压轴题命题区间2 函数与导数 增分点5 掌握四种函数构造法,破解导数解决不等式问题

合集下载

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。

下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。

其中描述正确的个数有(。

)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。

当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。

当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。

当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。

因此,答案为$\boxed{\textbf{(C) }2}$。

高三导数压轴题题型归纳

高三导数压轴题题型归纳

-导数压轴题题型1. 高考命题回忆例1函数f(*)=e *-ln(*+m).〔2013全国新课标Ⅱ卷〕(1)设*=0是f(*)的极值点,求m ,并讨论f(*)的单调性; (2)当m≤2时,证明f(*)>0.(1)解 f (*)=e *-ln(*+m )⇒f ′(*)=e *-1*+m ⇒f ′(0)=e 0-10+m=0⇒m =1,定义域为{*|*>-1},f ′(*)=e *-1*+m =e **+1-1*+1,显然f (*)在(-1,0]上单调递减,在[0,+∞)上单调递增.(2)证明 g (*)=e *-ln(*+2),则g ′(*)=e *-1*+2(*>-2).h (*)=g ′(*)=e *-1*+2(*>-2)⇒h ′(*)=e *+1*+22>0,所以h (*)是增函数,h (*)=0至多只有一个实数根,又g ′(-12)=1e -132<0,g ′(0)=1-12>0,所以h (*)=g ′(*)=0的唯一实根在区间⎝ ⎛⎭⎪⎫-12,0,设g ′(*)=0的根为t ,则有g ′(t )=e t -1t +2=0⎝ ⎛⎭⎪⎫-12<t <0, 所以,e t =1t +2⇒t +2=e -t , 当*∈(-2,t )时,g ′(*)<g ′(t )=0,g (*)单调递减;当*∈(t ,+∞)时,g ′(*)>g ′(t )=0,g (*)单调递增;所以g (*)min =g (t )=e t -ln(t +2)=1t +2+t =1+t 2t +2>0,当m ≤2时,有ln(*+m )≤ln(*+2),所以f (*)=e *-ln(*+m )≥e *-ln(*+2)=g (*)≥g (*)min >0. 例2函数)(x f 满足2121)0()1(')(x x f ef x f x +-=-〔2012全国新课标〕 (1)求)(x f 的解析式及单调区间; (2)假设b ax x x f ++≥221)(,求b a )1(+的最大值。

压轴题型02 构造法在函数中的应用(解析版)-2023年高考数学压轴题专项训练

压轴题型02 构造法在函数中的应用(解析版)-2023年高考数学压轴题专项训练

压轴题型02构造法在函数中的应用近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.○热○点○题○型1构造法解决高考函数对称与周期性问题○热○点○题○型2主元构造法○热○点○题○型3分离参数构造法○热○点○题○型4局部构造法○热○点○题○型5换元构造法○热○点○题○型6特征构造法○热○点○题○型7放缩构造法一、单选题1.若正数x满足532-+=,则x的取值范围是().x x xA x<B x<<C .x <D .x >2.设函数()f x =若曲线sin 22y x =+上存在点0(x ,0)y 使得00(())f f y y =成立,则实数a 的取值范围为()A .[0,21]e e -+B .[0,21]e e +-C .[0,21]e e --D .[0,21]e e ++3.“米”是象形字.数学探究课上,某同学用拋物线1和2构造了一个类似“米”字型的图案,如图所示,若抛物线1C ,2C 的焦点分别为1F ,2F ,点P 在拋物线1C 上,过点P 作x 轴的平行线交抛物线2C 于点Q ,若124==PF PQ ,则p =()A .2B .3C .4D .6树纹玉琮,为今人研究古蜀社会中神树的意义提供了重要依据.玉琮是古人用于祭祀的礼器,有学者认为其外方内圆的构造,契合了古代“天圆地方”观念,是天地合一的体现,如图,假定某玉琮形状对称,由一个空心圆柱及正方体构成,且圆柱的外侧面内切于正方体的侧面,圆柱的高为12cm ,圆柱底面外圆周和正方体的各个顶点均在球O 上,则球O 的表面积为()A .272πcmB .2162πcmC .2216πcmD .2288πcm 【答案】C【分析】根据题意可知正方体的体对角线即是外接球的直径,又因圆柱的外侧面内切于正方体的侧面,可利用勾股定理得出正方体边长,继而求出球的表面积.【详解】不妨设正方体的边长为2a ,球О的半径为R ,则圆柱的底面半径为a ,因为正方体的体对角线即为球О直径,故223R a =,利用勾股定理得:222263a R a +==,解得18a =,球的表面积为2ππ44318216πS R ==⨯⨯=,故选:C.5.若函数()()有两个零点,则实数的取值范围是()A .()1,2B .()0,2C .()1,+∞D .(),2-∞【答案】A【分析】将函数()()ln 2f x x a x a =+-+有两个零点的问题转化为函数ln ,(2)y x y a x a ==--的图象交点个数问题,结合导数的几何意义,数形结合,即可求解.【详解】由()()ln 2f x x a x a =+-+有两个零点,即()ln 20x a x a +-+=有两个正根,即函数ln ,(2)y x y a x a ==--的图象有2个交点,直线(2)y a x a =--可变为(1)20a x x y -++-=,令=1x -,则=2y -,即直线(2)y a x a =--过定点(1,2)P --,当该直线与ln y x =相切时,设切点为00(,)x y ,则1y x'=,则000ln 211x x x +=+,即001ln 10x x -+=,令1g()ln 1,(0)x x x x=-+>,则()g x 在(0,)+∞上单调递增,又(1)0g =,故1g()ln 1,(0)x x x x=-+>有唯一零点1x =,故01x =,即(2)y a x a =--与曲线ln y x =相切时,切点为(1,0),则切线斜率为1,要使函数ln ,(2)y x y a x a ==--的图象有2个交点,需满足021a <-<,即(1,2)a ∈,故选:A【点睛】方法点睛:根据函数的零点个数求解参数范围,一般方法:(1)转化为函数最值问题,利用导数解决;(2)转化为函数图像的交点问题,数形结合解决问题;(3)参变分离法,结合函数最值或范围解决.6.已知()f x 是定义域为R 的函数,()220f x +为奇函数,()221f x +为偶函数,当10x -≤<时,()f x =()()()60y f x a x a =-+>有5个零点,则实数a 的取值范围为()A .11,73⎛⎫ ⎪⎝⎭B .,124⎛ ⎝⎭C .⎝⎭D .11,62⎛⎫ ⎪⎝⎭当直线()2y a x =-与圆()()22910x y y -+=≥相切时,271aa +()2y a x =-与圆()()22510x y y -+=≥相切时,2311a a =+,解得32124a <<.故选:B .【点睛】通过函数的奇偶性挖掘周期性与函数图像的对称性,从而能作出整个函数的大致图像,将函数零点转化为方程的根,再转化为两个函数图像交点的横坐标.交点的个数时注意数形结合思想的应用,动中蕴静,变化中抓住不变,抓住临界状态,利用直线与圆相切,借助点到直线的距离公式得到参数的临界值,从而求出参数的取值范围,考生综合分析问题和解决问题的能力要求比较高.二、填空题7.已知函数21()(1)1x f x x x -⎛⎫=> ⎪+⎝⎭,如果不等式1(1)()(x f x m m -->-对11,164x ⎡⎤∈⎢⎥⎣⎦恒成立,则实数m 的取值范围_______________.5⎛⎫①ln52<;②lnπ>③11<;④3ln2e>其中真命题序号为__________.9.设函数4()log ,0f x x x ⎧+≤⎪=⎨>⎪⎩,若关于x 的函数()()()()2g 23x fx a f x =-++恰好有四个零点,则实数a 的取值范围是____________.令()f x t =,函数()()()()2g 23x fx a fx =-++恰好有四个零点.则方程()()()2230f x a f x -++=化为()2230t a t -++=,设()2230t a t -++=的两根为12,t t ,因为123t t =,所以两根均大于0,且方程的一根在区间(]0,1内,另一根在区间()2+∞,内.令()()223g t t a t =-++所以()()()()2Δ2120001020a g g g ⎧=+->⎪>⎪⎨≤⎪⎪<⎩,解得:2a ≥,综上:实数a 的取值范围为[)2,.∞+故答案为:[)2,.∞+【点睛】复合函数零点个数问题,要先画出函数图象,然后适当运用换元法,将零点个数问题转化为二次函数或其他函数根的分布情况,从而求出参数的取值范围或判断出零点个数.三、解答题10.已知正数a b 、满足1a b +=,求M =的最小值.11.已知函数在处的切线方程为(1).求()f x 的解析式;(2).若对任意的0x >,均有()10f x kx -+≥求实数k 的范围;(3).设12x x ,为两个正数,求证:()()()121212f x f x x x f x x +++>+。

【2021高考数学压轴题】构造函数证明不等式

【2021高考数学压轴题】构造函数证明不等式

2021高考数学压轴题命题区间探究与突破专题第一篇函数与导数专题04巧妙构造函数,应用导数证明不等式问题一.方法综述利用导数证明不等式是近几年高考命题的一种热点题型.利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里给出几种常用的构造技巧.二.解题策略类型一“比较法”构造差函数证明不等式【例1】【2020·湖南长沙一中月考】已知函数()ln f x ax x =-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若21,a e ⎛⎤∈-∞- ⎥⎝⎦,求证:()12ax f x ax xe -≥-.【解析】(Ⅰ)由题意得()11'ax f x a x x-=-=,①当0a ≤时,则()'0f x <在()0,+∞上恒成立,∴()f x 在()0,+∞上单调递减.②当0a >时,则当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()()'0f x f x >,单调递增,当10x a ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '<,单调递减.综上:当0a ≤时,()f x 在()0,+∞上单调递减;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.(Ⅱ)令()()12ax g x f x ax xe-=-+1ln ax xe ax x -=--,则()111'ax ax g x eaxea x--=+--()()()111111ax ax ax xe ax e x x--+-⎛⎫=+-=⎪⎝⎭,设()11ax r x xe-=-,则()()1'1ax r x ax e -=+,∵10ax e ->,∴当10,x a⎛⎫∈- ⎪⎝⎭时,()()'0r x r x >,单调递增;当1,x a⎛⎫∈-+∞ ⎪⎝⎭时,()()0r x r x '<,单调递减.∴()2max 1110r x r a ae ⎛⎫⎛⎫=-=-+≤ ⎪ ⎪⎝⎭⎝⎭(因为21a e ≤-),∴110ax e x--≤.∴()g x 在10,a ⎛⎫- ⎪⎝⎭上单调递减,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递增,∴()min1g x g a ⎛⎫=- ⎪⎝⎭,设(210,t e a⎤=-∈⎦,则()221ln 1(0)t g h t t t e a e ⎛⎫-==-+<≤ ⎪⎝⎭,()211'0h t e t=-≤,()h t 在(20,e ⎤⎦上递减,∴()()20h t h e ≥=;∴()0g x ≥,故()12ax f x ax xe-≥-.说明:判断11ax e x--的符号时,还可以用以下方法判断:由110ax e x --=得到1ln x a x -=,设()1ln x p x x -=,则()2ln 2'x p x x -=,当2x e >时,()'0p x >;当20x e <<时,()'0p x <.从而()p x 在()20,e 上递减,在()2,e +∞上递增.∴()()22min 1p x p e e ==-.当21a e ≤-时,1ln x a x -≤,即110ax e x--≤.【指点迷津】当题目中给出简单的基本初等函数,例如()()3 f x x g x ln x =,=,进而证明在某个取值范围内不等式()()f x g x ≥成立时,可以类比作差法,构造函数()()()()()()h x f x g x x g x f x ϕ=-或=-,进而证明()()00min max h x x ϕ≥≤或即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明()()()00g x f x >>的前提下,也可以类比作商法,构造函数()()()()()f x f x h x xg x g x ϕ=(()=),进而证明()()()11min max h x x ϕ≥≤.【举一反三】【2020·河北衡水中学月考】已知函数1()ln (1),f x x a a R x=+-∈.(Ⅰ)若()0f x ≥,求实数a 取值的集合;(Ⅱ)证明:212ln (2)x e x x e x x+≥-++-.【解析】(Ⅰ)由已知,有221()(0)a x af x x x x x-'=-=>当0a ≤时,1(ln 202f a =-+<,与条件()0f x ≥矛盾,当0a >时,若(0,)x a ∈,则()0f x '<,()f x 单调递减,若(,)x a ∈+∞,则()0f x '>,则()f x 单调递增.所以()f x 在(0,)+∞上有最小值1()ln (1)ln 1f a a a a a a=+-=+-,由题意()0f x ≥,所以ln 10a a +-≥.令()ln 1g x x x =-+,所以11()1x g x x x-'=-=,当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,)x ∈+∞时,()0g x '<,()g x 单调递减,所以()g x 在(0,)+∞上有最大值(1)0g =,所以()ln 10g x x x =-+≤,ln 10a a -+≤,ln 10a a -+=,1a =,综上,当()0f x ≥时,实数a 取值的集合为{}1;(Ⅱ)证明:由(Ⅰ)可知:1a =时,()0f x ≥,即1ln 1x x ≥-在0x >时恒成立.要证212ln (2)x e x x e x x+≥-++-,只需证当0x >时,2(2)10x e x e x ----≥令2()(2)1(0)x h x e x e x x =---->()2(2)x h x e x e '=---,令()2(2)x u x e x e =---,则()2x u x e '=-,令()20x u x e '=-=,解得ln 2x =,所以,函数()u x 在(0,ln 2)内单调递减,在(ln 2,)+∞上单调递增.即函数()h x '在(0,ln 2)内单调递减,在(ln 2,)+∞上单调递增.而(0)1(2)30h e e '=--=->.(ln 2)(1)0h h '<'=∴存在0(0,ln 2)x ∈,使得0()0h x '=当0(0,)x x ∈时,()0,()h x h x '>单调递增;当0(,1)x x ∈时,()0,()h x h x '<单调递减.当(1,)x ∈+∞时,()0,()h x h x '>单调递增,又(0)110,(1)11(2)0h h e e =-==----=,∴对0,()0x h x ∀>≥恒成立,即2(2)10x e x e x ----≥,综上可得:212ln (2)x e x x e x x+≥-++-成立.类型二“拆分法”构造两函数证明不等式【例2】【2020·安徽阜阳统测】设函数()1f x x x=-,()ln g x t x =,其中()0,1x ∈,t 为正实数.(1)若()f x 的图象总在函数()g x 的图象的下方,求实数t 的取值范围;(2)设()()()221ln 1e 11x H x x x x x ⎛⎫=-++-- ⎪⎝⎭,证明:对任意()0,1x ∈,都有()0H x >.【解析】(1)因为函数()f x 的图象恒在()g x 的图象的下方,所以()()1ln 0f x g x x t x x-=--<在区间()0,1上恒成立.设()1ln F x x t x x =--,其中()0,1x ∈,所以()222111t x tx F x x x x-+'=+-=,其中24t ∆=-,0t >.①当240t - ,即02t < 时,()0F x ' ,所以函数()F x 在()0,1上单调递增,()()10F x F <=,故()()0f x g x -<成立,满足题意.②当240t ->,即2t >时,设()()2101x x tx x θ=-+<<,则()x θ图象的对称轴12tx =>,()01θ=,()120t θ=-<,所以()x θ在()0,1上存在唯一实根,设为1x ,则()1,1x x ∈,()0x θ<,()0F x '<,所以()F x 在()1,1x 上单调递减,此时()()10F x F >=,不合题意.综上可得,实数t 的取值范围是(]0,2.(2)证明:由题意得()()21e ln 1e 1xx H x x x x ⎛⎫=---+ ⎪⎝⎭()()21e 1e ln xx x x x x x--+=-,因为当()0,1x ∈时,e 10x x x -+>,ln 0x <,所以()()()21e 10e ln x xx x x H x x x--+>⇔>2e 1e 1ln x x x x x x x-⇔<-+.令()()e 101x h x x x =--<<,则()e 10xh x '=->,所以()h x 在()0,1上单调递增,()()00h x h >=,即e 1x x >+,所以()2e 1111xx x x x x x -+>+-+=+,从而2e e e 11x xx x x x <-++.由(1)知当2t =时,12ln 0x x x --<在()0,1x ∈上恒成立,整理得212ln x x x ->.令()()2e 011xm x x x =<<+,则要证()0H x >,只需证()2m x <.因为()()()222e 101x x m x x-'=>+,所以()m x 在()0,1上单调递增,所以()()e122m x m <=<,即()2m x <在()0,1上恒成立.综上可得,对任意()0,1x ∈,都有()0H x >成立.【指点迷津】当所要证明的不等式由几个基本初等函数通过相乘以及相加的形式组成时,如果对其直接求导,得到的导函数往往给人一种“扑朔迷离”“不知所措”的感觉.这时可以将原不等式合理拆分为()()f x g x ≤的形式,进而证明()()max min f x g x ≤即可,此时注意配合使用导数工具.在拆分的过程中,一定要注意合理性的把握,一般以能利用导数进行最值分析为拆分标准.【举一反三】【2020届福建厦门双十中学月考】已知函数22()1ln ()f x x a x ax a R =-+-∈.(1)讨论()f x 的单调区间;(2)当0a =且(0,1)x ∈,求证:()11x f x x e x+-<.【解析】(1)函数()f x 定义域为(0,)+∞,21()2f x a x a x '=-+-2221(21)(1)a x ax ax ax x x--+-==.①若0a =时,则()0f x <,()f x 在(0,)+∞上单调递减;②若0a >时,1102a a >>-,令1()02f x x a >⇒<-或1x a>.又0x >,()f x ∴在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增;③若0a <时,1102a a ->>,令1()0f x x a>⇒<或12x a >-.又0x >,()f x ∴在10,2a ⎛⎫- ⎪⎝⎭上单调递减,在1,2a ⎛⎫-+∞ ⎪⎝⎭上单调递增;(2)要证()11x f x x e x +-<,只需证1ln 11x x x e x-+-<,(0,1)x ∈ ,只需证()2(1ln )1x x x x x e -<+-,设()(1ln )g x x x =-,()2()1xh x x x e =+-,()ln 0g x x '=->在(0,1)x ∈上恒成立,所以()g x 在(0,1)上单调递增.所以()(1)1g x g <=,()2()2(2)(1)0x x h x x x e x x e '=--+=-+->,所以()h x 在(0,1)上单调递增,所以()(0)1h x h >=,所以当(0,1)x ∈时,()()g x h x <,即原不等式成立.类型三“换元法”构造函数证明不等式【例3】【2020湖北宜昌一中期中】已知函数()()1xf x e a x =--有两个零点.(1)求实数a 的取值范围;(2)设1x 、2x 是()f x 的两个零点,证明:1212x x x x <+⋅.【解析】(1)函数()()1x f x e a x =--,所以()xf x e a '=-,当0a ≤时,()0f x '>在R 上恒成立,所以()f x 在R 上单调递增,()f x 至多只有一个零点,不符合题意,当0a >时,由()0f x '=得ln x a =,所以(),ln x a ∈-∞时,()0f x '<,()f x 单调递减,()ln ,x a ∈+∞时,()0f x '>,()f x 单调递增,所以ln x a =时()f x 取得极小值,也是最小值,()f x 要有两个零点,则()ln 0f a <,即()2ln 0a a -<,解得2a e >,所以ln 2a >,当1ln x a =<时,得()10f e =>,当2ln ln x a a =>时,()()22ln 2ln 2ln 1f a a a a a a a a =-+=-+,设()2ln 1a a a ϕ=-+,则()2210a a a aϕ-'=-=>所以()a ϕ单调递增,则()()22140a e e ϕϕ>=+->,所以()()2ln 2ln 10f a a a a =-+>,所以()f x 在区间()1,ln a 上有且只有一个零点,在()ln ,2ln a a 上有且只有一个零点,所以满足()f x 有两个零点的a 的取值范围为2()e +∞.(2)1x 、2x 是()f x 的两个零点,则()()120f x f x ==,要证1212x x x x <+⋅,即证()()12111x x --<,根据()()120f x f x ==,可知()111x e a x =-,()221xe a x =-,即证()()12122111x x e x x a+--=<,即证122x x e a +<,即证122ln x x a +<,即证212ln x a x <-,设1ln x a <,2ln x a >,由(1)知()f x 在()ln ,a +∞上单调递增,故只需证明()()212ln f x f a x <-,而()()21f x f x =,所以只需证()()112ln f x f a x <-令()()()2ln g x f a x f x =--,且ln x a<所以()222ln x x a g x e ax a a e =-+-,ln x a <,()22222x x xx x a a e ae g x e a e e +-'=--+=-()2xxe a e -=-<所以()g x 在(),ln a -∞上单调递减,所以()()()()ln 2ln ln ln 0g x g a f a a f a >=--=,所以()()2ln f a x f x ->在(),ln a -∞上恒成立,所以()()112ln f a x f x ->,故原命题得证.【指点迷津】若两个变元x 1,x 2之间联系“亲密”,我们可以通过计算、化简,将所证明的不等式整体转化为关于m(x 1,x 2)的表达式(其中m(x 1,x 2)为x 1,x 2组合成的表达式),进而使用换元令m(x 1,x 2)=t ,使所要证明的不等式转化为关于t 的表达式,进而用导数法进行证明,因此,换元的本质是消元.【举一反三】【2020山西太原五中期中】已知函数2()2ln f x x x x =++.(1)求曲线()y f x =在点(1,(1))f 处的切线方程.(2)若正实数12,x x 满足12()()4f x f x +=,求证:122x x +≥.【解析】(1)2(1)2ln111=2f =++,切点为(1,2).2()21f x x x'=++,(1)5k f '==.切线为:25(1)y x -=-,即530x y --=.(2)2212111222()()2ln 2ln 4f x f x x x x x x x +=+++++=221112222ln 2ln 4x x x x x x +++++=.212121212()()42(ln )x x x x x x x x +++=+-令12x x t =,()ln g t t t =-,0t >,11()1t g t t t-'=-=,(0,1)t ∈,()0g t '<,()g t 为减函数,(1,)t ∈+∞,()0g t '>,()g t 为增函数,min ()(1)1g t g ==,所以()1g t ≥.即21212()()426x x x x +++≥+=.得:1212(3)(2)0x x x x +++-≥,得到1220x x +-≥,即:122x x +≥.类型四“转化法”构造函数证明不等式【例4】【2020·天津南开中学月考】已知函数1()ln f x x a x x=-+.(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【解析】(1)()f x 的定义域为()0,+∞,()222111a x ax f x x x x -+=--+-'=.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在()0,+∞单调递减.(ii )若2a >,令()0f x '=得,42a x =或42a x =.当0,,22a a x ⎛⎛⎫+∈⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当,22a a x ⎛+∈ ⎪⎝⎭时,()0f x '>.所以()f x在0,,,22a a ⎛⎛⎫++∞ ⎪ ⎪ ⎪⎝⎭⎝⎭单调递减,在,22a a ⎛-+ ⎪⎝⎭单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于()()12121221212121222ln ln ln ln 2ln 11221f x f x x x x x x a a ax x x x x x x x x x ----=--+=-+=-+----,所以()()12122f x f x a x x -<--等价于22212ln 0x x x -+<.设函数()12ln g x x x x=-+,由(1)知,()g x 在()0,+∞单调递减,又()10g =,从而当()1,x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即()()12122f x f x a x x -<--.【指点迷津】在关于x 1,x 2的双变元问题中,若无法将所要证明的不等式整体转化为关于m(x 1,x 2)的表达式,则考虑将不等式转化为函数的单调性问题进行处理,进而实现消元的目的.【举一反三】【2020·吉林省实验期末】已知函数()2ln 2f x x x ax x =-+,a ∈R .(Ⅰ)若()f x 在()0,∞+内单调递减,求实数a 的取值范围;(Ⅱ)若函数()f x 有两个极值点分别为1x ,2x ,证明:1212x x a+>.【解析】(I )()ln 24f x x ax +'=-.∴()f x 在()0,∞+内单调递减,∴()ln 240f x x ax =+-≤在()0,∞+内恒成立,即ln 24x a x x ≥+在()0,∞+内恒成立.令()ln 2x g x x x =+,则()21ln xg x x --'=,∴当10e x <<时,()0g x '>,即()g x 在10,e ⎛⎫ ⎪⎝⎭内为增函数;当1x e >时,()0g x '<,即()g x 在1,e ⎛⎫+∞ ⎪⎝⎭内为减函数.∴()g x 的最大值为1g e e ⎛⎫= ⎪⎝⎭,∴e ,4a ⎡⎫∈+∞⎪⎢⎣⎭(Ⅱ)若函数()f x 有两个极值点分别为1x ,2x ,则()ln 240f x x ax =+-='在()0,∞+内有两根1x ,2x ,由(I ),知e 04a <<.由1122ln 240ln 240x ax x ax +-=⎧⎨+-=⎩,两式相减,得()1212ln ln 4x x a x x -=-.不妨设120x x <<,∴要证明1212x x a +>,只需证明()()121212142ln ln x x a x x a x x +<--.即证明()1212122ln ln x x x x x x ->-+,亦即证明12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+.令函数.∴22(1)'()0(1)x h x x x --=≤+,即函数()h x 在(]0,1内单调递减.∴()0,1x ∈时,有()()10h x h >=,∴2(1)ln 1x x x ->+.即不等式12112221ln 1x x xx x x ⎛⎫- ⎪⎝⎭>+成立.综上,得1212x x a+>.三.强化训练1.【2020·辽宁本溪一高期末】已知a R ∈,函数2()x f x e ax =+.(1)()f x '是函数数()f x 的导函数,记()()g x f x '=,若()g x 在区间(,1]-∞上为单调函数,求实数a 的取值范围;(2)设实数0a >,求证:对任意实数12,x x ()12x x ≠,总有()()121222f x f x x x f ++⎛⎫<⎪⎝⎭成立.附:简单复合函数求导法则为[()]()f ax b af ax b ''+=+.【解析】(1)由已知得()2x f x e ax '=+,记()2x g x e ax =+,则()2xg x e a '=+.①若0a ≥,()0g x '>,()g x 在定义域上单调递增,符合题意;②若0a <,令()0g x '=解得()ln 2x a =-,()g x '自身单调递增,要使导函数()g x 在区间(],1-∞上为单调函数,则需()ln 21a -≥,解得2ea ≤-,此时导函数()g x 在区间(],1-∞上为单调递减函数.综合①②得使导函数()f x '在区间(],1-∞上为单调函数的a 的取值范围是[),0,2e ⎛⎤-∞-+∞ ⎥⎝⎦.(2)因为12x x ≠,不妨设12x x <,取1x 为自变量构造函数,()()()1212122f x f x x x F x f ++⎛⎫=-⎪⎝⎭,则其导数为()()11211222f x x x F x f '+⎛⎫''=- ⎪⎝⎭()121122x x f f x ⎡+⎤⎛⎫''=- ⎪⎢⎥⎝⎭⎣⎦0a > ()2xf x e ax ∴'=+在R 上单调递增而且12211022x x x x x +--=>,所以()1212x x f f x +⎛⎫''> ⎪⎝⎭,即()10F x '>.故关于1x 的函数()1F x 单调递增,()()120F x F x <=即()()121222f x f x x x f ++⎛⎫<⎪⎝⎭证得.2.【2020·湖北随州一中期末】高三月考(理))已知函数()ln f x ax x =-.(Ⅰ)求()f x 的极值;(Ⅱ)若1a =-,1b ≥,()()xg x f x be =+,求证:()0g x >.【解析】(Ⅰ)()()10f x a x x'=->,当0a ≤时,()0f x '<恒成立,则()f x 在()0,∞+上单调递减,()f x 无极值;当0a >时,令()0f x '>,得1x a >;令()0f x '<,得10x a<<,则()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,()f x 有极小值为1ln a +,无极大值;(Ⅱ)当1a =-,1b =时,()()ln 0xg x e x x x =-->,()11x g x e x'=--,令()()h x g x '=,则()210x h x e x =+>',所以()h x 在()0,∞+上单调递增.又1302h ⎛⎫=< ⎪⎝⎭,()120h e =->,所以01,12x ⎛⎫∃∈ ⎪⎝⎭,使得()000110x h x e x =--=,即0011x e x =+,所以函数()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以函数()g x 的最小值为()00000001ln 1ln xg x e x x x x x =--=+--,又函数11ln y x x x=+--在1,12⎛⎫⎪⎝⎭上是单调减函数,所以()011ln1110g x >+--=>,又1b ≥,()()x xf x be f x e +≥+,故()0g x >.3.【2020·湖北黄石一高月考】已知函数2()1f x e x e =+--.(1)若()f x ax e ≥-对x ∈R 恒成立,求实数a 的值;(2)若存在不相等的实数1x ,2x ,满足12()()0f x f x +=,证明:122x x +<.【解析】(1)令()()()(1)1x g x f x ax e e a x =--=+--,则()1x g x e a '=+-,由题意,知()0g x ≥对x ∈R 恒成立,等价min ()0g x ≥.当1a ≤时,由()0g x '≥知()(1)1x g x e a x =+--在R 上单调递增.因为1(1)(1)10g a e-=---<,所以1a ≤不合题意;当1a >时,若(,ln(1))x a ∈-∞-,则()0g x '<,若(ln(1),)x a ∈-+∞,则()0g x '>,所以,()g x 在(,ln(1))a -∞-单调递减,在(ln(1),)a -+∞上单调递增.所以min ()(ln(1))2(1)ln(1)0g x g a a a a =-=-+--≥记()2(1)ln(1)(1)h a a a a a =-+-->,则()ln(1)h a a '=--.易知()h a 在(1,2)单调递增,在(2,)+∞单调递减,所以max ()(2)0h a h ==,即2(1)ln(1)0a a a -+--≤.而min ()2(1)ln(1)0g x a a a =-+--≥,所以2(1)ln(1)0a a a -+--=,解得2a =.(2)因为()()120f x f x +=,所以12122(1)x x e e x x e +++=+.因为12122122,x x x x e e ex x ++≥≠,所以121222x x x x e e e++>令12x x t +=,则22220t e t e +--<.记2()2220tm t e t e =+--<,则2()10t m t e '=+>,所以()m t 在R 上单调递增.又(2)0m =,由22220te t e +--<,得()(2)m t m <,所以2t <,即122x x +<.4.【2020·浙江高温州三中期末】已知函数()11114x x e e ax a f x ++⎛⎫=-+- ⎪⎝⎭,其中2.718e =⋅⋅⋅是自然对数的底数,()()'g x f x =是函数()f x 的导数.(1)若()g x 是R 上的单调函数,求a 的值;(2)当78a =时,求证:若12x x ≠,且122x x +=-,则()()122f x f x +>.【解析】(1)()()1112'1x x e e ax g x f x ++⎛⎫=-- ⎝=⎪⎭,()()11'1x x e e x g x a a ++=---,由题意()110x e ax a G x +=---≥恒成立,由于()10G -=,所以()'10G -=,解得1a =.方法一:消元求导死算(2)()11171488x x e x e f x ++⎛⎫=-- ⎪⎝⎭()111731484x x e e x ++⎛⎫=-++ ⎪⎝⎭,令1x t +=,120t t +=,不妨设210t x =+>,()173484t th e e t t ⎛⎫=-+⎪⎝⎭,令()()()H t h t h t =+-173173484484t tt t e e t e e --⎛⎫⎛⎫=-++++⎪ ⎪⎝⎭⎝⎭,原题即证明当0t >时,()2H t >,()171171288288't tt t e e t e e H t t --⎛⎫⎛⎫=---+-⎪ ⎪⎝⎭⎝⎭()()()()171288t t t t t t t te e e e t e e e e ----=+--+--()()()()711208216t t t t t t t t e e e e t e e e e ----⎡⎤⎡⎤=+--+-+-≥⎢⎥⎣⎦⎣⎦,其中()()11'1022t t t t e e t e e --⎡⎤--=+-≥⎢⎥⎣⎦,因为()02H =,所以当0t >时,()2H t >,得证.5.【2020·安徽黄山期末】已知函数()()2e 12e x x f x a a x =+--.(1)当0a <时,讨论()f x 的单调性;(2)若()f x 有两个不同零点1x ,2x ,证明:1a >且120x x +<.【解析】(1)()()()()22e 12e 1e 12e 1x x x x f x a a a '=+--=-+.因为0a <,由()0f x '=得,0x =或1ln 2x a ⎛⎫=- ⎪⎝⎭.i )1ln 02a ⎛⎫-< ⎪⎝⎭即12a <-时,()f x 在1,ln 2a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭单调递减,在1ln ,02a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭单调递增,在()0,∞+单调递减;ii )1ln 02a ⎛⎫-=⎪⎝⎭即12a =-时,()f x 在(),-∞+∞单调递减;iii )1ln 02a ⎛⎫->⎪⎝⎭即102a -<<时,()f x 在(),0-∞单调递减,在10,ln 2a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭单调递增,在1ln ,2a ⎛⎫⎛⎫-+∞ ⎪⎪⎝⎭⎝⎭单调递减.(2)由(1)知,12a <-时,()f x 的极小值为111ln 1ln 10242f a a a ⎛⎫⎛⎫⎛⎫-=--->> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,102a -<<时,()f x 的极小值为()0110f a =->>,12a =-时,()f x 在(),-∞+∞单调,故0a <时,()f x 至多有一个零点.当0a ≥时,易知()f x 在(),0-∞单调递减,在()0,∞+单调递增.要使()f x 有两个零点,则()00f <,即120a a +-<,得1a >.令()()()F x f x f x =--,(0x >),则()()()F x f x f x '''=+-()()22e 12e 1x x a a =+--()()22e 12e 1x x a a --++--()()()2e e 1e e 2e e 20x x x x x x a ---=+++-++-≥,所以()F x 在0x >时单调递增,()()00F x F >=,()()f x f x >-.不妨设12x x <,则10x <,20x >,20x -<,()()()122f x f x f x =>-.由()f x 在(),0-∞单调递减得,12x x <-,即120x x +<.6.【2020·山东东营期末】已知函数()()sin ,ln f x x a x g x x m x =-=+.(1)求证:当1a ≤时,对任意()()0,,0x f x ∈+∞>恒成立;(2)求函数()g x 的极值;(3)当12a =时,若存在()12,0,x x ∈+∞且12x x ≠,满足()()()()1122f x g x f x g x +=+,求证:12249x x m <.【解析】(1)()()sin 1cos f x x a x f x a x '=-∴=-,1cos 1x -≤≤ ,()11cos 0a f x a x '∴≤=-≥,,()sin f x x a x =-在()0+∞,上为增函数,所以当()0,x ∈+∞时,恒有()()00f x f >=成立;(2)由()()()ln ,10m x mg x x m x g x x x x+'=+∴=+=>当()00m g x '≥>,()g x 在()0+∞,上为增函数,无极值当()()0,00;0m x m g x x m g x ''<<<-<>->,,()g x 在()0m -,上为减函数,在(),m -+∞上为增函数,()x m x ∴=-,g 有极小值()ln m m m -+-,无极大值,综上知:当()0m g x ≥,无极值,当()0m g x <,有极小值()ln m m m -+-,无极大值.(3)当()11sin 22a f x x x ==-,在()0+∞,上为增函数,由(2)知,当0m ≥,()g x 在()0+∞,上为增函数,这时,()()f x g x +在()0+∞,上为增函数,所以不可能存在()12,0,x x ∈+∞,满足()()()()1122f x g x f x g x +=+且12x x ≠所以有0m <现不防设()()()()1211220x x f x g x f x g x <<+=+,得:111222112sin ln 2sin ln 22x x m x x x m x -+=-+()()()2121211ln ln 2sin sin 2m x x x x x x --=---①1122sin sin x x x x -<-()()212111sin sin 22x x x x -->--②由①②式可得:()()()2121211ln ln 22m x x x x x x -->---即()()21213ln ln 02m x x x x -->->又1221ln ln ,ln ln 0x x x x <->2121302ln ln x x m x x -∴->⨯>-③又要证12249x x m <,即证21294m x x >120,0m x x <<<即证m ->……④所以由③式知,只需证明:2121ln ln x x x x ->-2121ln 1x x x x ->设211x t x =>,只需证1ln t t ->即证()ln 01t t ->>令()()ln 1h t t t =>由()()()2101h t t h t -'=>>,在()1+∞,上为增函数,()()10h t h∴>=2121ln ln x x x x -∴>-成立,所以由③知,0m ->>成立,所以1224 9x xm 成立.7.【2020届四川省成都一诊】已知函数.(1)求曲线在点处的切线方程;(2)设,证明:.【解析】(1)由题意,又,所以,因此在点处的切线方程为,即(2)证明:因为,所以由于,等价于,令,设函数当时,,所以,所以在上是单调递增函数,又,所以,所以,即等价于,令,设函数当时,,所以,所以在上是单调递减函数,又,所以所以,即综上①②可得:.8.【2020·天津南开期末】已知2()46ln f x x x x =--,(1)求()f x 在(1,(1))f 处的切线方程以及()f x 的单调性;(2)对(1,)x ∀∈+∞,有21()()6112xf x f x x k x ⎛⎫'->+-- ⎪⎝⎭恒成立,求k 的最大整数解;(3)令()()4(6)ln g x f x x a x =+--,若()g x 有两个零点分别为1x ,2x ()12x x <且0x 为()g x 的唯一的极值点,求证:12034x x x +>.【解析】(1)2()46ln f x x x x=-- 所以定义域为()0,+¥6()24f x x x'∴=--;(1)8f '=-;(1)3f =-所以切线方程为85y x =-+;2()(1)(3)f x x x x'=+-,令()0f x '>解得3x >令()0f x '<解得03x <<所以()f x 的单调递减区间为()0,3,单调递增区间为(3,)+∞.(2)21()()6112xf x f x x k x ⎛⎫'->+-- ⎪⎝⎭等价于min ln ()1x x x k h x x +<=-;22ln ()(1)x x h x x --'∴=-,记()2ln m x x x =--,1()10m x x'=->,所以()m x 为(1,)+∞上的递增函数,且(3)1ln 30m =-<,(4)2ln 40m =->,所以0(3,4)x ∃∈,使得()00m x =即002ln 0x x --=,所以()h x 在()01,x 上递减,在()0,x +∞上递增,且()000min 000ln ()(3,4)1x x x h x h x x x +===∈-;所以k 的最大整数解为3.(3)2()ln g x x a x =-,()20ag x x x x -'=-==得0x =,当x ⎛∈ ⎝,()0g x '<,x ⎫∈+∞⎪⎪⎭,()0g x '>;所以()g x在⎛ ⎝上单调递减,⎫+∞⎪⎪⎭上单调递增,而要使()g x 有两个零点,要满足()00g x <,即2ln 02g a a e =-<⇒>;因为10x <<2x >,令21x t x =(1)t >,由()()12f x f x =,221122ln ln x a x x a x ∴-=-,即:2221111ln ln x a x t x a tx -=-,212ln 1a tx t ∴=-而要证12034x x x +>,只需证1(31)t x +>即证:221(31)8t x a+>即:22ln (31)81a t t a t +>-由0a >,1t >只需证:22(31)ln 880t t t +-+>,令22()(31)ln 88h t t t t =+-+,则1()(186)ln 76h t t t t t'=+-++令1()(186)ln 76n t t t t t =+-++,则261()18ln 110t n t t t -'=++>(1)t >故()n t 在(1,)+∞上递增,()(1)0n t n >=;故()h t 在(1,)+∞上递增,()(1)0h t h >=;12034x x x ∴+>.9.【2020·湖南洪湖期末】已知函数()1,f x xlnx ax a R=++∈(1)当0x >时,若关于x 的不等式()0f x ≥恒成立,求a 的取值范围;(2)当*n N ∈时,证明:2223122421n n n ln ln ln n n n +<+++<++ .【解析】(1)由()0f x ≥,得ln 10x x ax ++≥(0)x >.整理,得1ln a x x -≤+恒成立,即min 1ln a x x ⎛⎫-≤+ ⎪⎝⎭.令()1ln F x x x =+.则()22111'x F x x x x-=-=.∴函数()F x 在()0,1上单调递减,在()1,+∞上单调递增.∴函数()1ln F x x x=+的最小值为()11F =.∴1a -≤,即1a ≥-.∴a 的取值范围是[)1,-+∞.(2)∵24n n +为数列()()112n n ⎧⎫⎪⎪⎨⎬++⎪⎪⎩⎭的前n 项和,1n n +为数列()11n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和.∴只需证明()()211ln 12n n n n +<++()11n n <+即可.由(1),当1a =-时,有ln 10x x x -+≥,即1ln x x x ≥-.令11n x n +=>,即得1ln 11n n n n +>-+11n =+.∴2211ln 1n n n +⎛⎫> ⎪+⎝⎭()()112n n >++1112n n =-++.现证明()211ln 1n n n n +<+,即<==()*现证明12ln (1)x x x x <->.构造函数()12ln G x x x x=--()1x ≥,则()212'1G x x x =+-22210x x x-+=≥.∴函数()G x 在[)1,-+∞上是增函数,即()()10G x G ≥=.∴当1x >时,有()0G x >,即12ln x x x <-成立.令x =,则()*式成立.综上,得()()211ln 12n n n n +<++()11n n <+.对数列()()112n n ⎧⎫⎪⎪⎨⎬++⎪⎪⎩⎭,21ln n n +⎧⎫⎨⎬⎩⎭,()11n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭分别求前n 项和,得223ln 2ln 242n n <++21ln 1n n n n ++⋅⋅⋅+<+.10.【2020·全国高三专题】已知函数()ln a f x x x=+,其中a R ∈.(1)试讨论函数()f x 的单调性;(2)若1a =,试证明:()e cos x x f x x +<.【解析】(1)由221()a x a f x x x x -'=-=(0)x >知:(i )若0a ≤,2()0(0)x a f x x x -'=>>,∴()f x 在区间()0,∞+上为增函数.(ii )若0a >,∴当x ∈()0,a 时,有()0f x '<,∴()f x 在区间()0,a 上为减函数.当x ∈(),a +∞时,有()0f x '>,∴()f x 在区间(),a +∞上为增函数.综上:当0a ≤时,()f x 在区间()0,∞+上为增函数;当0a >时,()f x 在区间()0,a 上为减函数;()f x 在区间(),a +∞上为增函数.(2)若1a =,则1()ln (0)f x x x x =+>要证e cos ()x x f x x +<,只需证ln 1e cos x x x x +<+,即证:ln e cos 1x x x x <+-.(i )当01x <≤时,ln 0x x ≤,而e cos 11cos11cos10x x +->+-=>∴此时ln <e cos 1x x x x +-成立.(ii )当1x >时,令()e cos ln 1x g x x x x =+--,()0,x ∈+∞,∵()e sin ln 1x g x x x '=---,设()()e sin ln 1x h x g x x x '==---,则1()e cos x h x x x'=-- 1x >,∴1()e cos e 110x h x x x '=-->-->∴当1x >时,()h x 单调递增,∴()(1)e sin110h x h >=-->,即()0g x '>∴()g x 在()1,+∞单调递增,∴()(1)e cos110g x g >=+->即()e cos ln 10x g x x x x =+-->,即ln <e cos 1x x x x +-,∴e cos ()<x x f x x+综上:当0x >时,有e cos ()<x x f x x +成立.。

高考数学:函数与导数压轴题高频考点与破解妙招.doc

高考数学:函数与导数压轴题高频考点与破解妙招.doc

高考数学:函数与导数压轴题高频考点与破解妙招1以导数面目包装的函数性质的综合应用有关函数与导数的小题压轴题是新课标全国卷的高频考题,高频题型:①以导数面目包装的函数性质题(单调性、奇偶性、最值等);②用导数法判断函数f(x)的图象或已知函数图象求参数的取值范围;③函数与集合、不等式、数列、平面向量、新定义等知识相交汇.【命题意图】本题主要考查函数与导数、函数的单调性、函数的最值、函数的零点等知识,意在考查考生的化归与转化能力、数形结合能力和运算求解能力.【攻略秘籍】破解以导数面目包装的函数性质综合题需过双关:第一关是“还原关”,即先还原出函数的解析式;第二关是“数形关”,即不等式恒成立问题与有解问题多需要数形结合,即可轻松解决.2利用导数研究函数的单调性、极值与最值利用导数研究函数的单调性、极值与最值是高考的一棵“常青树”,高频题型:①判断函数f(x)的单调性或求函数f(x)的单调区间;②求函数f(x)的最值或极值;③由函数的单调区间、最值或极值求参数的值.【命题意图】本题主要考查函数的极值、利用函数的单调性求参数的取值范围,意在考查分类讨论思想和方程思想,考查考生的化归与转化能力、运算求解能力.【攻略秘籍】破解此类题的关键:一是方程思想,即对于含有参数的可导函数有极值的关键是对参数进行分类讨论,并寻找其导数为零的根,以及在根的左、右两侧导数的符号;二是转化思想,即可导函数f(x)在某个区间D内单调递增(或递减),则有f ′(x)≥0(或f ′(x)≤0)在区间D内恒成立,从而把已知函数的单调性问题转化为恒成立问题来解决,这里需注意“=”的情形.3函数、导数与零点相交汇如稍加留神,便可以发现,函数、导数与函数的零点(方程的根)相交汇的考题在近年的高考中扮演着重要的角色,高频题型:①判断函数的零点(方程的根)的个数问题;②已知函数在给定区间的零点(方程在给定区间的解)的情况,求参数的取值范围或证明不等式成立.【命题意图】本题主要考查函数的零点、函数的最值、导数及其应用、基本不等式等知识,考查推理论证能力、运算求解能力、创新意识.【攻略秘籍】破解此类难题要过好三关:第一关,应用关,即利用导数法求函数的单调区间与最值,一般是求导数,在定义域范围内,令导函数大于(小于)零,得其单调递增(减)区间,从而求出函数的单调区间,再由函数的单调性,可求其最值;第二关,转化关,即把判断函数的零点个数问题转化为判断函数最值的符号问题;第三关,构造函数关,即通过构造函数,把比较大小问题转化为判断函数的单调性问题.4函数、导数与不等式相交汇函数、导数与不等式相交汇的试题是2015年高考题中比较“抢眼”的一种题型.对于只含有一个变量的不等式问题,常通过构造函数,利用函数的单调性和极值来证明,高频题型:①用导数法解决含参不等式恒成立问题;②用导数法解决含参不等式有解问题;③证明不等式.【命题意图】本题主要考查函数的单调性与极值点、不等式恒成立问题、证明不等式等知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、分类与整合思想.【攻略秘籍】破解此类不等式证明的关键是通过构造函数、利用导数法判断函数的单调性来证明不等式.根据题设条件的结构特征构造一个函数,一是需要预设与所证不等式有相同的结构;二是需要熟练掌握简单复合函数的求导变换.不等式恒成立求参数的取值范围常利用“分离参数法”,也可以单刀直入地利用导数法,通过分类讨论使问题获解.注意恒成立问题与能成立问题的区别.从以上四例可以看出,只要我们对“函数与导数类”压轴题常见类型心中有数,把握其实质,掌握其规律,规范其步骤,做到“胸中有法”,那么不论高考“函数与导数类”压轴题的构思多么新颖,我们都能做到以不变应万变,此类压轴题就能迎刃而解.。

导数压轴题解题技巧

导数压轴题解题技巧

导数压轴题解题技巧
嘿,朋友们!今天咱就来聊聊导数压轴题解题技巧,这可真是个让人又爱又恨的家伙啊!
你看哈,导数压轴题就像是一场刺激的游戏!比如说,给你个函数,哎呀,那弯弯曲曲的图象就像是复杂的迷宫,你得找到出路!就像你在森林里迷路了,得想办法走出来呀!
先来谈谈怎么求导吧!这可是基础。

像有个函数f(x)=x²+3x,那求导可得 f'(x)=2x+3 呀!就好比你走路,求导就是弄清楚往哪个方向走得快,能不走错路嘛!
再说说构造新函数吧!有时候题目里的条件乱七八糟,咋办呢?那就巧妙地构造个新函数呗!比如说,给你两个函数 f(x)和 g(x),它们之间有某种关系,那咱就把它们组合起来弄个新函数 H(x) 呀!这就好像把不同的积木拼在一起搭出个新造型。

还有分类讨论哦!遇到各种情况都要考虑到。

比如一个函数在不同区间上的单调性不一样,那咱就得仔细分析呀!“嘿,这可不能马虎!”不认真分析怎么能得高分呢?
哎呀,导数压轴题真不是盖的,有时候确实难倒一大片人呢!但咱别怕呀,只要掌握了这些技巧,多练多总结,还怕它不成?记住,每一道导数压轴题都是一个挑战,但也是一个让我们进步的机会呀!
咱就是说,导数压轴题解题技巧真的能让我们在数学的海洋里畅游得更畅快!大家可得好好学起来,攻克这道难关,走向数学的辉煌呀!。

必须掌握的7种构造函数方法——合理构造函数,巧解导数难题

必须掌握的7种构造函数方法——合理构造函数,巧解导数难题

必须掌握的7种构造函数方法——合理构造函数,巧解导数难题近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.一、作差构造法1.直接作差构造评注:本题采用直接作差法构造函数,通过特殊值缩小参数范围后,再对参数进行分类讨论来求解.2.变形作差构造二、分离参数构造法分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题.三、局部构造法1.化和局部构造2.化积局部构造四、换元构造法换元构造法在处理多变元函数问题中应用较多,就是用新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的目的.换元构造法是求解多变元导数压轴题的常用方法.评注:本题的两种解法通过将待解决的式子进行恰当的变形,将二元字母变出统一的一种结构,然后用辅助元将其代替,从而将两个变元问题转化一个变元问题,再以辅助元为自变量构造函数,利用导数来来求解。

其中解法1、解法2还分别体现了化积局部构造法和变形作差构造法.五、主元构造法主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其它变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.六、特征构造法1.根据条件特征构造2.根据结论特征构造七、放缩构造法1.由基本不等式放缩构造2.由已证不等式放缩构造评注:本题第二问是一道典型且难度比较大的求参问题,这类题目很容易让考生想到用分离参数的方法,但分离参数后利用高中所学知识无法解决,笔者研究发现不能解决的原因是分离参数后,出现了“0/0型”的式子,解决这类问题的有效方法就是高等数学中的洛必达法则;若直接构造函数,里面涉及到指数函数、三角函数及高次函数,处理起来难度很大.本题解法中两次巧妙利用第一问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅力.。

压轴题命题区间(二) 增分点 由“导”寻“源”,破解函数不等式问题

压轴题命题区间(二)  增分点   由“导”寻“源”,破解函数不等式问题

增分点 由“导”寻“源”,破解函数不等式问题在近几年的高考试题中,出现了一类抽象函数与导数交汇的重要题型,这类问题由于比较抽象,很多学生解题时,突破不了由抽象而造成的解题障碍.实际上,根据所解不等式,联想导数的运算法则,构造适当的辅助函数,然后利用导数判断其单调性是解决此类问题的通法.[典例] 设函数f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)[应用体验]1.定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<12,则不等式f (lg x )>lg x +12的解集为__________.2.已知定义在⎝ ⎛⎭⎪⎫0,π2内的函数f (x )的导函数为f ′(x ),且对任意的x ∈⎝ ⎛⎭⎪⎫0,π2,都有f ′(x )sin x <f (x )cos x ,则不等式f (x )<2f ⎝ ⎛⎭⎪⎫π6sin x 的解集为__________.一、选择题1.已知函数f (x )的定义域为R ,f ′(x )为其导函数,函数y =f ′(x )的图象如图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )A .(-3,-2)∪(2,3)B .(-2,2)C .(2,3)D .(-∞,-2)∪(2,+∞)2.已知f(x)的定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)<-xf′(x),则不等式f(x+1)>(x-1)f(x2-1)的解集为( )A.(0,1) B.(1,+∞)C.(1,2) D.(2,+∞)3.(2018·沈阳质检)已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1)的解集为( ) A.(-∞,1) B.(-1,1)C.(-∞,0)∪(0,1) D.(-1,0)∪(0,1)4.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集为( )A.(-3,0)∪(3,+∞) B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3)5.已知函数f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≤0,对于任意正数a,b,若a<b,则必有( )A.af(a)≤f(b) B.bf(b)≤f(a)C.af(b)≤bf(a) D.bf(a)≤af(b)6.设函数f(x)在R上的导函数为f′(x),2f(x)+xf′(x)>x2,则下面的不等式在R 上恒成立的是( )A.f(x)>0 B.f(x)<0C.f(x)>x D.f(x)<x7.已知函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则不等式f(x)>2x+4的解集为( )A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)8.设函数f(x),g(x)在区间[a,b]上连续,在区间(a,b)上可导,且f′(x)<g′(x),则当x∈(a,b)时必有( )A .f (x )>g (x )B .f (x )<g (x )C .f (x )+g (a )<g (x )+f (a )D .f (x )+g (b )<g (x )+f (b )9.函数f (x )是定义在R 上的偶函数,f (-2)=0,且x >0时,f (x )+xf ′(x )>0,则不等式xf (x )≥0的解集是( )A .[-2,0]B .[0,2]C .[-2,2]D .[-2,0]∪[2,+∞)10.函数f (x )是定义在R 上的奇函数,f (3)=0,且x <0时,xf ′(x )<f (x ),则不等式f (x )≥0的解集为( )A .(-∞,0)B .[-3,0]∪[3,+∞)C .[-3,3]D .[0,3]11.函数f (x )是定义在R 上的可导函数,且f (x )>f ′(x )对任意x ∈R 都成立,则下列不等式中成立的是( )A .f (2 018)>e 2 018f (0),f (2 018)>e f (2 017) B .f (2 018)>e 2 018f (0),f (2 018)<e f (2 017) C .f (2 018)<e 2 018f (0),f (2 018)>e f (2 017) D .f (2 018)<e 2 018f (0),f (2 018)<e f (2 017)12.设定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k <1kB .f ⎝ ⎛⎭⎪⎫1k >1k -1C .f ⎝ ⎛⎭⎪⎫1k -1<1k -1D .f ⎝⎛⎭⎪⎫1k -1>1k -1二、填空题13.设f (x )是定义在R 上的可导函数,且满足f (x )+xf ′(x )>0,则不等式f (x +1)>x -1f (x 2-1)的解集为________.14.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2 018)2·f (x +2 018)-4f (-2)>0的解集为________.15.已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f′(x)<f(x),且y=f(x+1)为偶函数.f(2)=1,则不等式f(x)<e x的解集为________.16.设f(x)是R上的奇函数,且f(-1)=0,当x>0时,(x2+1)f′(x)-2xf(x)<0,则不等式f(x)>0的解集为______.答 案[典例] (2015·全国卷Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)[思路点拨]观察xf ′(x )-f (x )<0这个式子的特征,不难想到商的求导公式,尝试构造函数F (x )=f (x )x求解. [方法演示]法一:构造抽象函数求解 设F (x )=f (x )x .因为f (x )是奇函数,故F (x )是偶函数,F ′(x )=xf ′(x )-f (x )x 2,易知当x >0时,F ′(x )<0,所以函数F (x )在(0,+∞)上单调递减.又f (-1)=0,则f (1)=0,于是F (-1)=F (1)=0,f (x )=xF (x ),解不等式f (x )>0,即找到x 与F (x )的符号相同的区间,易知当x ∈(-∞,-1)∪(0,1)时,f (x )>0,故选A.法二:构造具体函数求解设f (x )是多项式函数,因为f (x )是奇函数,所以它只含x 的奇次项.又f (1)=-f (-1)=0,所以f (x )能被x 2-1整除.因此可取f (x )=x -x 3,检验知f (x )满足题设条件.解不等式f (x )>0,得x ∈(-∞,-1)∪(0,1),故选A.答案:A [解题师说]抽象函数的导数问题在高考中常考常新,可谓变化多端,解决此类问题的关键是构造函数,常见的构造函数方法有如下几种:(1)利用和、差函数求导法则构造函数①对于不等式f ′(x )+g ′(x )>0(或<0),构造函数F (x )=f (x )+g (x ); ②对于不等式f ′(x )-g ′(x )>0(或<0),构造函数F (x )=f (x )-g (x ); 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (2)利用积、商函数求导法则构造函数①对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x );②对于不等式f′(x)g(x)-f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x)(g(x)≠0).(3)利用积、商函数求导法则的特殊情况构造函数①对于不等式xf′(x)+f(x)>0(或<0),构造函数F(x)=xf(x);②对于不等式xf′(x)-f(x)>0(或<0),构造函数F(x)=f(x)x(x≠0);③对于不等式xf′(x)+nf(x)>0(或<0),构造函数F(x)=x n f(x);④对于不等式xf′(x)-nf(x)>0(或<0),构造函数F(x)=f(x)x n(x≠0);⑤对于不等式f′(x)+f(x)>0(或<0),构造函数F(x)=e x f(x);⑥对于不等式f′(x)-f(x)>0(或<0),构造函数F(x)=f(x) e x;⑦对于不等式f(x)+f′(x)tan x>0(或<0),构造函数F(x)=sin xf(x);⑧对于不等式f(x)-f′(x)tan x>0(或<0),构造函数F(x)=f(x)sin x(sin x≠0);⑨对于不等式f′(x)-f(x)tan x>0(或<0),构造函数F(x)=cos xf(x);⑩对于不等式f′(x)+f(x)tan x>0(或<0),构造函数F(x)=f(x)cos x(cos x≠0).⑪(理)对于不等式f′(x)+kf(x)>0(或<0),构造函数F(x)=e kx f(x);⑫(理)对于不等式f′(x)-kf(x)>0(或<0),构造函数F(x)=f(x) e kx;[应用体验]1.定义在R上的函数f(x),满足f(1)=1,且对任意x∈R都有f′(x)<12,则不等式f(lg x)>lg x+12的解集为__________.解析:构造函数g(x)=f(x)-x+1 2,则g′(x)=f′(x)-12<0,∴g(x)在定义域上是减函数.又g(1)=f(1)-1=0,∴原不等式可化为g(lg x)>g(1),∴lg x<1,解得0<x<10.∴原不等式的解集为{x|0<x<10}.答案:(0,10)2.已知定义在⎝ ⎛⎭⎪⎫0,π2内的函数f (x )的导函数为f ′(x ),且对任意的x ∈⎝ ⎛⎭⎪⎫0,π2,都有f ′(x )sin x <f (x )cos x ,则不等式f (x )<2f ⎝ ⎛⎭⎪⎫π6sin x 的解集为__________.解析:构造函数g (x )=f (x )sin x, 则g ′(x )=f ′(x )sin x -f (x )cos xsin 2x<0, ∴g (x )在⎝⎛⎭⎪⎫0,π2内为减函数. 由f (x )<2f ⎝ ⎛⎭⎪⎫π6sin x , 得f (x )sin x <2f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π6sinπ6,即g (x )<g ⎝ ⎛⎭⎪⎫π6,∴π6<x <π2, ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x π6<x <π2.答案:⎝ ⎛⎭⎪⎫π6,π2一、选择题1.已知函数f (x )的定义域为R ,f ′(x )为其导函数,函数y =f ′(x )的图象如图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )A .(-3,-2)∪(2,3)B .(-2,2)C .(2,3)D .(-∞,-2)∪(2,+∞)解析:选A 由y =f ′(x )的图象知,f (x )在(-∞,0]上单调递增,在(0,+∞)上单调递减,又f (-2)=1,f (3)=1,∴f (x 2-6)>1可化为-2<x 2-6<3,解得-3<x <-2或2<x <3.2.已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)f (x 2-1)的解集为( )A .(0,1)B .(1,+∞)C .(1,2)D .(2,+∞)解析:选D 因为f (x )+xf ′(x )<0,所以[xf (x )]′<0,故xf (x )在(0,+∞)上为单调递减函数,又(x +1)f (x +1)>(x 2-1)f (x 2-1),所以x +1<x 2-1,解得x >2.3.(2018·沈阳质检)已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>-2f (x ),若g (x )=x 2f (x ),则不等式g (x )<g (1)的解集为( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)解析:选 D 因为g (x )=x 2f (x ),所以g ′(x )=x 2f ′(x )+2xf (x )=x [xf ′(x )+2f (x )].由题意知,当x >0时,xf ′(x )+2f (x )>0,所以g ′(x )>0,所以g (x )在(0,+∞)上单调递增,又f (x )为偶函数,则g (x )也是偶函数,所以g (x )=g (|x |),由g (x )<g (1),得g (|x |)<g (1),所以⎩⎪⎨⎪⎧|x |<1,x ≠0,所以x ∈(-1,0)∪(0,1).4.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数.当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)解析:选D 设F (x )=f (x )g (x ),当x <0时, ∵F ′(x )=f ′(x )g (x )+f (x )g ′(x )>0, ∴F (x )在(-∞,0)上为增函数.又∵F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ), 故F (x )为R 上的奇函数.∴F (x )在(0,+∞)上也为增函数. 由g (-3)=0, 得F (-3)=F (3)=0.画出函数F (x )的大致图象如图所示, ∴F (x )<0的解集为{x |x <-3或0<x <3}.5.已知函数f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对于任意正数a ,b ,若a <b ,则必有( )A .af (a )≤f (b )B .bf (b )≤f (a )C .af (b )≤bf (a )D .bf (a )≤af (b )解析:选C ∵xf ′(x )+f (x )≤0,且x >0,f (x )≥0. ∴f ′(x )≤-f (x )x,即f (x )在(0,+∞)上是减函数. 又0<a <b ,∴af (b )<bf (a ),当f (x )=0时,符合题意,则af (b )=bf (a ),故af (b )≤bf (a ).6.设函数f (x )在R 上的导函数为f ′(x ),2f (x )+xf ′(x )>x 2,则下面的不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x解析:选A 法一:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2],当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0. 综上可知,f (x )>0.法二:∵2f (x )+xf ′(x )>x 2, 令x =0,则f (0)>0,故可排除B 、D.如果f (x )=x 2+0.1,已知条件2f (x )+xf ′(x )>x 2成立,但f (x )>x 不恒成立,故排除C ,选A.7.已知函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则不等式f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)解析:选B 令m (x )=f (x )-(2x +4), 则m ′(x )=f ′(x )-2>0,∴函数m (x )在R 上为单调递增函数. 又∵m (-1)=f (-1)-(-2+4)=0, ∴m (x )>0的解集为{x |x >-1}, 即f (x )>2x +4的解集为(-1,+∞).8.设函数f (x ),g (x )在区间[a ,b ]上连续,在区间(a ,b )上可导,且f ′(x )<g ′(x ),则当x ∈(a ,b )时必有( )A .f (x )>g (x )B .f (x )<g (x )C .f (x )+g (a )<g (x )+f (a )D .f (x )+g (b )<g (x )+f (b )解析:选C 令函数h (x )=f (x )-g (x ).因为f ′(x )<g ′(x ),故h ′(x )=[f (x )-g (x )]′=f ′(x )-g ′(x )<0,即函数h (x )在区间[a ,b ]上单调递减.所以x ∈(a ,b )时必有h (b )<h (x )<h (a ),即f (b )-g (b )<f (x )-g (x )<f (a )-g (a ),移项整理得,f (x )+g (a )<g (x )+f (a ),f (x )+g (b )>g (x )+f (b ),故选项C 正确.9.函数f (x )是定义在R 上的偶函数,f (-2)=0,且x >0时,f (x )+xf ′(x )>0,则不等式xf (x )≥0的解集是( )A .[-2,0]B .[0,2]C .[-2,2]D .[-2,0]∪[2,+∞)解析:选D 因为x >0时,f (x )+xf ′(x )>0,故构造函数y =xf (x ),则该函数在(0,+∞)上单调递增.又因为f (x )为偶函数,故y =xf (x )为奇函数.结合f (-2)=0,画出函数y =xf (x )的大致图象如图所示. 所以不等式xf (x )≥0的解集为[-2,0]∪[2,+∞).10.函数f (x )是定义在R 上的奇函数,f (3)=0,且x <0时,xf ′(x )<f (x ),则不等式f (x )≥0的解集为( )A .(-∞,0)B .[-3,0]∪[3,+∞)C .[-3,3]D .[0,3]解析:选B 令F (x )=f (x )x,因为f (x )为定义在R 上的奇函数,所以F (x )为偶函数,当x <0时,F ′(x )=xf ′(x )-f (x )x 2<0,故f (x )在(-∞,0)上为减函数,在(0,+∞)上为增函数. 结合f (3)=0,画出函数F (x )=f (x )x的大致图象如图所示. 所以不等式f (x )≥0的解集为[-3,0]∪[3,+∞).11.函数f (x )是定义在R 上的可导函数,且f (x )>f ′(x )对任意x ∈R 都成立,则下列不等式中成立的是( )A .f (2 018)>e2 018f (0),f (2 018)>e f (2 017) B .f (2 018)>e2 018f (0),f (2 018)<e f (2 017) C .f (2 018)<e2 018f (0),f (2 018)>e f (2 017) D .f (2 018)<e 2 018f (0),f (2 018)<e f (2 017)解析:选D 令函数g (x )=f (x )e x .由f (x )>f ′(x ),得f ′(x )-f (x )<0,所以g ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x <0, 即函数g (x )=f (x )e x 在R 上单调递减. 所以f (2 018)e 2 018<f (2 017)e 2 017<f (0)e 0,即有f (2 018)<e f (2 017),f (2 018)<e 2 018f (0).12.设定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k <1kB .f ⎝ ⎛⎭⎪⎫1k >1k -1C .f ⎝ ⎛⎭⎪⎫1k -1<1k -1D .f ⎝ ⎛⎭⎪⎫1k -1>1k -1解析:选C 令g (x )=f (x )-kx +1,则g (0)=f (0)+1=0,g ⎝ ⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k ·1k -1+1 =f ⎝ ⎛⎭⎪⎫1k -1-1k -1. ∵g ′(x )=f ′(x )-k >0,∴g (x )在[0,+∞)上为增函数.又∵k >1,∴1k -1>0, ∴g ⎝⎛⎭⎪⎫1k -1>g (0)=0, ∴f ⎝ ⎛⎭⎪⎫1k -1-1k -1>0,即f ⎝ ⎛⎭⎪⎫1k -1>1k -1. 二、填空题13.设f (x )是定义在R 上的可导函数,且满足f (x )+xf ′(x )>0,则不等式f (x +1)>x -1f (x 2-1)的解集为________.解析:令g (x )=xf (x ),则g ′(x )=f (x )+xf ′(x )>0,∴g (x )是R 上的增函数.又f (x +1)>x -1f (x 2-1)可等价转化为x +1f (x +1)>x 2-1f (x 2-1),即g (x +1)>g (x 2-1),所以⎩⎪⎨⎪⎧ x +1>x 2-1,x -1≥0,解得1≤x <2,∴原不等式的解集为{x |1≤x <2}.答案:[1,2) 14.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2 018)2·f (x +2 018)-4f (-2)>0的解集为________.解析:令g (x )=x 2f (x ),则g ′(x )=2xf (x )+x 2f ′(x ).结合条件2f (x )+xf ′(x )>x 2,将条件两边同时乘以x ,得2xf (x )+x 2f ′(x )<x 3<0,即g ′(x )<0,∴g (x )在(-∞,0)上是减函数,又g (-2)=4f (-2),∴由(x +2 018)2f (x +2 018)-4f (-2)>0,即g (x +2 018)>g (-2),得x +2 018<-2,解得x <-2 020,∴原不等式的解集为(-∞,-2 020).答案:(-∞,-2 020)15.已知定义在R 上的可导函数y =f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且y =f (x +1)为偶函数.f (2)=1,则不等式f (x )<e x 的解集为________.解析:令h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x <0,∴h (x )在R 上是减函数,又y =f (x +1)是偶函数, ∴y =f (x )的图象关于直线x =1对称,∴f (2)=f (0)=1.由f (x )<e x ,得f (x )e x <1,又h (0)=f (0)e 0=1,∴h (x )<h (0),∴x >0,故原不等式的解集为{x |x >0}.答案:(0,+∞)16.设f (x )是R 上的奇函数,且f (-1)=0,当x >0时,(x 2+1)f ′(x )-2xf (x )<0,则不等式f (x )>0的解集为______.解析:令g (x )=f (x )x 2+1,则g ′(x )=(x 2+1)f ′(x )-2xf (x )(x 2+1)2.因为当x >0时,(x 2+1)f ′(x )-2xf (x )<0,所以g ′(x )<0,所以g (x )在[0,+∞)上单调递减. 又f (x )=g (x )(x 2+1),所以f (x )在[0,+∞)上单调递减.又f (x )是R 上的奇函数,f (-1)=0,所以f (1)=0. 当x >0时,f (x )>0=f (1)⇒0<x <1;当x <0时,f (x )>0=f (-1)⇒x <-1.综上,可得不等式f (x )>0的解集为(-∞,-1)∪(0,1). 答案:(-∞,-1)∪(0,1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

增分点掌握四种函数构造法,破解导数解决不等式问题利用导数证明不等式是近几年高考命题的一种热点题型.利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里给出几种常用的构造技巧.围内不等式f(x)≥g(x)成立时,可以类比作差法,构造函数h(x)=f(x)-g(x)或φ(x)=g(x)-f(x),进而证明h(x)min≥0或φ(x)max≤0即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明g(x)>0(f(x)>0)的前提下,也可以类比作商法,构造函数h(x)=f(x)g(x)⎝⎛⎭⎫φ(x)=g(x)f(x),进而证明h(x)min≥1(φ(x)max≤1).[典例](2018·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.[方法演示]解:(1)由f(x)=e x-ax,得f′(x)=e x-a.因为f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x,f′(x)=e x-2,令f′(x)=0,得x=ln 2,当x<ln 2时,f′(x)<0,f(x)单调递减;当x>ln 2时,f′(x)>0,f(x)单调递增.所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值.(2)证明:令g(x)=e x-x2,则g′(x)=e x-2x.由(1)得g′(x)=f(x)≥f(ln 2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x2<e x.[解题师说]在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的结论求解.[应用体验]1.已知函数f(x)=x ln x-2x,g(x)=-ax2+ax-2(a>1).(1)求函数f(x)的单调区间及最小值;(2)证明:f(x)≥g(x)在[1,+∞)上恒成立.解:(1)f(x)的定义域为(0,+∞),∵f(x)=x ln x-2x,∴f′(x)=ln x+1-2=ln x-1,由f′(x)>0,得x>e;由f′(x)<0,得0<x<e,∴函数f(x)的单调递增区间为(e,+∞),单调递减区间为(0,e),∴函数f(x)的最小值为f(e)=eln e-2e=-e.(2)证明:令h(x)=f(x)-g(x),∵f(x)≥g(x)在[1,+∞)上恒成立,∴h(x)min≥0,x∈[1,+∞),∵h(x)=x ln x+ax2-ax-2x+2,∴h′(x)=ln x+1+2ax-a-2=ln x+2ax-a-1.令m(x)=ln x+2ax-a-1,x∈[1,+∞),则m′(x)=1x+2a,∵x>1,a>1,∴m′(x)>0,∴m(x)在[1,+∞)上单调递增,∴m(x)≥m(1)=a-1,即h′(x)≥a-1,∵a>1,∴a-1>0,∴h′(x)>0,∴h(x)=x ln x+ax2-ax-2x+2在[1,+∞)上单调递增,∴h(x)≥h(1)=0,即f(x)-g(x)≥0,故f(x)≥g(x)在[1,+∞)上恒成立.直接求导,得到的导函数往往给人一种“扑朔迷离”“不知所措”的感觉.这时可以将原不等式合理拆分为f(x)≤g(x)的形式,进而证明f(x)max≤g(x)min即可,此时注意配合使用导数工具.在拆分的过程中,一定要注意合理性的把握,一般以能利用导数进行最值分析为拆分标准.[典例]设函数f(x)=a e x ln x+b e x-1x,曲线y=f(x)在点(1,f(1))处的切线为y=e(x-1)+2.(1)求a ,b ; (2)证明:f (x )>1. [方法演示]解:(1)f ′(x )=a e x ⎝⎛⎭⎫ln x +1x +b e x -1(x -1)x 2(x >0), 由于直线y =e(x -1)+2的斜率为e ,图象过点(1,2),所以⎩⎪⎨⎪⎧ f (1)=2,f ′(1)=e ,即⎩⎪⎨⎪⎧ b =2,a e =e ,解得⎩⎪⎨⎪⎧a =1,b =2.(2)证明:由(1)知f (x )=e xln x +2e x -1x(x >0),从而f (x )>1等价于x ln x >x e -x -2e .构造函数g (x )=x ln x ,则g ′(x )=1+ln x ,所以当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )<0,当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0, 故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增, 从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e . 构造函数h (x )=x e -x -2e ,则h ′(x )=e -x (1-x ). 所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0;故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而h (x )在(0,+∞)上的最大值为h (1)=-1e .综上,当x >0时,g (x )>h (x ),即f (x )>1. [解题师说]对于第(2)问“a e xln x +b e x -1x >1”的证明,若直接构造函数h (x )=a e xln x +b e x -1x -1,求导以后不易分析,因此并不宜对其整体进行构造函数,而应先将不等式“a e xln x +b e x -1x >1”合理拆分为“x ln x >x e -x -2e ”,再分别对左右两边构造函数,进而达到证明原不等式的目的.[应用体验]2.已知函数f (x )=a ln x x +1+bx,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0. (1)求a ,b 的值;(2)证明:当x >0,且x ≠1时,f (x )>ln xx -1. 解:(1)f ′(x )=a ⎝⎛⎭⎫x +1x -ln x (x +1)2-bx 2(x >0).由于直线x +2y -3=0的斜率为-12,且过点(1,1),故⎩⎪⎨⎪⎧ f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12.解得⎩⎪⎨⎪⎧a =1,b =1. (2)证明:由(1)知f (x )=ln x x +1+1x(x >0), 所以f (x )-ln x x -1=11-x 2⎝⎛⎭⎫2ln x -x 2-1x .考虑函数h (x )=2ln x -x 2-1x (x >0), 则h ′(x )=2x -2x 2-(x 2-1)x 2=-(x -1)2x 2.所以当x ≠1时,h ′(x )<0.而h (1)=0, 故当x ∈(0,1)时,h (x )>0,可得11-x 2h (x )>0; 当x ∈(1,+∞)时,h (x )<0,可得11-x 2h (x )>0.从而当x >0,且x ≠1时,f (x )-ln xx -1>0, 即f (x )>ln xx -1.12整体转化为关于m (x 1,x 2)的表达式(其中m (x 1,x 2)为x 1,x 2组合成的表达式),进而使用换元令m (x 1,x 2)=t ,使所要证明的不等式转化为关于t 的表达式,进而用导数法进行证明,因此,换元的本质是消元.[典例] 已知函数f (x )=ln xx +a(a ∈R),曲线y =f (x )在点(1,f (1))处的切线与直线x +y +1=0垂直.(1)试比较2 0172 018与2 0182 017的大小,并说明理由;(2)若函数g(x)=f(x)-k有两个不同的零点x1,x2,证明:x1x2>e2. [方法演示]解:(1)依题意得f′(x)=x+ax-ln x (x+a)2,所以f′(1)=1+a(1+a)2=11+a.又曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直,所以f′(1)=1,即11+a =1,解得a=0.故f(x)=ln xx,f′(x)=1-ln xx2.由f′(x)>0,得0<x<e;由f′(x)<0,得x>e,所以函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).所以f(2 017)>f(2 018),即ln 2 0172 017>ln 2 0182 018.整理得ln 2 0172 018>ln 2 0182 017,所以2 0172 018>2 0182 017.(2)证明:g(x)=ln xx-k,设x1>x2>0,由g(x1)=g(x2)=0,可得ln x1-kx1=0,ln x2-kx2=0,两式相加减,得ln x1+ln x2=k(x1+x2),ln x1-ln x2=k(x1-x2).要证x1x2>e2,即证ln x1x2>2,只需证ln x1+ln x2>2,也就是证k(x1+x2)>2,即证k>2x1+x2.因为k=ln x1-ln x2x1-x2,所以只需证ln x1-ln x2x1-x2>2x1+x2,即证lnx1x2>2(x1-x2)x1+x2. 令x1x2=t(t>1),则只需证ln t>2(t-1)t+1(t>1).令h(t)=ln t-2(t-1)t+1(t>1),则h′(t)=1t-4(t+1)2=(t-1)2t(t+1)2>0,故函数h(t)在(1,+∞)上单调递增,所以h(t)>h(1)=0,即ln t>2(t-1)t+1.所以x1x2>e2.[解题师说](1)由题意易知f ′(1)=1,可列出关于a 的方程,从而求出a 的值,得到函数f (x )的解析式.欲比较2 0172 018与2 0182 017的大小,只需比较f (2 017),f (2 018)的大小,即需判断函数y =f (x )的单调性.(2)不妨设x 1>x 2>0,由g (x 1)=g (x 2)=0,可得ln x 1-kx 1=0,ln x 2-kx 2=0,两式相加减,利用分析法将要证明的不等式转化为ln x 1-ln x 2x 1-x 2>2x 1+x 2,再利用换元法,通过求导证明上述不等式成立.[应用体验]3.已知函数f (x )=x 2ln x . (1)求函数f (x )的单调区间;(2)证明:对任意的t >0,存在唯一的s ,使t =f (s );(3)设(2)中所确定的s 关于t 的函数为s =g (t ),证明:当t >e 2时,有25<ln g (t )ln t <12.解:(1)由已知,得f ′(x )=2x ln x +x =x (2ln x +1)(x >0), 令f ′(x )=0,得x =1e. 当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1e ,单调递增区间是⎝⎛⎭⎫1e ,+∞.(2)证明:当0<x ≤1时,f (x )≤0,∵t >0,∴当0<x ≤1时不存在t =f (s ). 令h (x )=f (x )-t ,x ∈[1,+∞).由(1)知,h (x )在区间(1,+∞)上单调递增. h (1)=-t <0,h (e t )=e 2t ln e t -t =t (e 2t -1)>0. 故存在唯一的s ∈(1,+∞),使得t =f (s )成立. (3)证明:因为s =g (t ),由(2)知,t =f (s ),且s >1, 从而ln g (t )ln t =ln s ln f (s )=ln sln (s 2ln s )=ln s 2ln s +ln (ln s )=u2u +ln u,其中u =ln s .要使25<ln g (t )ln t <12成立,只需0<ln u <u 2.当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾.所以s>e,即u>1,从而ln u>0成立.另一方面,令F(u)=ln u-u2,u>1,F′(u)=1u-12,令F′(u)=0,得u=2.当1<u<2时,F′(u)>0;当u>2时,F′(u)<0.故对u>1,F(u)≤F(2)<0,因此ln u<u2成立.综上,当t>e2时,有25<ln g(t)ln t<12.在关于x1,x2m(x1,x2)的表达式,则考虑将不等式转化为函数的单调性问题进行处理,进而实现消元的目的.[典例]设函数f(x)=ln x+mx,m∈R.(1)当m=e(e为自然对数的底数)时,求f(x)的最小值;(2)讨论函数g(x)=f′(x)-x3零点的个数;(3)若对任意b>a>0,f(b)-f(a)b-a<1恒成立,求m的取值范围.[方法演示]解:(1)当m=e时,f(x)=ln x+ex,则f′(x)=x-ex2,故当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上单调递减,当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上单调递增,故当x=e时,f(x)取到极小值,也是最小值,f(e)=ln e+ee=2,故f(x)的最小值为2.(2)g(x)=f′(x)-x3=1x-mx2-x3(x>0),令g(x)=0,得m=-13x3+x(x>0).设φ(x)=-13x3+x(x≥0),则φ′(x)=-(x-1)(x+1),当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减,故x=1是φ(x)的唯一极值点,且是极大值点, 故φ(x )的最大值为φ(1)=23.又φ(0)=0,画出函数y =φ(x )的图象如图所示.①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.(3)对任意的b >a >0,f (b )-f (a )b -a<1等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +mx -x (x >0), 故(*)等价于h (x )在(0,+∞)上单调递减.由h ′(x )=1x -m x 2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝⎛⎭⎫x -122+14(x >0)恒成立,故m ≥14,当且仅当x =12时等号成立,所以m 的取值范围为⎣⎡⎭⎫14,+∞. [解题师说]本例第(3)问中,利用不等式的性质,将“f (b )-f (a )b -a <1”等价转化为“f (b )-b <f (a )-a ”,进而构造函数“h (x )=f (x )-x ”,通过研究函数的单调性求解实数m 的取值范围.[应用体验]4.已知函数f (x )=ax -1-ln x (a ∈R). (1)讨论函数f (x )的单调性;(2)若函数f (x )在x =1处取得极值,不等式f (x )≥bx -2对∀x ∈(0,+∞)恒成立,求实数b 的取值范围;(3)当x >y >e -1时,证明不等式e x ln(1+y )>e y ln(1+x ). 解:(1)函数f (x )的定义域是(0,+∞),且f ′(x )=a -1x =ax -1x .当a ≤0时,ax -1<0,从而f ′(x )<0,函数f (x )在(0,+∞)上单调递减. 当a >0时,由f ′(x )<0,得0<x <1a ,由f ′(x )>0,得x >1a,所以函数f (x )在⎝⎛⎦⎤0,1a 上单调递减,在⎣⎡⎭⎫1a ,+∞上单调递增. (2)因为函数f (x )在x =1处取得极值, 所以f ′(1)=0,解得a =1, 所以f (x )≥bx -2⇒1+1x -ln xx ≥b , 令g (x )=1+1x -ln xx ,则g ′(x )=ln x -2x 2,令g ′(x )=0,得x =e 2.则g (x )在(0,e 2)上单调递减,在(e 2,+∞)上单调递增, 所以g (x )min =g (e 2)=1-1e 2,即b ≤1-1e 2,故实数b 的取值范围为⎝⎛⎦⎤-∞,1-1e 2. (3)证明:由题意可知,要证不等式e xln(1+y )>e yln(1+x )成立,只需证e x +1ln (x +1)>e y +1ln (y +1)成立.构造函数h (x )=e xln x(x >e),则h ′(x )=e xln x -e x x ln 2x =e x ⎝⎛⎭⎫ln x -1x ln 2x>0. 所以h (x )在(e ,+∞)上单调递增, 由于x >y >e -1,所以x +1>y +1>e , 所以e x +1ln (x +1)>e y +1ln (y +1),即e x ln(1+y )>e y ln(1+x ).1.已知函数f (x )=(x -1)(x 2+2)e x -2x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)证明:f (x )>-x 2-4.解:(1)因为f ′(x )=2x (x -1)e x +x (x 2+2)e x -2=x 2(x +2)e x -2, 所以f ′(0)=-2.因为f (0)=-2,所以曲线y =f (x )在点(0,f (0))处的切线方程为2x +y +2=0. (2)证明:要证f (x )>-x 2-4,只需证(x -1)(x 2+2)e x >-x 2+2x -4, 设g (x )=-x 2+2x -4=-(x -1)2-3,h (x )=(x -1)(x 2+2)e x , 则h ′(x )=x 2(x +2)e x .由h ′(x )≥0,得x ≥-2,故h (x )在[-2,+∞)上单调递增; 由h ′(x )<0,得x <-2,故h (x )在(-∞,-2)上单调递减, 所以h (x )min =h (-2)=-18e 2. 因为e ≈2.718,所以-18e 2>-3. 又g (x )max =-3,所以g (x )max <h (x )min , 从而(x -1)(x 2+2)e x >-x 2+2x -4, 即f (x )>-x 2-4. 2.(理)已知函数f (x )=e x+m-x 3,g (x )=ln(x +1)+2.(1)若曲线y =f (x )在点(0,f (0))处的切线斜率为1,求实数m 的值; (2)当m ≥1时,证明:f (x )>g (x )-x 3. 解:(1)因为f (x )=e x +m-x 3,所以f ′(x )=e x+m-3x 2.因为曲线y =f (x )在点(0,f (0))处的切线斜率为1, 所以f ′(0)=e m =1,解得m =0. (2)证明:因为f (x )=e x+m-x 3,g (x )=ln(x +1)+2,所以f (x )>g (x )-x 3等价于e x +m-ln(x +1)-2>0.当m ≥1时,e x +m-ln(x +1)-2≥e x +1-ln(x +1)-2.要证e x+m-ln(x +1)-2>0,只需证明e x +1-ln(x +1)-2>0.设h (x )=e x +1-ln(x +1)-2,则h ′(x )=e x +1-1x +1. 设p (x )=e x +1-1x +1,则p ′(x )=e x +1+1(x +1)2>0, 所以函数p (x )=h ′(x )=e x +1-1x +1在(-1,+∞)上单调递增. 因为h ′⎝⎛⎭⎫-12=e 12-2<0,h ′(0)=e -1>0, 所以函数h ′(x )=e x +1-1x +1在(-1,+∞)上有唯一零点x 0,且x 0∈⎝⎛⎭⎫-12,0. 因为h ′(x 0)=0,所以e x 0+1=1x 0+1,即ln(x 0+1)=-(x 0+1). 当x ∈(-1,x 0)时,h ′(x )<0,当x ∈(x 0,+∞)时,h ′(x )>0,所以当x =x 0时,h (x )取得最小值h (x 0),所以h (x )≥h (x 0)=e x 0+1-ln(x 0+1)-2=1x 0+1+(x 0+1)-2>0. 综上可知,当m ≥1时,f (x )>g (x )-x 3.(文)已知函数f (x )=(ax -1)ln x +x 22. (1)若a =2,求曲线y =f (x )在点(1,f (1))处的切线l 的方程;(2)设函数g (x )=f ′(x )有两个极值点x 1,x 2,其中x 1∈(0,e],证明g (x 1)-g (x 2)≥-4e. 解:(1)当a =2时,f ′(x )=2ln x +x -1x +2,f ′(1)=2,f (1)=12, ∴切线l 的方程为y -12=2(x -1),即4x -2y -3=0. (2)函数g (x )=a ln x +x -1x +a ,定义域为(0,+∞),则g ′(x )=1+a x +1x 2=x 2+ax +1x 2. 令g ′(x )=0,得x 2+ax +1=0,其两根为x 1,x 2,且x 1+x 2=-a ,x 1x 2=1,故x 2=1x 1,a =-⎝⎛⎭⎫x 1+1x 1. ∴g (x 1)-g (x 2)=g (x 1)-g ⎝⎛⎭⎫1x 1=a ln x 1+x 1-1x 1+a -⎝⎛⎭⎫a ln 1x 1+1x 1-x 1+a =2⎝⎛⎭⎫x 1-1x 1+2a ln x 1 =2⎝⎛⎭⎫x 1-1x 1-2⎝⎛⎭⎫x 1+1x 1ln x 1. 令h (x )=2⎝⎛⎭⎫x -1x -2⎝⎛⎭⎫x +1x ln x ,x ∈(0,e], 则[g (x 1)-g (x 2)]min =h (x )min ,h ′(x )=2(1+x )(1-x )ln x x 2, 当x ∈(0,1]时,h ′(x )≤0,当x ∈(1,e]时,h ′(x )<0,即当x ∈(0,e]时,h (x )单调递减,∴h (x )min =h (e)=-4e,故g (x 1)-g (x 2)≥-4e. 3.(2018·兰州诊断)已知函数f (x )=1-x ax+ln x 在(1,+∞)上是增函数,且a >0. (1)求a 的取值范围;(2)若b >0,试证明1a +b<ln a +b b <a b . 解:(1)f ′(x )=-1ax 2+1x =ax -1ax 2, 因为f ′(x )≥0,且a >0,所以ax -1≥0,即x ≥1a. 因为x ∈(1,+∞),所以1a≤1,即a ≥1. 所以a 的取值范围为[1,+∞).(2)证明:因为b >0,a ≥1,所以a +b b >1.又f (x )=1-x ax+ln x 在(1,+∞)上是增函数, 所以f ⎝⎛⎭⎫a +b b >f (1),即1-a +b b a ·a +b b+ln a +b b >0, 化简得1a +b<ln a +b b . ln a +b b <a b 等价于ln a +b b -a b =ln ⎝⎛⎭⎫1+a b -a b<0, 令g (x )=ln(1+x )-x (x >0),则g ′(x )=11+x -1=-x 1+x<0, 所以函数g (x )在(0,+∞)上为减函数,所以g ⎝⎛⎭⎫a b =ln ⎝⎛⎭⎫1+a b -a b =ln a +b b -a b<g (0)=0, 综上,1a +b<ln a +b b <a b 得证. 4.(理)已知函数f (x )=x ln x .(1)求f (x )的单调区间和极值;(2)设A (x 1,f (x 1)),B (x 2,f (x 2)),且x 1≠x 2,证明:f (x 2)-f (x 1)x 2-x 1<f ′⎝⎛⎭⎫x 1+x 22. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +x ·1x=1+ln x . 由f ′(x )>0,得x >1e; 由f ′(x )<0,得0<x <1e, 所以f (x )的单调递增区间是⎝⎛⎭⎫1e ,+∞,单调递减区间是⎝⎛⎭⎫0,1e , f (x )极小值=f ⎝⎛⎭⎫1e =1e ln 1e =-1e,f (x )无极大值. (2)证明:不妨设x 1<x 2,f (x 2)-f (x 1)x 2-x 1<f ′⎝⎛⎭⎫x 1+x 22⇔x 2ln x 2-x 1ln x 1x 2-x 1<ln x 1+x 22+1⇔x 2ln x 2-x 1ln x 1<x 2ln x 1+x 22-x 1ln x 1+x 22+x 2-x 1⇔x 2ln 2x 2x 1+x 2<x 1ln 2x 1x 1+x 2+x 2-x 1, 两边同除以x 1得,x 2x 1ln 2·x 2x 11+x 2x 1<ln 21+x 2x 1+x 2x 1-1, 令x 2x 1=t ,则t >1,即证:t ln 2t 1+t <ln 21+t+t -1. 令g (t )=t ln 2t 1+t -ln 21+t-t +1, 则g ′(t )=ln 2t 1+t +t ·1+t 2t ·2(1+t )2+1+t 2·2(1+t )2-1=ln 2t 1+t +1-t 1+t =ln ⎝ ⎛⎭⎪⎫1+t -1t +1-t -1t +1, 令t -1t +1=x (x >0),h (x )=ln(1+x )-x , 则h ′(x )=11+x -1=-x 1+x<0,h (x )在(0,+∞)上单调递减.所以h (x )<h (0)=0, 即ln(1+x )<x ,即g ′(t )=ln ⎝ ⎛⎭⎪⎫1+t -1t +1-t -1t +1<0恒成立. 所以g (t )在(1,+∞)上是减函数.所以g (t )<g (1)=0,所以t ln 2t 1+t <ln 21+t+t -1得证. 所以f (x 2)-f (x 1)x 2-x 1<f ′⎝⎛⎭⎫x 1+x 22成立. (文)已知函数f (x )=x +a e x. (1)若f (x )在区间(-∞,2)上为单调递增函数,求实数a 的取值范围;(2)若a =0,x 0<1,设直线y =g (x )为函数f (x )的图象在x =x 0处的切线,求证:f (x )≤g (x ).解:(1)易得f′(x)=-x-(1-a)e x,由已知知f′(x)≥0对x∈(-∞,2)恒成立,故x≤1-a对x∈(-∞,2)恒成立,∴1-a≥2,∴a≤-1.故实数a的取值范围为(-∞,-1].(2)证明:a=0,则f(x)=x e x.函数f(x)的图象在x=x0处的切线方程为y=g(x)=f′(x0)(x-x0)+f(x0).令h(x)=f(x)-g(x)=f(x)-f′(x0)(x-x0)-f(x0),x∈R,则h′(x)=f′(x)-f′(x0)=1-xe x-1-x0e x0=(1-x)e x0-(1-x0)e xe x+x0.设φ(x)=(1-x)e x0-(1-x0)e x,x∈R,则φ′(x)=-e x0-(1-x0)e x,∵x0<1,∴φ′(x)<0,∴φ(x)在R上单调递减,而φ(x0)=0,∴当x<x0时,φ(x)>0,当x>x0时,φ(x)<0,∴当x<x0时,h′(x)>0,当x>x0时,h′(x)<0,∴h(x)在区间(-∞,x0)上为增函数,在区间(x0,+∞)上为减函数,∴x∈R时,h(x)≤h(x0)=0,∴f(x)≤g(x).。

相关文档
最新文档