习题作业-第四章 并行算法的设计基础
并行程序设计导论第四章课后题答案(2024)

2024/1/29
1
目录
2024/1/29
• 课后题概述与解题思路 • 并行计算基本概念回顾 • 数据并行和任务并行编程技巧 • 同步与通信机制在并行程序中的应用 • 性能评价与调试方法分享 • 实例分析:典型课后题解答过程展示
2
01 课后题概述与解题思路
2024/1/29
并行化设计
将程序中的可并行部分进行并行处理,利用多核CPU或分布式系统的 计算能力提高程序性能。
数据结构优化
根据问题的特点选择合适的数据结构,以减少内存占用和提高数据访 问效率。
代码优化
通过编译器优化选项、内联函数、减少函数调用等手段提高代码执行 效率。
22
06 实例分析:典型课后题解 答过程展示
并行性能优化
通过分析并行程序的性能瓶颈,采用合适的优化策略,如减少通信 开销、提高缓存利用率等,提高并行程序的执行效率。
14
04 同步与通信机制在并行程 序中的应用
2024/1/29
15
同步机制原理及作用
2024/1/29
同步机制原理
通过设定同步点或同步操作,确保并 行程序中的各个进程或线程在关键点 上达到一致状态,避免数据竞争和结 果不确定性。
重点复习并行程序设计的基本概念、原理和方法,理解并掌握相关术语和定义。通过对比和分析选项,找出 正确答案。
简答题
在理解基本概念的基础上,结合实际应用场景和问题背景,进行深入分析和思考。注意答案的条理性和逻辑 性,尽量用简洁明了的语言进行表述。
编程题
首先明确题目要求和目标,设计合理的算法和数据结构。在编写代码时,注意并行化策略的选择和实现,以 及同步和通信机制的处理。最后对程序进行测试和调试,确保正确性和性能。
并行算法的设计基础

表示其间的 n (i=1 to n) 次语句序列的执行 可以并行完成
2. for all 语句 for all Pi where 0 i k-1 do : :
end for 2019/11/20
表示 k 个 处理器同时 执行其间的 语句序列 9
3. 并行算法的复杂性度量
令 f(n) 和 g(n) 是定义在自然数集合N 上的两个函数,
2019/11/20
4
定义3:同步算法(synchronized algorithm):是指算 法的诸进程的执行必须相互等待的一类并行算法。 SIMD算法是同步算法中的一种特例。
定义4:异步算法(asynchronous algorithm):是指算 法的诸进程的执行不必相互等待的一类并行算法。
定义5:分布并行算法(distributed algorithm):将 同一任务分解为若干个子任务,使之分布在由通信 链路连接的多个节点上协同完成运算的算法。
定义12:一个并行算法的期望时间复杂性 ( expected time-complexity ) :对于所有输入 规模为 n 的问题,在给定的计算模型之下求解问 题所需的时间的平均值。
2019/11/20
15
定义13:一个并行算法最坏情况下的空间复杂性 (worst-case space-complexity) :对于所有输 入规模为 n 的问题,在给定的并行计算模型之下 求解问题所需的内存空间的最大值。
22
我们把 A 按列分为 p 个 n*r 的小矩阵A1 , A2 ,… , Ap 把 X 按行分为 p 个 r*1 的小向量X1 , X2 ,… , Xp
A = A1 A2 …
Ap
(n*r) (n*r)
计算机科学导论(第4版)习题答案-第5、6章

第5章算法与复杂性习题一、选择题1. B2. D3. C4. A5. B6. B7. D8.B9.C 10.A11.A 12.C 13.A 14.A二、简答题1.什么是算法,算法的特性有哪些?答:“算法(Algorithm)是一组明确的、可以执行的步骤的有序集合,它在有限的时间内终止并产生结果”。
算法的特性有:(1) 有穷性(可终止性):一个算法必须在有限个操作步骤内以及合理的有限时间内执行完成。
(2) 确定性:算法中的每一个操作步骤都必须有明确的含义,不允许存在二义性。
(3) 有效性(可执行性):算法中描述的操作步骤都是可执行的,并能最终得到确定的结果。
(4) 输入及输出:一个算法应该有零个或多个输入数据、有1个或多个输出数据。
2.什么是算法的时间复杂度和空间复杂度,如何表示?答:时间复杂度是与求解问题规模、算法输入相关的函数,该函数表示算法运行所花费的时间。
记为,T(n),其中,n代表求解问题的规模。
算法的空间复杂度(Space complexity)度量算法的空间复杂性、即执行算法的程序在计算机中运行所占用空间的大小。
简单讲,空间复杂度也是与求解问题规模、算法输入相关的函数。
记为,S(n),其中,n代表求解问题的规模。
时间复杂度和空间复杂度同样,引入符号“O”来表示T(n)、S(n)与求解问题规模n之间的数量级关系。
3.用图示法表示语言处理的过程。
答:语言处理的过程如图所示:4.简述算法设计的策略。
答:作为实现计算机程序实现时解决问题的方法,算法研究的内容是解决问题的方法,而不是计算机程序的本身。
一个优秀的算法可以运行在比较慢的计算机上,但一个劣质的算法在一台性能很强的计算机上也不一定能满足应用的需要,因此,在计算机程序设计中,算法设计往往处于核心地位。
要想充分理解算法并有效地应用于实际问题,关键是对算法的分析。
通常可以利用实验对比分析、数学方法来分析算法。
实验对比分析很简单,两个算法相互比较,它们都能解决同一问题,在相同环境下,一般就会认为哪个算法的速度快这个算法性能更好。
并行算法复习

1.并行算法:一些可同时执行的诸进程的集合,这些进程相互作用和相互协调。
2.并行与并发的关系:并行<并发并发是指两个或者多个事件在同一时间间隔内发生。
在单处理机系统中,每一时刻仅能有一道程序执行,宏观上多道程序在同时运行,微观上这些程序是分时交替执行。
3.并行与分布式的关系:网络;并行更注重性能,而分布式更注重透明共享。
4.并行与网格计算(普适计算)的关系:网格通过网络连接地理上分布的各类计算资源、存储资源、通信资源、软件资源、信息资源、知识资源等,形成对用户相对透明的虚拟的高性能计算环境,让人们透明地使用这些资源和功能。
它们与并行计算存在规模上的差异。
5.并行与云计算的关系:云计算以开放的标准和服务为基础,以互联网为中心,提供安全、快速、便捷的数据存储和网络计算服务,让互联网这片“云”上的各种计算机共同组成数个庞大的数据中心及计算中心。
云计算把计算及存储以服务的形式提供给互联网用户,用户所使用的数据、服务器、应用软件、开发平台等资源都来自互联网上的虚拟化计算中心,该数据中心负责对分布在互联网上的各种资源进行分配、负载的均衡、软件的部署、安全的控制等。
6.为什么要研究并行算法?(1)CPU的发展速度:Moore Law。
(2)“深蓝”计算机以3.5:2.5战胜卡斯帕罗夫。
(3)需求:快速(天气预报),提高计算精度,与理论、实验并重的科学方法(代替核武器实验)7.并行计算机分类1. SISD,Single Instruction Stream & Single Data Stream:特征:串行的和确定的。
指令系统: CISC, RISC2. SIMD,Single Instruction Stream & Multiple Data Stream:特征:同步的;确定的;适合于指令/操作级并行。
1)阵列处理机(资源重复);2)流水线处理机(时间重叠).3. MISD,Multiple Instruction Stream & Single Data Stream :4. MIMD,Multiple Instruction Stream & Multiple Data Stream共享存储MIMD,也称对称多处理机(SMP,Symmetry MultiProcessors),属于紧密耦合的多处理机系统适合于小粒度并行分布式共享存储MIMD,也称为非一致内存访问(NUMA, Non-Uniform Memory Access),属于松耦合的多处理机系统(共享虚拟存储技术),适合于中小粒度并行分布式存储MIMD1).大规模并行系统MPP (Massively Parallel Processing)CM-5、曙光1000、神州-Ⅱ巨型机可以最大限度地增加处理机的数量,但结点间需要依赖消息传递进行通信,适合于中小粒度并行2).群集系统Cluster特点:适合于粗粒度并行8.网络直径(network diameter):网络中最远的两台处理机间的距离,即处理机间通信所需要跨越的网络边的条数的最大值。
并行计算(中科大讲义)

▪ n,节点规模 w,数据宽度
国家高性能计算中心(合肥)
2021/4/12
22
标准互联网络(1)
▪ Myrinet:
▪ Myrinet是由Myricom公司设计的千兆位包交换网络,其目的 是为了构筑计算机机群,使系统互连成为一种商业产品。
▪ Myrinet是基于加州理工学院开发的多计算机和VLSI技术以及 在南加州大学开发的ATOMIC/LAN技术。Myrinet能假设任 意拓扑结构,不必限定为开关网孔或任何规则的结构。
▪ 多处理机总线系统的主要问题包括总线仲裁、中断处理、协议转换、 快速同步、高速缓存一致性协议、分事务、总线桥和层次总线扩展等
CPU板
LM
CPU
本地外围设备 (SCSI总线)
IOC
存储器板 存储器单元
本地总线
存储器总线
高速缓存
IF
IF
MC
系统总线
I/O板
IOP
IF
数据总线
缓冲
IF
(底板上)
通信板
IF
开关,在Ilinois大学的
Cedar[2]多处理机系统中采用了Ω网络
▪ Cray Y/MP多级网络,该网络用来支持8个向量处理器和256 个存储器模块之间的数据传输。网络能够避免8个处理器同时 进行存储器存取时的冲突。
国家高性能计算中心(合肥)
2021/4/12
21
动态互连网络比较
动态互连网络的复杂度和带宽性能一览表
▪ 一个交换开关模块有n个输入和n个输出,每个输入可连接到任 意输出端口,但只允许一对一或一对多的映射,不允许多对一 的映射,因为这将发生输出冲突
▪ 级间互连(Interstage Connection ):
并行计算习题(全)

2.
∑d
j =1
i
j
来代替P i 中的原始值
∑d
j =l
i
j
3.
begin for j = 0 to logn – 1 do for i = 2j + 1 to n par-do (i) P i = d i-(2^i) (ii) d i = d i + d i-(2^j) endfor endfor end (1)试用 n=8 为例,按照上述算法逐步计算出累加和。 (2)分析算法时间复杂度。 在 APRAM 模型上设计算法时,应尽量使各处理器内的局部计算时间和读写时间大致 与同步时间 B 相当。 当在 APRAM 上计算 M 个数的和时, 可以借用 B 叉树求和的办法。 假定有 j 个处理器计算 n 个数的和,此时每个处理器上分配 n/p 个数,各处理器先 求出自身的局和;然后从共享存储器中读取它的 B 个孩子的局和,累加后置入指定的 共享存储单元 SM 中;最后根处理器所计算的和即为全和。算法如下: 算法 APRAM 上求和算法 输入: n 个待求和的数 输出: 总和在共享存储单元 SM 中 Begin (1) 各处理器求 n/p 个数的局和,并将其写入 SM 中 (2) Barrier (3) for k = [ log B ( p(B – 1) + 1) ] – 2 downto 0 do 3.1 for all P i , 0 ≤ i ≤ p – 1,do if P i 在第k级 then P i 计算其B各孩子的局和并与其自身局和相加 ,然后将结果 写入SM中 endif
第三章 习题例题:
1.Βιβλιοθήκη 并行计算性能评测使用 40MHZ 主频的标量处理器执行一个典型测试程序,其所执行的指令数及所需的周 期数如表所示。试计算执行该程序的有效 CPI、MIPS 速率及总的 CPU 执行时间。 指令类型 整数算术 数据传送 浮 点 控制转移 指令数 45,000 32,000 15,000 8,000 时钟周期数 1 2 2 2
并行计算:第四章 并行计算性能评测

固定不变的计算负载; 固定的计算负载分布在多个处理器上的, 增加处理器加快执行速度,从而达到了加速的目的。
国家高性能计算中心(合肥)
13
Amdahl定律(2)
国家高性能计算中心(合肥)
9
机器的成本、价格与性/价比
机器的成本与价格 机器的性能/价格比 Performance/Cost Ratio :系指
用单位代价(通常以百万美元表示)所获取的性能(通 常以MIPS或MFLOPS表示) 利用率(Utilization):可达到的速度与峰值速度之比
Wp Wp Wp Wp Wp Wp
1 2 3456
处理器数P (a)
T1 T
1
Tp
Tp
T1 Tp
T 1
Tp
T1
T 1
Tp Tp
1 2 3456
处理器数P (b)
1024x
S1024=1024/(1+1023f)
91x
48x 31x 24x 1x
0% 1% 2% 3% 4%
100%
程序中顺序部分的百分比f
Amdahl’s Law 表明:
适用于实时应用问题。当问题的计算负载或规模固定 时,我们必须通过增加处理器数目来降低计算时间;
加速比受到算法中串行工作量的限制。
Amdahl’s law: argument against massively parallel systems
公式推导
后的工作负载为W=fW+(1-f)G(p)W,所以存储受限的加速为
并行计算习题(全)

2.
根据表所给出的数据: ①分别计算 Berkeley Now、Intel Paragon 和 Cray C90 的性能/价格比; ②你能由此得出什么结论吗? 三种机器求解某应用常微分方程时的运行一览表 机器系统 Cray C90 Intel Paragon Now +Ethernet NOW+ATM+PIO+AM 处理器数 16 256 256(RS6000) 256(RS6000) 计算时 通信时 间 (s) 间(s) 7 12 4 4 4 24 23340 8 I/O 时 总时间 间(s) (s) 16 10 4030 10 27 46 27340 21 价格 (s) 30 10 4 5
第四章 习题例题:
1.
并行算法的设计基础
试证明 Brent 定理:令 W (n)是某并行算法 A 在运行时间 T(n)内所执行的运算数量,则 A 使用 p 台处理器可在 t(n)=O(W(n)/p+T(n))时间内执行完毕。 假定P i (1≤i≤n)开始时存有数据d i , 所谓累加求和指用 di 。 算法 PRAM-EREW上累加求和算法 输入: P i 中保存有d i , l≤ i ≤ n 输出: P i 中的内容为
第二章 习题例题:
1.
当代并行计算机系统介绍
请尽可能访问以下有关高性能并行计算的网址: IEEE/CS ParaScope (/parascope/),world-wide parallel computing sites High Performance Computing Lists (/homes/mcbryan/public_html/bb/2/summary.html) The Language List (http://cuiwww.unige.ch/langlist) enumerate programming languages TOP 500 (/benchmark/top500.html) World's TOP 500 most powerful computing sites (at Netlib,University of Tennessee) Myrinet () DSM bibliography (http://www.cs.ualberta.ca/~rasit/dsmbiblio.html) Berkeley Active Message page (/AM/active_messages.html) The Cray Research system page (/products/systems/) SGI/Cray Origin 2000 (/Products/hardware/servers/index.html) Cray T3E (/products/systems/crayt3e/) PetaFLOPS web site (/hpcc/) NASA HPCC Program (/hpcc/) Cray T3E (/products/systems/crayt3e/) IBM SP (/hardware/largescale/) Intel Paragon (/Services/ Consult/Paragon/paragon.html) Kai Li (/~li/) SP2 at MHPCC (/doc/SP2.general/SP2.general.html) MPI Standard site (/mpi/index.html) MIT Parallel and Distributed Operating Systems Group (/). National Center for Supercomputer Applications at UIUC (NCSA) (/) Cornell Theory Center (CTC) (/ctc.html) Argonne Natl Laboratory,Mathematics & Computer Science Div. (/) Army Research Lab (/) Lawrence Livermore National Laboratory (/comp/comp.html) Los Alamos Natl Laboratory (LANL) Advanced Computing Laboratory (/). Maui High Performance Computing Center (MHPCC) (/mhpcc.html) San Diego Supercomputer Center (/SDSCHome.html) Sandia National Laboratories (/) Massively Parallel Comp. Res. Lab. Parallel Processing in Japan (/papers/ppij.html) Cray Research (/) IBM High-Performance Computing (/) ParaSoft Corporation (/)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章 并行算法的设计基础
习题例题:
1.试证明Brent 定理:令W (n)是某并行算法A 在运行时间T(n)内所执行的运算数量,则A 使用p 台处理器可在t(n)=O(W(n)/p+T(n))时间内执行完毕。
2.假定P i (1≤i ≤n )开始时存有数据d i , 所谓累加求和指用 MERGEFORMAT 1i j j d =¥来代替P i 中的原始值d i 。
算法 PRAM-EREW 上累加求和算法
输入: P i 中保存有d i , l ≤ i ≤ n
输出: P i 中的内容为i j
j l d
=¥begin for j = 0 to logn – 1 do for i = 2j + 1 to n par-do (i) P i = d i-(2^i)(ii) d i = d i + d i-(2^j)endfor endfor end (1)试用n=8为例,按照上述算法逐步计算出累加和。
(2)分析算法时间复杂度。
3.在APRAM 模型上设计算法时,应尽量使各处理器内的局部计算时间和读写时间大致与同步时间B 相当。
当在APRAM 上计算M 个数的和时,可以借用B 叉树求和的办法。
假定有j 个处理器计算n 个数的和,此时每个处理器上分配n/p 个数,各处理器先求出自身的局和;然后从共享存储器中读取它的B 个孩子的局和,累加后置入指定的共享存储单元SM 中;最后根处理器所计算的和即为全和。
算法如下:算法 APRAM 上求和算法
输入: n 个待求和的数
输出: 总和在共享存储单元SM 中
Begin
(1)各处理器求n/p 个数的局和,并将其写入SM 中
(2)Barrier
(3)for k = [ log B ( p(B – 1) + 1) ] – 2 downto 0 do
3.1for all P i , 0 ≤ i ≤ p – 1,do
if P i 在第k 级 then。