配位化学总结
配位化合物知识总结

[ PO4(M精选op3pOt 10]3-等 。
13
四 配合物的空间构型和异构现象
1、配合物的空间构型 配合物分子或离子的空间构型与配位数的多少密切相关。
配位数 空间构型
直线形
Ag(NH3)2
四面体
NiCl24
平面正方形 Ni(C)N24
八面体
精选ppt
Fe(CN36)
14
配位数 3
5
空
间
构
型
Triangle Tetragonal pyramid Trigonபைடு நூலகம்l bipyramid
1°几何异构(顺反异构) Geometrical isomers 配位数为 4 的平面正方形结构
cis — 二氯二氨合铂 棕黄色,m > 0
S = 0.2523 g/100g H2O 具抗癌活性(干扰DNA复制)
trans — 二氯二氨合铂 淡黄色,m = 0
S = 0.0366 g/100g H2O 不具抗癌活性
K2SO4 +Al2(SO4)3+24H2O == 2 KAl(SO4)2·12H2O 由中心原子(离子)和几个配体分子(离子)以配位键相
结合而形成的复杂分子或离子,通常称为配位单元。凡是含 有配位单元的化合物都称做配位化合物,简称配合物。
[Cu(NH3)4]2+ , [SiF6]2-, Ni(CO)4都是配位单元, 分别称 作配阳、阴离子和配分子。[Co(NH3)6]Cl3 , K3[Cr(CN)6],
•
•
N •O ( 2 硝H 基 2O • ) N •H3
NC( S 异硫氰根
•
● 多齿配体: 一个配体中含有多个配位原子
配位化学-中科院总结(4-6章)

(3) [Ni(en)3]2+ 和 [Fe(en)3]2+ 二者中心离子的d电子数不同,其CFSE不同。 [Ni(en)3]2+ : 3d8,电子排布为t2g6eg2,CFSE = -12Dq; [Fe(en)3]2+ : 3d6,电子排布为t2g6,CFSE = -24Dq。 所以, [Fe(en)3]2+ 更稳定。 (4) [Ni(H2O)6]2+ 和 [Ni(en)3]2+ en为螯合配体,其配合物具有螯合效应, 所以, [Ni(en)3]2+ 更稳定。
+ H2O
若为SN2机理: [Co(NH3)5 X]2+
v = k[Co(NH3)5X2+] + H2O 慢 [Co(NH3)5 X H2O]2+
[Co(NH3)5 X H2O]2+ 快 [Co(NH3)5 H2O]3+ + Xv = k[Co(NH3)5X][H2O]≈ k[Co(NH3)5X2+]
6.如何用晶体场理论判断配合物的活性和惰性。 比较活化配合物与反应物的CFSE确定。
7. [Co(NH3)5X]的水解反应机理和速率方程,如何验 证反应机理?
例如: [Co(NH3)5X]的酸式水解 若为SN1机理:[Co(NH3)5
[Co(NH3)5 ]2+ 慢 快
X]2+
[Co(NH3)5]3+ + X[Co(NH3)5H2O]3+
A5 A3 A2 A6 M B1 X4
A5
A5
-X
A2
A3
M B1 A6
4
+Y
A2
A3
M B1 A6
化学配位键知识点总结

化学配位键知识点总结化学配位键是指发生在过渡金属和配体之间的一种特殊键,是由金属离子与一个或多个配体分子之间的相互作用形成的。
配位化合物是一类具有广泛应用的化合物,包括有机金属化合物、配合物和配位聚合物等。
1. 配位键的性质配位键是一种共价键,同时也含有离子性。
在配位键中,金属离子的空轨道和配体分子的非键电子对之间形成较弱的相互作用,这种相互作用是通过配体向金属离子提供一个或多个孤对电子对而形成的。
配位键的形成是独立于金属的价电子构型的,因此金属空轨道的个数不一定等于金属的配位数,这也是与共价键的一个重要区别。
2. 配体配体是发生在金属离子周围的化合物或离子。
配体可以是一些有机分子,如胺、醇、醛、酮等,也可以是一些无机分子,如水、氨、氯化物离子等。
配体通过配位键与金属离子形成配合物,不同的配体可以给金属离子带来不同的特性,如颜色、磁性等。
配体的选择对配合物的性质有着重要的影响。
3. 配位数金属离子能够形成的配位键个数称为配位数,它是指金属离子周围最多能够存在的配位键的数量。
金属的配位数决定了配合物的结构和性质。
一般情况下,金属的配位数和其在周期表中的位置有关,而且金属的电荷也会对其配位数产生影响。
4. 配位化合物的命名配位化合物的命名一般以配体名或离子名开头,其次是金属的名称。
在进行配位化合物的命名时,需要注意考虑到金属的配位数、配位键的类型、配体的特性等因素,以保证名称的准确性和完整性。
5. 配位化合物的性质配位化合物具有许多重要的性质,例如颜色、磁性、催化性能等。
这些性质与配体的选择和金属的种类有关,不同的配体和金属可以给配合物带来不同的性质。
这些性质的研究对于认识配位化合物的结构和性质具有重要的意义。
6. 配位聚合物配位聚合物是一类具有重要应用价值的化合物,它是由大量的配位化合物重复单元组成的高分子化合物。
配位聚合物在催化、材料和生物领域具有广泛的应用,它们的性质和应用也备受关注。
7. 配位化合物的应用配位化合物在催化、材料、医药等领域有着广泛的应用,如铂类化合物在抗癌药物中的应用、氮配合物在氮化学中的应用等。
大一配位化学知识点

大一配位化学知识点配位化学是无机化学中的重要分支,研究金属离子和配体之间的配位作用及配位化合物的性质。
在大一的学习中,我们也会接触到一些基本的配位化学知识点,下面将介绍其中几个重要的概念和原理。
一、配位键理论配位键理论是配位化学的基础,它描述了金属离子和配体之间形成的配位键。
根据配体对金属离子的电子供应方式,配位键可以分为配体给电子对金属离子的配位键和金属离子给电子对配体的配位键。
这两种配位键分别被称为配体基团和中心离子。
二、配位数配位数指的是金属离子周围配体的个数。
配位数主要受到金属的电子构型、配位基团的空间取向及大小以及配体的种类等多种因素的影响。
常见的配位数有2、4、6等。
三、配位化合物的结构配位化合物的结构多样,常见的结构类型包括线性型、方形平面型、四面体型和八面体型等。
这些结构类型受到金属离子的配位数、配体的种类及其构型的影响。
四、配位化合物的命名配位化合物的命名是大一配位化学中的重要内容。
根据国际纯化学和应用化学联合会(IUPAC)的规定,配位化合物的命名需要遵循一定的原则,例如先写配体,再写中心金属离子的化学符号等。
五、配位溶剂和配位化合物的溶解度在溶液中,配位化合物的性质和溶剂密切相关。
一些溶剂可以与金属离子或配体进行配位作用,从而改变配位化合物的结构和溶解度。
六、配位反应配位反应是指金属离子和配体之间发生的置换反应。
配位反应类型多样,包括配体置换反应、配位体分解反应和配体配位和插入反应等。
配位反应常常伴随着配位键的生成或断裂。
七、配位化合物的性质与应用配位化合物的性质与应用广泛,例如具有强氧化性或还原性的过渡金属配位化合物常用于催化剂和电子器件中,而具有特殊荧光性质的配位化合物则常被应用于荧光探针和生物成像等领域。
总结:大一配位化学知识点主要包括配位键理论、配位数、配位化合物的结构、配位化合物的命名、配位溶剂和配位化合物的溶解度、配位反应以及配位化合物的性质和应用等方面。
通过学习这些基本概念和原理,可以为进一步深入了解配位化学打下良好的基础。
配位化学-配位化学总结

外界条件: 反应温度,压力和反应物浓度等。
4. 配合物的种类及其结构特点
单一配体配合物 混配配合物 多核配合物 金属簇合物 螯合物 超分子配合物 -配合物 大环配合物 金属有机化合物
5. 配合物的化学式和命名 单核配合物 多核配合物 含不饱和配体配合物 簇状配合物
注意:化学式书写时配体的顺序
答: (1)和(2), (2)和(8),聚合异构 (1)和(8),配位异构
(3)和(5),键合异构 (5)和(7),电离异构 (4)和(6),溶剂合异构
3. 已知[M(AA)2X2]型配合物是旋光活性的。 根据这种事实,指出该配合物的结构特点。
4. 利用VSEPR模型判断IF3的分子构型。
5. 画出下列配合物的所有可能的几何异构体。
[Co(H2O)6]2+: 弱场,t2g5eg*2,5个单电子。
磁性: [Co(H2O)6]2+大于[Co(CN)6]4-
如:F-,CN-, O2-, NCS-, NO3-
3. 通常情况下,2、4配位配合物中中心 离子的构型。
2配位----d10-------直线型
4配位----d0, d10, d7-----四面体 4配位----d8-----平面正方形
4. 四、六配位配合物的几何异构现象
4配位----四面体, 平面正方形(cis-, trans-)
8. 配体 PR3、 F-、NH3在光谱化学序列中的顺序。 答: F-、NH3、PR3
*
t2g t2g
(t2g*)无无 键Fra bibliotek键t2g
t2g 配配体体轨轨道道
9. 用MO理论解释[Co(CN)6]4- 和[Co(H2O)6]2+磁 性大小。
配位化学知识点总结

配位化学知识点总结一、配位化学的基本概念配位化学是研究金属离子(或原子)与配体之间形成的配位化合物的结构、性质和反应的化学分支。
首先,我们来了解一下什么是配体。
配体是能够提供孤对电子与中心金属离子(或原子)形成配位键的分子或离子。
常见的配体有水分子、氨分子、氯离子等。
而中心金属离子(或原子)则具有空的价电子轨道,可以接受配体提供的孤对电子。
配位键是一种特殊的共价键,由配体提供孤对电子进入中心金属离子(或原子)的空轨道而形成。
配位化合物则是由中心金属离子(或原子)与配体通过配位键结合形成的具有一定空间结构和化学性质的化合物。
二、配位化合物的组成配位化合物通常由内界和外界两部分组成。
内界是配位化合物的核心部分,由中心金属离子(或原子)与配体紧密结合而成。
例如,在Cu(NH₃)₄SO₄中,Cu(NH₃)₄²⁺就是内界。
外界则是与内界通过离子键结合的其他离子。
在上述例子中,SO₄²⁻就是外界。
中心金属离子(或原子)的化合价与配体的化合价之和等于配位化合物的总化合价。
配位数指的是直接与中心金属离子(或原子)结合的配体的数目。
常见的配位数有 2、4、6 等。
三、配位化合物的结构配位化合物具有特定的空间结构。
常见的配位几何构型有直线型、平面三角形、四面体、八面体等。
例如,配位数为 2 时,通常形成直线型结构;配位数为 4 时,可能是平面正方形或四面体结构;配位数为 6 时,多为八面体结构。
这些结构的形成取决于中心金属离子(或原子)的电子构型和配体的大小、形状等因素。
四、配位化合物的命名配位化合物的命名有一套严格的规则。
先命名外界离子,然后是内界。
内界的命名顺序为:配体名称在前,中心金属离子(或原子)名称在后。
配体的命名顺序遵循先无机配体,后有机配体;先阴离子配体,后中性分子配体。
对于同类配体,按配体中原子个数由少到多的顺序命名。
如果配体中含有多种原子,先列出阴离子配体,再列出中性分子配体。
配位化合物知识总结

VS
磁性配合物在磁学、磁记录、信息存 储和分子基磁体等领域有广泛的应用 前景。
Part
04
配位化合物的应用
在化学反应中的作用
催化反应
配位化合物可以作为催化剂,通 过与反应物结合,改变反应途径,
降低反应活化能,从而加速化学 反应的进行。
分离和提纯
利用配位化合物的独特性质,如选 择性络合、稳定性差异等,可以实 现化学物质的分离和提纯。
配位化合物的稳定性取决于多个因素 ,包括中心离子的性质、配位体的类 型和数量、以及配位环境等。
稳定性规律
一般来说,中心离子的电荷数越高、 半径越小,配位化合物的稳定性越强 ;配位体的电子给予能力越强、数目 越多,稳定性也越高。
配位化合物的合成方法
有机合成
通过有机合成方法,可以制备出结构复杂、功能多样的配 位化合物。常见的合成方法包括重氮化反应、氧化还原反 应等。
配位化合物的分类
按中心原子分类
根据中心原子的种类,可以将配位化合物分为金属配位化合物和非金属配位化合物。金属配位化合物是指中心原 子为金属元素的配位化合物,如铜、钴、铁等;非金属配位化合物是指中心原子为非金属元素的配位化合物,如 硫、氮、磷等。
按配位数分类
根据配位数的大小,可以将配位化合物分为低配位数(2-4)和高配位数(≥6)的配位化合物。低配位数配位化 合物是指中心原子周围参与配位的配位体数目较少的配位化合物;高配位数配位化合物是指中心原子周围参与配 位的配位体数目较多的配位化合物。
02
动态配位化合物
03
超分子配位化合物
具有可逆的结构变化和反应性, 可用于传感器、分子机器等领域。
由多个分子或离子通过非共价相 互作用形成的复杂结构,具有独 特的物理和化学性质。
高二化学总结配位化学的配位数与配位结构

高二化学总结配位化学的配位数与配位结构配位化学是化学中的一个重要分支,研究配合物的配位数与配位结构。
配位数指的是配合物中金属离子周围配位体的数目,配位结构则指的是配合物中金属离子和配位体之间的空间排布关系。
本文将对配位化学的配位数与配位结构进行总结。
一、配位数的概念与影响因素配位数是指配合物中金属离子周围配位体的数目,它与金属离子的电子结构、半径大小、电荷等因素密切相关。
在配位化学中,常见的配位数包括2、4、6和8。
1. 二配位:二配位配合物中,金属离子周围有两个配位体与之配位。
典型的例子是一些线性结构的配合物,如[Ag(NH3)2]+。
2. 四配位:四配位配合物是最常见的一种情况,其中金属离子周围有四个配位体与之配位。
常见的四配位配合物包括正方形平面型和四面体型结构。
比如,[Co(NH3)4]2+为正方形平面型,[NiCl4]2-为四面体型。
3. 六配位:六配位配合物中,金属离子周围有六个配位体与之配位。
六配位配合物通常具有八面体或者六面体结构。
典型的例子有[Cr(H2O)6]3+和[Co(en)3]3+。
4. 八配位:八配位配合物是最高配位数的一种情况,其中金属离子周围有八个配位体与之配位。
八配位配合物通常具有双四面体结构。
典型的例子是[PtCl4]2-。
配位数的具体数目与金属离子的电子结构密切相关。
金属离子的d 电子数目与配位数之间存在一定的规律,如3d系元素通常具有最高的配位数,而有些4d、5d系元素的配位数较低。
二、配位结构的分类与特点配位结构是指配合物中金属离子和配位体之间的空间排布关系。
根据配位体的排布方式不同,配位结构可以分为简单离子型、桥式型和多核型。
1. 简单离子型:简单离子型配位结构中,配位体与金属离子之间没有共用配位体。
这种结构常见于配位数较低的配合物。
比如,[NiCl4]2-就属于简单离子型。
2. 桥式型:桥式型配位结构中,两个或多个配位体通过共用配位体与金属离子相连。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 配位化学导论总结
1. 配位化学
1)
定义:金属或金属离子同其他分子或离子相互结合的化学。
2)
基础:无机化学 3)
重要性:与其他学科互相渗透的交叉性学科 4) 发展:
● 近代配位化学: “键理论”等理论无法全面说明形成机理与成键方式. ● 现代配位化学理论:建立:1893年,瑞士化学家维尔纳提出了现代的配位键、配位数和配位化合物结构的基本概念,并用立体化学观点成功地阐明了配合物的空间构型和异构现象。
2. 配合物的基本概念
1) 定义:由具有接受孤对电子或多个不定域电子的空位原子或离子(中心体)与可以给出孤对电子或多个不定域电子的一定数目的离子或分子(配体)按一定的组成和空间构型所形成的物种称为配位个体,含有配位个体的化合物成为配合物。
2) 组成: 内界、外界、中心体、配体、配位原子
3) 配体分类:
4) 中心原子的配位数:
● 定义:单齿配体:配位数等于内界配体的总数。
多齿配体:各配体的配位原子数与配体个数乘积之和。
● 影响中心原子的配位数因素:
A 、按配
体所含配
位原子的
数目分两
种:
B 、根据
键合电子
的特征分
为三种:
3. 配合物的分类
4. 配合物的命名
原则是先阴离子后阳离子,先简单后复杂。
一、简单配合物的命名:
(1)先无机配体,后有机配体
cis - [PtCl2(Ph3P)2] 顺-二氯 二•(三苯基磷)合铂(II)
(2) 先列出阴离子,后列出阳离子,中性分子(的名称)
K[PtCl3NH3] 三氯•氨合铂(II)酸钾
(3) 同类配体(无机或有机类)按配位原子元素符号的英文字母顺序排列。
[Co(NH3)5H2O]Cl3 三氯化五氨•一水合钴(III)
中心离子
对配位数
的影响
配体对配
位数的影
响1、按中心原
子数目分为:
2、按配合物
所含配体种
类分为:3、按配体的
齿数分类:
4、按配合物
地价键特点
分类:
(4) 同类配体同一配位原子时,将含较少原子数的配体排在前面。
[Pt(NO2)(NH3)(NH2OH)(Py)]Cl 氯化硝基•氨•羟氨•吡啶合铂(II)
(5) 配位原子相同,配体中所含的原子数目也相同时,按结构式中与配原子相连的原子的元素符号的英文顺序排列。
[Pt (NH2)(NO2)(NH3)2] 氨基•硝基•二氨合铂(II)
(6)配体化学式相同但配位原子不同,(-SCN, -NCS)时,则按配位原子元素符号的字母顺序排列。
(7)配位原子的标记:若一个配体上有几种可能的配位原子,为了标明哪个原子配位,必须把配位原子的元素符号放在配体名称之后。
二、几何异构体的命名
(1)词头:顺-(cis-)、反-(trans-)、面-(fac-)、经-(mer-)
(2)若配合物含有多种配体,上述词头不够用,则用小写英文字母作位标来标明配体的
空间位置。
(3)桥基多核配合物的命名
●在桥联基团或原子的前面冠以希腊字母μ-
●如果桥基以不同的配位原子与两个中心原子连接,则该桥基名称的后面加上配
位原子的元素符号来标明。
三、含不饱和配体配合物的命名
1)若链上或环上所有原子皆键合在中心原子上,则这配体名称前加词头η
2)若配体链上或环上只有部分原子参加配位,则在η 前列出参加配位原子的位标
(1-n);若着重指出配体只有一个原子与中心原子成键,则应将词头σ-加在此配
体前。
四、簇状配合物的命名
1、当中心原子之间仅有金属键连接时:
(1)含有金属键而且具有对称结构的化合物应用倍数词头命名。
(2)若为非对称结构,则将其中一个中心原子及其配体一起作为另一个中心原子的配体(词
尾用“基”)来命名。
2、中心原子间既有桥联基团又有金属之间键:此类化合物应按桥联配合物来命名,并将金属-金属键的元素符号在括号中缀在整个名称之后。
3、同种金属原子簇状配合物的命名
命名时在金属原子之前写明该金属原子簇的几何形状(如三角、四方、四面等)加以说明。