ax x x =+-的极值点. (1)求实数a 的值;(2)求证:函数()f x 存在唯一的极小值点0x ,且030()4f x <<. (参考数据:ln2069≈.) 【答案】(1)14;(2)证明见解析.21.【山东省烟台市2019届高三3月诊断性测试一模】已知函数4211()42f x x ax =-,a ∈R .11 (2)设函数2()(22)e e ()x g x x x a f x =-+--,其中e 2.71828=L 是自然对数的底数,讨论()g x 的单调性并判断有无极值,有极值时求出极值.【答案】(1)6100x y --=;(2)当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x在(,-∞和)+∞单调递增,在(单调递减,极大值为(g =2e 2)e4a +,极小值为2e (4g a =-+. 22.【甘肃省2019年高三第二次高考诊断】函数2()21ln ()f x x ax x a =-++∈R .(1)若5a =时,求函数()f x 的单调区间;(2)设()()2ln g x f x x =-,若函数()g x 在1[,e]ex ∈上有两个零点,求实数a 的取值范围. 【答案】(1)单调递增区间为1(0,)4,(1,)+∞,单调递减区间为1(,1)4;(2)(3,2e].23.【宁夏石嘴山市第三中学2019届高三下学期三模】已知函数2()ln g x x x =+,2()ln m f x mx x x-=--,m ∈R . (1)求函数()g x 的极值; (2)若()()f x g x -在[1,)+∞上为单调函数,求m 的取值范围; (3)设2e ()h x x=,若在[1,e]上至少存在一个0x ,使得000()()()f x g x h x -=成立,求m 的取值范围. 【答案】(1)极小值为1ln2+,无极大值;(2)(,0][1,)-∞+∞U ;(3)24e [,)e 1+∞-.24.【宁夏银川市2019届高三下学期质量检测】已知函数()ln f x x x ax =+在0x x =处取得极小值1-.(1)求实数a 的值;(2)设()()(0)g x xf x b b =+>,讨论函数()g x 的零点个数.【答案】(1)1-;(2)当e 2b >时,函数()g x 没有零点;当e 2b =时,函数()g x 有一个零点;当e 02b <<时,函数()g x 有两个零点.。
2019年高考数学试题分类汇编 函数与导数52页word

函数与导数一、选择题1. 设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-,则()f 1= (A )-3 (B) -1 (C)1 (D)3 3.若点(a,b)在lg y x = 图像上,a ≠1,则下列点也在此图像上的是(A )(a 1,b ) (B) (10a,1-b) (C) (a 10,b+1) (D)(a2,2b)4.函数()()n f x ax x 2=1-g 在区间〔0,1〕上的图像如图所示,则n 可能是(A )1 (B) 2 (C) 3 (D)1n =5.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为()x A f x x A <=≥(A ,c 为常数)。
已知工人组装第4件产品用时30分钟,组装第A 件产品时用时15分钟,那么c 和A 的值分别是 A. 75,25 B. 75,16 C. 60,25 D. 60,166.已知点()0,2A ,()2,0B ,若点C 在函数2y x =的图象上,则使得ABC ∆的面积为2的点C 的个数为 A. 4 B. 3 C. 2 D. 18.对于函数()sin f x a x bx c =++ (其中,,,a b R c Z ∈∈),选取,,a b c 的一组值计算(1)f 和(1)f -,所得出的正确结果一定不可能是A .4和6B .3和1C .2和4D .1和29.已知函数()xf x e x =+,对于曲线()y f x =上横坐标成等差数列的三个点A ,B ,C ,给出以下判断:①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是A .①③B .①④C .②③D .②④10.若关于x 的方程x2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是 A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞)11.已知函数f(x)=⎩⎨⎧2x , x >0 x +1,x≤0,若f(a)+f(1)=0,则实数a 的值等于A .-3B .-1C .1D .312.)若a >0,b >0,且函数f(x)=4x3-ax2-2bx +2在x =1处有极值,则ab 的最大值等于 A .2 B .3 C .6 D .9 13.设函数()f x 和g(x)分别是R 上的偶函数和奇函数,则下列结论恒成立的是 A .()f x +|g(x)|是偶函数 B .()f x -|g(x)|是奇函数 C .|()f x | +g(x)是偶函数 D .|()f x |- g(x)是奇函数14.函数1()lg(1)1f x x x =++-的定义域是 ( )A .(,1)-∞-B .(1,)+∞C .(1,1)(1,)-+∞UD .(,)-∞+∞15.设)(),(),(x h x g x f 是R 上的任意实值函数.如下定义两个函数()()x g f ο和()()x g f •;对任意R x ∈,()()())(x g f x g f =ο;()()())(x g x f x g f =•.则下列等式恒成立的是( )A .()()()()()())(x h g h f x h g f ••=•οοB .()()()()()())(x h g h f x h g f οοο•=•C .()()()()()())(x h g h f x h g f οοοοο=D .()()()()()())(x h g h f x h g f •••=••16.已知定义在R 上的奇函数()x f 和偶函数()x g 满足()()2+-=+-xx a a x g x f ()1,0≠>a a 且,若()a g =2,则()=2fA. 2B. 415C. 417D. 2a17.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象成为衰变,假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:()3002t M t M -=,其中M 为0=t 时铯137的含量,已知30=t 时,铯137的含量的变化率是2ln 10-(太贝克/年),则()=60MA. 5太贝克B. 2ln 75太贝克C. 2ln 150太贝克D. 150太贝克18.曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .12-B .12 C.2-D.219.已知函数2()1,()43,x f x e g x x x =-=-+-若有()(),f a g b =则b 的取值范围为 A.[22 B.(22+ C .[1,3] D .(1,3)20.由直线,,033x x y ππ=-==与曲线cos y x =所围成的封闭图形的面积为( )A .12 B .1 C. D21.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为( )A .1B .12 C.2 D.222.若121()log (21)f x x =+,则()f x 的定义域为( )1(,0)2- B.1(,)2-+∞ C.1(,0)(0,)2-⋃+∞ D.1(,2)2-23.曲线xy e =在点A (0,1)处的切线斜率为( )A.1B.2C.eD.1e24.观察下列各式:则234749,7343,72401===,…,则20117的末两位数字为( ) A.01 B.43 C.07 D.4925.若)12(log 1)(21+=x x f ,则)(x f 定义域为A. )0,21(-B.]0,21(-C. ),21(+∞-D.),0(+∞26.设x x x x f ln 42)(2--=,则0)('>x f 的解集为A. ),0(+∞B. ),2()0,1(+∞-YC. ),2(+∞D.)0,1(-28.设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是A .1[-,2]B .[0,2]C .[1,+∞]D .[0,+∞]29.函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为A .(1-,1)B .(1-,+∞)C .(∞-,1-)D .(∞-,+∞)30.若函数))(12()(a x x xx f -+=为奇函数,则a=A .21B .32C .43D .131.下列函数中,既是偶函数又在+∞(0,)单调递增的函数是(A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -=32.由曲线y =2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C )163 (D )633.函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8 【答案】D34.(全国Ⅰ文4)曲线2y 21x x =-+在点(1,0)处的切线方程为 (A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+ 【答案】A35. (全国Ⅰ文9)设偶函数f(x)满足f(x)=2x-4 (x ≥0),则(){}20xf x ->=(A ){}24x x x <->或 (B ){}04 x x x <>或(C ){}06 x x x <>或 (D ){}22 x x x <->或【答案】B36.(全国Ⅱ理2)函数y=(x ≥0)的反函数为(A)y =24x (x ∈R ) (B)y =24x(x ≥0) (C)y =24x (x ∈R ) (D)y =24x (x ≥0)【答案】B 【命题意图】:本小题主要考查函数与反函数概念及求法特别要注意反函数的定义域即原函数的值域。
2019年高考数学(文)真题及模拟题分项汇编:导数及其应用.docx

2019年高考数学(文)真题及模拟题分项汇编:导数及其应用1. [2019年高考全国II 卷文数】曲线y=2sinx+cosx 在点(兀,T)处的切线方程为A. x — y — 7C — 1= 0B. 2x — y — 2兀一1 = 0C. 2x+_y-2rt + l = 0D. x+ y-n + 1 = 0【答案】C【解析】 / = 2cosx-sinx, :,y'\x=K =2cos7i-sin7r = -2,贝ij y = 2sinx + cosx 在点(n,-l)处的切线方程为 y-(-l) = 一2(x -冗),即 2x+y-2jt + l=0 . 故选C.【名师点睛】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养•采 取导数法,利用函数与方程思想解题.学生易在非切点处直接求导数而岀错,首先证明已知点是否为切 点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程.2.【2019年高考全国III 卷文数】已知曲线y = ae' + xln 在点(1, ae )处的切线方程为y=2x+b,则A. a = e, b — —iB. a=e, b=\C. a — e _\ b = 1D. a — e 1 > b = —1【答案】D【解析】T y'= ae"+lnx+l,切线的斜率 k = y' |x=1 = ae+1 = 2,a = e", 将(1,1)代入y = 2x + b ,得2 + b = l,b = -l. 故选D.【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a, b 的等式,从而求解,属 于常考题型.3. [2019年高考浙江】已知a,beR ,函数/(%)= <恰有3个零点,则B. a<-l, b>01 3 1 ,—.X — (a + l )x + ax, x > 0 13 2【答案】C【解析】当x<0 时,y=f (x) -ax - b=x - ax - b= (1 - tz) x - b=0,得x= 丿丿l-a则y=f (x) - ax-b最多有一个零点;当空0 时,y=f (%) - or - b= V-| (a+1) ^+ax - ax-b= |x3- j («+l) ? - b,/ = x2一(a + l)_x,当a+lVO,即a《-l 时,y>0, y=f (x) - ax - b在[0, +oo)上单调递增,则y=/(X)- ax - b最多有一个零点,不合题意;当a+l>0,即a>-l时,令#>0得xW(a+l, +8),此时函数单调递增,令#<0得用[0, a+1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y—f (x) - ax - b恰有3个零点o函数y^f (x) - ax- b在(-8, 0)上有一个零点, 在[0, +oo)上有2个零点,如图:b—b>0— <0 且右 1 ,i_a - (a + I)3 - - (a + l)(a + l)2- b<0>3 2解得b<0, 1 - a>0, b> -- (a+1) 3,6则a>-l, b<0.故选C.【名师点睛】本题考查函数与方程,导数的应甩当x<0时,y=/(x) - ax - b=x - ax - b= (1 - tz) x -b最多有一个零点;当总0时,y=/(x) - ax -b- |-x3-|(a+1)x2 - b,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4. [2019年高考全国I卷文数】曲线y = 3(x2+%)e x在点(0,0)处的切线方程为 __________________【答案】3x-y = 0【解析】y' = 3(2%+l)e T + 3(x2 + x)e-' = 3(x2 +3x+l)e x,所以切线的斜率k = y'\x=0=3,则曲线y = 3(x2+%)e T在点(0,0)处的切线方程为y = 即3x-y = 0.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.Y5. [2019年高考天津文数】曲线y = cosx--在点(0,1)处的切线方程为 _______________ .【答案】x + 2y — 2 = 0【解析】°.° 丁‘= —sinx —3 ,/. /|v_o=-sinO-- = -~ ,-'"0 2 2故所求的切线方程为y _] = _3尢,即x + 2y — 2 = 0.【名师点睛】曲线切线方程的求法:(1)以曲线上的点(助,/Uo))为切点的切线方程的求解步骤:①求出函数7U)的导数于(X);②求切线的斜率才(勿);③写出切线方程y—Axo)=/(xo)(x—Xo),并化简.y0 = f(x0)(2)如果已知点(xi, %)不在曲线上,则设出切点仇,为),解方程组]开一%—0进而确定切线方程.46. [2019年高考江苏】在平面直角坐标系xOv中,P是曲线y = x + —(x>0)上的一个动点,则点P到直x线x + y = 0的距离的最小值是▲.【答案】44 4【解析】由y = x-\—(x> 0),得y' = l—兀,x x4 4设斜率为一1的直线与曲线y = x + —(无>0)切于(x0,x0+—), 为) ,兀兀0由 1 2 = — 1 得兀0 =( x 0 = —A /2 舍去),兀0曲线J = x + -(x >0)±,点P (血,3血)到直线x + y = 0的距离最小,最小值为If+ 3血l =d. 尢Vl 2+12【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导 数法,利用数形结合和转化与化归思想解题.7. [2019年高考江苏】在平面直角坐标系中,点A 在曲线y=lnx 上,且该曲线在点A 处的切线经过点(-e, -l )(e 为自然对数的底数),则点A 的坐标是_A 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点 A (x 0,y 0),则% =ln 忑.又 y'=~,X当 x = x 0 时,y' = —则曲线严贬在点人处的切线为r 冷(7),将点(-e,-1)代入,得-l-lnx 0 = ------------ 1,即 x o lnx o = e,考察函数H (x ) = xlnx, 当 x e (0,1)时,H (x )<0 ,当时,H (x )>0,即 y-lnx 0且 H'(x) = lnx+1,当x 〉l 时,H'(x)>O,H(x)单调递增, 注意到H (e) = e ,故x o lnx o =e 存在唯一的实数根兀。
2019年高考数学试题分类汇编函数附答案详解

2019年高考数学试题分类汇编函数一、选择题.1、(2019年高考全国卷1文理科3)已知0.20.32log 0.220.2a b c ===,,,则 A .a b c << B .a c b <<C .c a b <<D .b c a <<答案:B解析: 001log 2.0log 22<⇒=<=a a ,112202.0>⇒=>=b b ,1012.02.003.0<<⇒=<=c c ,b c a <<∴,故选B2、(2019年高考全国卷1文理科5)函数f (x )=2sin cos ++x xx x 在[,]-ππ的图像大致为A .B .C .D .答案:D解析:因为)()(x f x f -=-,所以)(x f 为奇函数又01)(2>-=πππf ,124412)2(22>+=+=πππππf ,故选D 3、(2019年高考全国卷1理科11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④C .①④D .①③答案:C解析:由)(|sin |||sin |)sin(|||sin )(x f x x x x x f =+=-+-=-,故①正确;),2(ππ∈x 时,x x x x f sin 2sin sin )(=+=,函数递减,故②错误;],0[π∈x 时,x x x x f sin 2sin sin )(=+=,函数有2个零点,0)()0(==πf f ,而],0[π∈x 时0)()0(=-=πf f ,所以函数有且只有3个零点,故③错误;函数为偶函数,只需讨论0>x ,N k k k x ∈+∈),2,2(πππ时,x x x x f sin 2sin sin )(=+=,最大值为2,N k k k x ∈++∈),22,2(ππππ时,0sin sin )(=-=x x x f ,故函数最大值为2,故④正确。
2019年高考文科函数与导数一-8页文档资料

2019年高考数学(文)试题分类汇编函数与导数一. 选择题:1.(全国一1)函数y = D ) A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A )3.(全国一4)曲线324y x x =-+在点(13),处的切线的倾斜角为( B ) A .30°B .45°C .60°D .120°4.(全国一8)若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x =( A ) A .22e x -B .2e xC .21e x +D .2+2e x5.(全国二4)函数1()f x x x=-的图像关于( C ) A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称6.(全国二5)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a <b <c B .c <a <b C . b <a <c D . b <c <a7.(全国二7)设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( A ) A .1B .12C .12-D .1-8.(安徽卷6)函数2()(1)1(0)f x x x =-+≤的反函数为CA .B .C .D .A .1()11(1)f x x x -=--≥B . 1()11(1)f x x x -=+-≥C .1()11(2)f x x x -=--≥D . 1()11(2)f x x x -=--≥9.(安徽卷9).设函数1()21(0),f x x x x=+-< 则()f x ( A )A .有最大值B .有最小值C .是增函数D .是减函数10.(北京卷2)若372log πlog 6log 0.8a b c ===,,,则( A ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>11.(北京卷5)函数2()(1)1(1)f x x x =-+<的反函数为( B ) A .1()11(1)f x x x -=+-> B .1()11(1)f x x x -=--> C .1()11(1)f x x x -=+-≥D .1()11(1)f x x x -=--≥12.(福建卷11)如果函数y=f (x )的图象如右图,那么导函数y=f (x )的图象可能是A13.(广东卷8) 命题“若函数()log (0,1)a f x x a a =>≠在其定义域内是减函数,则log 20a <”的逆否命题是( A )A 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数B 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数C 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数D 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数14.(广东卷9)设a R ∈,若函数x y e ax =+,x R ∈,有大于零的极值点,则( A )A 、1a <-B 、1a >-C 、1a e <-D 、1a e>-15.(海南卷4)设()ln f x x x =,若0'()2f x =,则0x =( B )A. 2eB. eC. ln 22D. ln 216.(湖北卷6)已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则 AA.-2B.2C.-98D.9817.(湖北卷8) 函数1()1f x n x =+ DA.(,4][2,)-∞-+∞B. (4,0)(0,1)-⋃C.[4,0)(0,1]-D.[4,0)(0,1]-⋃18.(福建卷4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为B A.3 B.0 C.-1 D.-2 19.(湖南卷4)函数)0()(2≤=x x x f 的反函数是( B ))0()(.1≥=-x x x f A )0()(.1≥-=-x x x fB)0()(.1≤--=-x x x fC )0()(.21≤-=-x x x fD20.(湖南卷6)下面不等式成立的是( A )A .322log 2log 3log 5<<B .3log 5log 2log 223<<C .5log 2log 3log 232<<D .2log 5log 3log 322<< 21.(江西卷3)若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是B A .[0,1] B .[0,1) C . [0,1)(1,4]U D .(0,1) 22.(江西卷4)若01x y <<<,则CA .33y x <B .log 3log 3x y <C .44log log x y <D .11()()44x y <23.(江西卷12)已知函数2()2(4)4f x x m x m =+-+-,()g x mx =,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是CA . [4,4]-B .(4,4)-C . (,4)-∞D .(,4)-∞- 24.(辽宁卷2)若函数(1)()y x x a =+-为偶函数,则a =( C )25.(辽宁卷6)设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( A )A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦, 27.(辽宁卷8)将函数21x y =+的图象按向量a 平移得到函数12x y +=的图象,则( A ) A .(11)=--,aB .(11)=-,aC .(11)=,aD .(11)=-,a28.(山东卷3)函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( A )29.(山东卷4)给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( C ) A .3 B .2 C .1 D .030.(山东卷5)设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( A ) A .1516B .2716-C .89D .1831.(山东卷12)已知函数()log (21)(01)x a f x b a a =+->≠,的图象如图所示,则a b ,满足的关系是( A ) A .101a b -<<<B .101b a -<<<C .101b a -<<<-D .1101a b --<<<32.(陕西卷7)已知函数3()2x f x +=,1()f x -是()f x 的反函数,若16mn =(m n ∈+R ,),则11()()f m f n --+的值为( D )xxA .B .C .D .x33.(陕西卷11)定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(1)2f =,则(2)f -等于( A )A .2B .3C .6D .934.(四川卷2)函数()1ln 212y x x ⎛⎫=+>- ⎪⎝⎭的反函数是( C )(A)()112x y e x R =-∈ (B)()21x y e x R =-∈(C)()()112xy e x R =-∈ (D)()21xy e x R =-∈35.(四川卷9)函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)21336.(天津卷3)函数14)y x =≤≤的反函数是( A ) A .2(1)(13)y x x =-≤≤ B .2(1)(04)y x x =-≤≤ C .21(13)y x x =-≤≤D .21(04)y x x =-≤≤37.(天津卷10)设1a >,若对于任意的[]2x a a ∈,,都有2y a a ⎡⎤∈⎣⎦,满足方程log log 3a a x y +=,这时a 的取值的集合为( B )A .{}12a a <≤B .{}2a a ≥C .{}23a a ≤≤D .{}23,38.(重庆卷6)函数1210-=xy(0<x ≤1)反函数是D(A)1)10y x => (B)y x >110)(C) y =110<x ≤)1 (D) y =110<x ≤)139.(重庆卷7)函数f (x 的最大值为B(A)25(B)12(C)2(D)140.(重庆卷12)函数f (x(0≤x ≤2π)的值域是C(A)[-11,44](B)[-11,33] (C)[-11,22](D)[-22,33]二. 填空题:1.(安徽卷13)函数2()f x =的定义域为 .[3,)+∞2.(北京卷13)如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f = ;函数()f x 在1x =处的导数(1)f '= .3.(北京卷14)已知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >; ②2212x x >; ③12x x >.其中能使12()()f x f x >恒成立的条件序号是 .②4.(湖北卷13)方程223x x -+=的实数解的个数为 . 25.(湖南卷15)设[]x 表示不超x 的最大整数,(如[]145,22=⎥⎦⎤⎢⎣⎡=)。
2019年高考数学真题分类汇编专题19:导数在函数中的应用(综合题含解析)

2019年高考数学真题分类汇编专题19:导数在函数中的应用(综合题)一、解答题1.(2019•江苏)设函数、为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和的零点均在集合中,求f(x)的极小值;(3)若,且f(x)的极大值为M,求证:M≤ .2.(2019•浙江)已知实数a≠0,设函数f(x)=alnx+ .x>0(1)当a=- 时,求函数f(x)的单调区间(2)对任意x∈[ ,+∞)均有f(x)≤ ,求a的取值范围3.(2019•天津)设函数,其中.(Ⅰ)若,讨论的单调性;(Ⅱ)若,(i)证明恰有两个零点(ii)设为的极值点,为的零点,且,证明.4.(2019•天津)设函数为的导函数.(Ⅰ)求的单调区间;(Ⅱ)当时,证明;(Ⅲ)设为函数在区间内的零点,其中,证明.5.(2019•全国Ⅲ)已知函数.(1)讨论的单调性;(2)当0<a<3时,记在区间[0,1]的最大值为M,最小值为m,求的取值范围.6.(2019•全国Ⅲ)已知函数f(x)=2x3-ax2+b.(1)讨论f(x)的单调性;(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为-1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由。
7.(2019•全国Ⅲ)已知曲线C: ,D为直线y=- 的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.8.(2019•卷Ⅱ)已知函数,证明:(1)存在唯一的极值点;(2)有且仅有两个实根,且两个实根互为倒数.9.(2019•卷Ⅱ)已知函数.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=ln x 在点A(x0,ln x0)处的切线也是曲线的切线.10.(2019•北京)已知函数f(x)= x3-x2+x.(I)求曲线y=f(x)的斜率为1的切线方程;(II)当x∈[-2,4]时,求证:x-6≤f(x)≤x;(IlI)设F(x)=|f(x)-(x+a)|(a∈R),记F(x)在区间[-2,4]上的最大值为M(a). 当M(a)最小时,求a的值.11.(2019•卷Ⅰ)已知函数f(x)=2sinx-xcosx-x,f‘(x)为f(x)的导数。
2019年高考数学题分类汇编__函数与导数共50页文档

2019年高考数学题分类汇编函数与导数一、选择题1.【2019·全国卷Ⅰ(理3,文5)】设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是( )A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【答案】C2. 【2019·全国卷Ⅰ(理6)】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( ) 【答案】C3. 【2019·全国卷Ⅰ(理11,文12)】已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【答案】B4. 【2019·全国卷Ⅱ(理8)】设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A. 0 B. 1 C. 2 D. 3 【答案】 D【解析】..3.2)0(,0)0(.11-)(),1ln(-)(D a f f x a x f x ax x f 故选联立解得且==′=∴+=′∴+=Θ 5【2019·全国卷Ⅱ(理12)】设函数()3sin x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞B. ()(),44,-∞-⋃∞C.()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞ 【答案】C 。
2019年导数及其应用真题汇编(文数)(含详解)

2019年导数及其应用真题汇编(文数)1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-【答案】D 【解析】∵e ln 1,xy a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-.3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x, 则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2+ax ﹣ax ﹣bx 3(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴ <0且 ><, 解得b <0,1﹣a >0,b >(a +1)3, 则a >–1,b <0.故选C .4.【2019年高考全国Ⅰ卷文数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -= 【解析】223(21)e 3()e 3(31)e ,xxxy x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.5.【2019年高考天津文数】曲线cos 2xy x =-在点(0,1)处的切线方程为__________. 【答案】220x y +-= 【解析】∵1sin 2y x '=--,∴01|sin 0212x y ='=---=,故所求的切线方程为112y x -=-,即220x y +-=.6.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ . 【答案】4 【解析】由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x =+>切于004(,)x x x +, 由20411x -=-得0x =0x =,∴曲线4(0)y x x x=+>上,点P 到直线0x y +=4=.7.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1) 【解析】设点()00,A x y ,则00ln y x =. 又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-, 即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =, 故点A 的坐标为()e,1.8.【2019年高考全国Ⅰ卷文数】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.【解析】(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=.当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫⎪⎝⎭单调递减. 又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =…,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x …. 又当0,[0,π]a x ∈…时,ax ≤0,故()f x ax …. 因此,a 的取值范围是(,0]-∞.9.【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数. 【解析】(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=.由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---==⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根. 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.10.【2019年高考天津文数】设函数()ln (1)e x f x x a x =--,其中a ∈R .(1)若a ≤0,讨论()f x 的单调性; (2)若10ea <<, (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->. 【解析】(1)解:由已知,()f x 的定义域为(0,)+∞,且211e ()e (1)e x x xf ax x a a x x x-⎡⎤=-+-=⎣'⎦. 因此当a ≤0时,21e 0x ax ->,从而()0f x '>,所以()f x 在(0,)+∞内单调递增.(2)证明:(i )由(Ⅰ)知21e ()xax f x x-'=.令2()1e x g x ax =-,由10e a <<, 可知()g x 在(0,)+∞内单调递减,又(1)1e 0g a =->,且221111ln 1ln 1ln 0g a a a a a ⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故()0g x =在(0,)+∞内有唯一解,从而()0f x '=在(0,)+∞内有唯一解,不妨设为0x ,则011l n x a<<.当()00,x x ∈时,()0()()0g x g x f x x x'=>=,所以()f x 在()00,x 内单调递增;当()0,x x ∈+∞时,()0()()0g x g x f x x x'=<=,所以()f x 在()0,x +∞内单调递减,因此0x 是()f x 的唯一极值点.令()ln 1h x x x =-+,则当1x >时,1()10h'x x=-<,故()h x 在(1,)+∞内单调递减,从而当1x >时,()(1)0h x h <=,所以ln 1x x <-.从而ln 1111111ln ln ln ln 1e ln ln ln 1ln 0a f a h a a a a a a ⎛⎫⎛⎫⎛⎫=--=-+=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为()0(1)0f x f >=,所以()f x 在0(,)x +∞内有唯一零点.又()f x 在()00,x 内有唯一零点1,从而,()f x 在(0,)+∞内恰有两个零点.(ii )由题意,()()010,0,f x f x '=⎧⎪⎨=⎪⎩即()012011e 1,ln e ,1x x ax x a x ⎧=⎪⎨=-⎪⎩从而1011201ln e x x x x x --=,即102011ln e 1x x x x x -=-.因为当1x >时,ln 1x x <-,又101x x >>,故()102012011e 1x x x x x x --<=-,两边取对数,得1020ln e ln x x x -<,于是()10002ln 21x x x x -<<-, 整理得0132x x ->.11.【2019年高考全国Ⅲ卷文数】已知函数32()22f x x ax =-+.(1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)当03a <<时,由(1)知,()f x 在0,3a ⎛⎫ ⎪⎝⎭单调递减,在,13a ⎛⎫ ⎪⎝⎭单调递增,所以()f x 在[0,1]的最小值为32327a a f ⎛⎫=-+ ⎪⎝⎭,最大值为(0)=2f 或(1)=4f a -.于是 3227a m =-+,4,02,2,2 3.a a M a -<<⎧=⎨≤<⎩所以332,02,27,2 3.27a a a M m a a ⎧-+<<⎪⎪-=⎨⎪≤<⎪⎩当02a <<时,可知3227a a -+单调递减,所以M m -的取值范围是8,227⎛⎫⎪⎝⎭. 当23a ≤<时,327a 单调递增,所以M m -的取值范围是8[,1)27.综上,M m -的取值范围是8[,2)27. 12.【2019年高考北京文数】已知函数321()4f x x x x =-+. (1)求曲线()y f x =的斜率为1的切线方程; (2)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(3)设()|()()|()F x f x x a a =-+∈R,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.【解析】(1)由321()4f x x x x =-+得23()214f x x x '=-+. 令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(2)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (3)由(2)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.13.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)ex ∈+∞均有()2f x a ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【解析】(1)当34a =-时,3()ln 04f x x x =-+>.3()4f 'x x =-+=所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得04a <≤.当04a <≤时,()2f x a ≤等价于22ln 0x a a--≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥则2()2ln g t t x=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==.故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =….令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =>,故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭….由(i )得,11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此()0g t g =>….由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a ….综上所述,所求a 的取值范围是0,4⎛ ⎝⎦. 14.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得12x x ==.列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019高考全国各地数学卷文科解答题分类汇编-函数与导数1.〔天津文〕19、〔本小题总分值14分〕函数32()4361,f x x tx tx t x R =+-+-∈,其中t R ∈、 〔Ⅰ〕当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; 〔Ⅱ〕当0t ≠时,求()f x 的单调区间;〔Ⅲ〕证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点、【解析】〔19〕本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,总分值14分。
〔Ⅰ〕解:当1t =时,322()436,(0)0,()1266f x x x x f f x x x '=+-==+-(0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =-〔Ⅱ〕解:22()1266f x x tx t '=+-,令()0f x '=,解得.2t x t x =-=或因为0t ≠,以下分两种情况讨论:〔1〕假设0,,2tt t x<<-则当变化时,(),()f x f x '的变化情况如下表:所以,()f x 的单调递增区间是(),,,;()2t t f x ⎛⎫-∞-+∞ ⎪⎝⎭的单调递减区间是,2t t ⎛⎫- ⎪⎝⎭。
〔2〕假设0,2t t t >-<则,当x 变化时,(),()f x f x '的变化情况如下表:所以,()f x 的单调递增区间是(),,,;()2t t f x ⎛⎫-∞-+∞ ⎪⎝⎭的单调递减区间是,.2t t ⎛⎫- ⎪⎝⎭〔Ⅲ〕证明:由〔Ⅱ〕可知,当0t >时,()f x 在0,2t ⎛⎫ ⎪⎝⎭内的单调递减,在,2t ⎛⎫+∞ ⎪⎝⎭内单调递增,以下分两种情况讨论: 〔1〕当1,22tt ≥≥即时,()f x 在〔0,1〕内单调递减,2(0)10,(1)643644230.f t f t t =->=-++≤-⨯+⨯+<所以对任意[2,),()t f x ∈+∞在区间〔0,1〕内均存在零点。
〔2〕当01,022t t <<<<即时,()f x 在0,2t ⎛⎫ ⎪⎝⎭内单调递减,在,12t ⎛⎫ ⎪⎝⎭内单调递增,假设33177(0,1],10.244t f t t t ⎛⎫∈=-+-≤-< ⎪⎝⎭2(1)643643230.f t t t t t =-++≥-++=-+>所以(),12t f x ⎛⎫⎪⎝⎭在内存在零点。
假设()3377(1,2),110.244t t f t t t ⎛⎫∈=-+-<-+< ⎪⎝⎭(0)10f t =->所以()0,2t f x ⎛⎫ ⎪⎝⎭在内存在零点。
所以,对任意(0,2),()t f x ∈在区间〔0,1〕内均存在零点。
综上,对任意(0,),()t f x ∈+∞在区间〔0,1〕内均存在零点。
2.〔北京文〕18、〔本小题共13分〕 函数()()x f x x k e =-.〔Ⅰ〕求()f x 的单调区间;〔Ⅱ〕求()f x 在区间[0,1]上的最小值.【解析】〔18〕〔共13分〕 解:〔Ⅰ〕.)1()(3e k x x f +-=' 令()0='x f ,得1-=k x 、)(x f 与)(x f '的情况如下:所以,)(x f 的单调递减区间是〔1,-∞-k 〕;单调递增区间是),1(+∞-k 〔Ⅱ〕当01≤-k ,即1≤k 时,函数)(x f 在[0,1]上单调递增, 所以f 〔x 〕在区间[0,1]上的最小值为;)0(k f -= 当21,110<<<-<k k 即时,由〔Ⅰ〕知()[0,1]f x k -在上单调递减,在(1,1]k -上单调递增,所以()f x 在区间[0,1]上的最小值为1(1)k f k e --=-;当1,2k t k -≥=即时,函数()f x 在[0,1]上单调递减,所以()f x 在区间[0,1]上的最小值为(1)(1).f k e =-3.(全国大纲文)21、〔本小题总分值l2分〕〔注意:在试题卷上作答无效.........〕 函数{}32()3(36)124f x x ax a x a a R =++---∈〔I 〕证明:曲线()0y f x x ==在处的切线过点〔2,2〕;〔II 〕假设0()f x x x =在处取得极小值,0(1,3)x ∈,求a 的取值范围。
【解析】21、解:〔I 〕2'()3636.f x x ax a =++-…………2分由(0)124,'(0)36f a f a =-=-得曲线()0y f x x ==在处的切线方程为由此知曲线()0y f x x ==在处的切线过点〔2,2〕 …………6分〔II 〕由2'()02120.f x x ax a =++-=得 〔i〕当11,()a f x ≤≤时没有极小值; 〔ii〕当11,'()0a a f x ><=或时由得12x a x a =-=-故02.x x =由题设知1 3.a <-当1a >时,不等式13a <-<无解。
当1a <时,解不等式513 1.2a a <-<-<<得 综合〔i 〕〔ii 〕得a的取值范围是5(,1).2- …………12分4.〔全国新文〕21、〔本小题总分值12分〕函数ln ()1a x b f x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=、〔I 〕求a ,b 的值;〔II 〕证明:当x>0,且1x ≠时,ln ()1x f x x >-、【解析】〔21〕解: 〔Ⅰ〕221(ln )'()(1)x x b x f x x x α+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。
〔Ⅱ〕由〔Ⅰ〕知ln 1f ()1x x x x=++,所以)1ln 2(111ln )(22xx x x x x x f -+-=-=考虑函数()2ln h x x =+xx 12-(0)x >,那么22222)1()1(22)(x x x x x xx h --=---='所以当1≠x 时,,0)1(,0)(=<'h x h 而故 当)1,0(∈x 时,;0)(11,0)(2>->x h xx h 可得当),1(+∞∈x 时,;0)(11,0)(2>-<x h x x h 可得从而当.1ln )(,01ln )(,1,0->>--≠>x x x f x x x f x x 即且5.〔辽宁文〕20、〔本小题总分值12分〕设函数)(x f =x +ax 2+b ln x ,曲线y =)(x f 过P 〔1,0〕,且在P 点处的切斜线率为2、 〔I 〕求a ,b 的值; 〔II 〕证明:)(x f ≤2x -2、 【解析】20、解:〔I 〕()12.b f x ax x'=++…………2分 由条件得(1)0,10,(1) 2.12 2.f a f a b =+=⎧⎧⎨⎨'=++=⎩⎩即解得1, 3.a b =-=………………5分〔II 〕()(0,)f x +∞的定义域为,由〔I 〕知2()3ln .f x x x x =-+设2()()(22)23ln ,g x f x x x x x =--=--+那么3(1)(23)()12.x x g x x x x-+'=--+=-01,()0;1,()0.()(0,1),(1,).x g x x g x g x ''<<>><+∞当时当时所以在单调增加在单调减少而(1)0,0,()0,()2 2.g x g x f x x =>≤≤-故当时即………………12分6.〔江西文〕20、〔本小题总分值13分〕 设321().3f x x mx nx =++ 〔1〕如果()'()23x 2g x f x x =--=-在处取得最小值-5,求f (x)的解析式;〔2〕如果m n 10(m,n N),f (x)+<∈的单调递减区间的长度是正整数,试求m 和n 的值;〔注;区间〔a ,b 〕的长度为b-a 〕【解析】20、〔本小题总分值13分〕解:〔1〕由题得222()2(1)(3)(1)(3)(1)g x x m x n x m n m =+-+-=+-+---()2g x x =-在处取得最小值-5所以212(3)(1)5m n m -=⎧⎨---=-⎩,即3,2m n ==即得所要求的解析式为321()32.3f x x x x =++ 〔2〕因为2'()2,()f x x mx n f x =++且的单调递减区间的长度为正整数, 故'()0f x =一定有两个不同的根, 从而22440m n m n ∆=->>即,不妨设为1221,,||x x x x -=则为正整数,故2m ≥时才可能有符合条件的m ,n 当m=2时,只有n=3符合要求 当m=3时,只有n=5符合要求 当4m ≥时,没有符合要求的n综上所述,只有m=2,n=3或m=3,n=5满足上述要求。
7.〔山东文〕21、〔本小题总分值12分〕某企业拟建造如下图的容器〔不计厚度,长度单位:米〕,其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥、假设该容器的建造费用仅与其表面积有关、圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >、设该容器的建造费用为y 千元、 〔Ⅰ〕写出y 关于的函数表达式,并求该函数的定义域;〔Ⅱ〕求该容器的建造费用最小时的、 【解析】21、解:〔I 〕设容器的容积为V ,由题意知23480,,33V r l r V πππ=+=又故322248044203()333V r l r r r r rππ-==-=- 由于2l r ≥ 因此0 2.r <≤ 所以建造费用2224202342()34,3y rl r c r r r c rππππ=⨯+=⨯-⨯+ 因此21604(2),0 2.y c r r rππ=-+<≤ 〔II 〕由〔I 〕得3221608(2)20'8(2)(),0 2.2c y c r r r r r c πππ-=--=-<<- 由于3,20,c c >->所以当3200,2r r c -==-时,m =则 所以2228(2)'()().c y r m r rm m r π-=-++ 〔1〕当9022m c <<>即时,∈∈当r=m 时,y'=0;当r (0,m)时,y'<0;当r (m,2)时,y'>0.所以r m =是函数y 的极小值点,也是最小值点。