原子物理学 量子力学导论 (3.1.2)--3.1玻尔理论的困难

合集下载

[理学]量子力学导论

[理学]量子力学导论

称为定态波函数。
2. 薛定谔方程
以 E 表示体系的能量算符的第 n 个本征值,
n
n 是与 E 相应的波函数,则体系的第 n 个 n
定态波函数是
(r , t ) n (r )e

iEn
t
含时的薛定谔方程的一般解,可以写成这 些定态波函数的线性叠加:
(r , t ) cn n (r )e
是量子力学中的电荷守恒定律。
2.4.1
4.概率流密度与概率流守恒定律
令:
i J ( * * ) 2m
称为概率流密度,由(2.4.1)式得:
ቤተ መጻሕፍቲ ባይዱ J 0 t
2.4.2
(2.4.2)式就是概率流守恒定律。
4.概率流密度与概率流守恒定律
对上式两边同时对任意空间体积 V 积分
d dV JdS dt V S
A. 薛定谔方程式量子力学的基本假设之一, 但必须指出,我们并未建立薛定谔方程, 因为只知道微分方程的解是不足以建立微 分方程的。
B. 以上对应关系式(2.3)式,只是在直角 坐标系中的对应关系,在其他坐标系中不 一定成立。
2 i U (r , t ) t 2m
2
2.3 薛定谔方程
这是概率流守恒定律的积分表示 此式表明,在空间某体积 V 内发现粒子的 概率在单位时间内的增量,必定等于在同 一时间内通过 V 的边界 S 流入体积 V 的概 率。
4.概率流密度与概率流守恒定律
A. 若以粒子的质量 m乘 和 J ,则有:
m m m (r , t )
2
是在 t 时刻在点r 的质量密度。
* t t t
*
4。概率流密度与概率流守恒定律

第三章量子力学导论1

第三章量子力学导论1

第三章量⼦⼒学导论1第三章:量⼦⼒学导论§1 玻尔理论的困难 §2 波粒⼆象性 §3 不确定关系 §4 波函数及其统计解释 §5 薛定谔⽅程 §6 平均值与算符 §7 量⼦⼒学对氢原⼦的处理1. 玻尔氢原⼦理论的成绩第⼀节玻尔理论的困难成功地解释了原⼦的稳定性、⼤⼩及氢原⼦光谱的规律性。

从理论上计算了⾥德伯常量;解决了近30年之久的巴⽿末公式之迷,打开了⼈们认识原⼦结构的⼤门,⽽且玻尔提出的⼀些概念,如能量量⼦化、量⼦跃迁及频率条件等,⾄今仍然是正确的。

能对类氢原⼦的光谱给予说明。

冲破了经典物理的束缚,提供了描述微观体系的新⽅法,为⼈们认识微观世界以及对量⼦理论的建⽴打下了基础。

22. 玻尔氢原⼦理论的困难不能解释多电⼦原⼦的光谱;不能解释谱线的强度和宽度;玻尔理论的⾓动量 L=nh/2π,与实验结果不符,按量⼦⼒学,⾓动量⼤⼩ L = l (l + 1) h ;不能说明原⼦是如何组成分⼦、构成液体和固体的;在逻辑上也存在⽭盾:把微观粒⼦看成是遵守经典⼒学规律的质点,⼜赋予它们量⼦化的特征。

3第⼆节波粒⼆象性1.经典物理中的波和粒⼦在经典波中有两个结论:要⽆限精确地测准频率,就需要花费⽆限长的时间t v ≥ 1要⽆限精确地测准波长,就必须在⽆限扩展的空间中进⾏观察。

xλ ≥ λ242. 光的波粒⼆象性 2. 光的波粒⼆象性ε = hν相对论质能关系:ε = h ν = mc2光⼦的质量:hν = h m = 2 λc cm = m0 1? v2因为:/c25光⼦的动量:p = mcλh p=数联系在⼀起的。

ε = hν光的波动性(λ)和粒⼦性(p)是通过普朗克常光在传播时显⽰出波动性,在转移能量时显⽰出粒⼦性。

光既具有粒⼦性,⼜具有波动性,即具有波粒⼆象性63.德布罗意假设—微粒的波动性 3.德布罗意假设—微粒的波动性德布罗意关系式德布罗意指出任何物体都伴随以波,不可能将物体的运动和波的传播分拆开来。

原子物理学 课后答案

原子物理学  课后答案

目录第一章原子的位形 (2)第二章原子的量子态:波尔模型 (8)第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋....................... 错误!未定义书签。

第五章多电子原理:泡利原理 (23)第六章X射线 (28)第七章原子核物理概论.......................................... 错误!未定义书签。

1.本课程各章的重点难点重点:α粒子散射实验公式推导、原子能量级、氢原子的玻尔理论、原子的空间取向量子化、物质的波粒二象性、不确定原则、波函数及其物理意义和薛定谔方程、电子自旋轨道的相互作用、两个价电子的原子组态、能级分裂、泡利原理、电子组态的原子态的确定等。

难点:原子能级、电子组态、不确定原则、薛定谔方程、能级分裂、电子组态的原子态及基态的确定等。

2.本课程和其他课程的联系本课程需在高等数学、力学、电磁学、光学之后开设,同时又是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。

3.本课程的基本要求及特点第一章原子的位形:卢瑟福模型了解原子的质量和大小、原子核式模型的提出;掌握粒子散射公式及其推导,理解α粒子散射实验对认识原子结构的作用;理解原子核式模型的实验验证及其物理意义。

第二章原子的量子态:玻尔模型掌握氢原子光谱规律及巴尔末公式;理解玻尔原子模型的基本假设、经典轨道、量子化条件、能量公式、主量子数、氢能级图;掌握用玻尔理论来解释氢原子及其光谱规律;了解伏兰克---赫兹实验的实验事实并掌握实验如何验证原子能级的量子化;理解索菲末量子化条件;了解碱金属光谱规律。

第三章量子力学导论掌握波粒二象性、德布罗意波的假设、波函数的统计诠释、不确定关系等概念、原理和关系式;理解定态薛定谔方程和氢原子薛定谔方程的解及n,l,m 三个量子数的意义及其重要性。

第四章 原子的精细结构:电子的自旋理解原子中电子轨道运动的磁矩、电子自旋的假设和电子自旋、电子量子态的 确定;了解史特恩—盖拉赫实验的实验事实并掌握实验如何验证角动量取向的量子化;理解碱金属原子光谱的精细结构;掌握电子自旋与轨道运动的相互作用;了解外磁场对原子的作用,理解史特恩—盖拉赫实验的结果、塞曼效应。

如何看待《原子物理学》中的玻尔理论与量子力学

如何看待《原子物理学》中的玻尔理论与量子力学

第20卷 第2期太原教育学院学报V o l.20N o.2 2002年6月JOURNAL OF TA I YUAN INSTITUTE OF EDUCATI ON Jun.2002如何看待《原子物理学》中的玻尔理论与量子力学赵秀琴1, 贺兴建2(1.太原师范学院,山西太原030031;2.太原市教育学院,山西太原030001)摘 要:《原子物理学》在物理学的教育和学习中有着特殊的地位,特别是量子论建立初期的知识体系,是物理学获得知识、组织知识和运用知识的典范,通过量子论建立过程的物理定律、公式后面的思想和方法的教学,使学生在原子物理的学习过程中掌握物理学的思想和方法。

关键词:原子物理学;玻尔理论;量子力学中图分类号:O562 文献标识码:A 文章编号:100828601(2002)022*******《原子物理学》在物理学的教育和学习中有着特殊的地位,特别是量子论建立的初期知识体系,是物理学获得知识、组织知识和运用知识的典范,通过不断地提出经典物理无法解决的问题,提出假设、建立模型来解释并提出新的结论和预言,再用新的实验检验、修改或推翻,让学生掌握这种常规物理学的发展模式和过程。

通过量子论的建立过程的物理定律、公式后面的思想和方法的教学,使学生在原子物理的学习过程中掌握物理学(特别是近代物理学)的思想和方法。

一、玻尔理论的创立19世纪末到20世纪初,物理学的观察和实验已开始深入到物质的微观领域。

在解释某些物理现象,如黑体辐射、光电效应、原子光谱、固体比热等时,经典物理概念遇到了困难,出现了危机。

为了克服经典概念的局限性,人们被迫在经典概念的基础上引入与经典概念完全不同的量子化概念,从而部分地解决了所面临的困难。

最先是由普朗克引入了对连续的经典力学量进行特设量子化假设。

玻尔引入了原子定态概念与角动量量子化规则取得了很大的成果,预言了未激发原子的大小,对它的数量级作出了正确的预言。

它给出了氢原子辐射的已知全部谱线的公式,它与概括了发射谱线实验事实的经验公式完全一致。

Chap03-量子力学导论

Chap03-量子力学导论
2017/4/13 22
mv r n
? h
2
r
(n=1,2,……)

驻波: 2r n n h
mv 朗之万把德布洛意的文章寄给爱因斯坦,爱因 斯坦说:“揭开了自然界巨大帷幕的一角” “瞧瞧吧,看来疯狂,可真是站得住脚啊”
2017/4/13 23
h mvr n 2
经爱因斯坦的推荐,物质波理论受到了关注。
2017/4/13
8



1928年,革命结束,量子力学的基础本质上已 经建立好了。 量子理论的主要创立者都是年轻人。1925年, 泡利25岁,海森堡和恩里克· 费米(Enrico Fermi) 24岁,狄拉克和约当23岁。薛定谔是一个大器 晚成者,36岁. 创立量子力学需要新一代物理学家并不令人惊 讶,开尔文认为基本的新物理学必将出自无拘 无束的头脑。
24
四、戴维逊—革末实验
德布罗意指出由于实物粒子的波粒二象性,当加速后的电 子穿过晶体时,将会发生电子波的衍射现象,1925年戴维孙- 革末在一次偶然的事故中将镍单晶化,电子穿过镍单晶时,观 察到电子的衍射图象(如图)
2017/4/13
25
实验结果 (1)当U不的上将出现极值。 (2)当不变时,I与U的 关系如图 当U改变时,I亦变;而 且随了U周期性的变化
15
我去过 吗??
E2
E1
2017/4/13
玻尔
这一理论是十分初步的,许多问题还没有解决
玻尔理论困难的根源
把微观粒子看做经 典力学中的质点
把经典力学的规律用于 微观粒子
根本解决途径:用全量子的观点看世界!
2017/4/13 16
§3.2

波粒二象性

第三章量子力学导论教材

第三章量子力学导论教材
随后人们从实验还发现质子、中子、原子、分 子都具有波动性。 1961年约恩还给出了电子的单缝和多缝衍射图
五 应用举例
1932年德国人鲁斯卡成功研制了电子显微镜 ; 1981年德国人宾尼格和瑞士人罗雷尔制成了扫 描隧道显微镜。 他们三人获1986年诺贝尔物理 奖。
第三节 不确定关系
海森堡(W.K.Heisenberg, 1901--1976)德国理论物理学家。 他在1925年为量子力学的创立作 出了最早的贡献,于26岁时提出 的不确定关系和物质波的概率解 释,奠定了量子力学的基础。为 此,他于1932年获诺贝尔物理学 奖。
4 德布罗意波的实验证明
(1) 戴维孙 — 革末电子衍射实验(1927年)
U
K
电子束
M
电子枪 检测器
G
散 射 线
电子被镍晶体衍射实验
将54eV电子束(λ =0.167nm)直射在镍单晶上,按
布喇格衍射公式, 2d sin n, d a sin,
取a=0.215nm (镍晶格常数),算得 50.9 0 ,
玻尔曾用过的角动量 量子化条件。
mvr n h n
2
(2)把
p

nh
2r

n r
代入氢原子总能量表达式
E

p2 2m

e2
4 r

n22 2mr 2

e2
4 r
由dE / dr 0 给出
rn

2 m
4
e2
n2

a1n2
0.053 n2nm
这正是玻尔的量子化的轨道半径。
经典力学中,物体位置、动量确定后,物体以后 的运动位置就可确定。但微观粒子,具有显著的 波动性,不能同时确定坐标和动量。实物粒子波 粒二象性包含更深层的物理含义。

原子物理学课程学习资料

原子物理学课程学习资料

《原子物理学》课程学习资料(2011年5月许迈昌编写)一、教学目的:本课程是应用物理学的一门专业基础课,属普通物理课程,其任务使学生掌握原子的组成成份,理解组成原子的电子、原子核之间的相互作用及电子的运动规律,理解原子的量子理论,理解电子的量子角动量和量子磁矩,理解磁场对原子磁矩的作用,理解原子能级结构,理解原子辐射规律和原子光谱.理解原子核的组成以及核衰变、核反应等现象.了解原子物理的实验方法及具体应用,提高学生科学研究的素质. 二、课程内容要求第一章 原子的位形:卢瑟福模型理解电子和原子核的电量、质量和大小量级,使学生掌握原子线度及组成成份,掌握原子的卢瑟福有核模型,理解α粒子散射的实验和理论.瞄准距离21201cot ,224Z Z e a b a Eθπε==第二章 原子的量子态:玻尔模型理解黑体辐射、光电效应规律,使学生理解微观领域物理量的量子化规律,逐步理解微观领域的研究方法,理解原子核对核外电子的基本作用——库仑场,理解玻尔原子量子能级(假说)与原子光谱(实验测量)的关系.光量子的能量与动量,/E h p h c νν==,类氢离子光谱波数242222230211111(),,()(4)21e A A e e Ae m E R R Z R R m c m n n ch hc hc m παλπε∞=-===='+。

第三章 量子力学导论:理解波粒二象性,/,E h h p p mv νλ===、不确定关系/2,/2x x p E t ∆∆≥∆∆≥ 、波函数、概率密度2P ψ=、态叠加原理,薛定谔方程等概念与规律.使学生了解研究微观领域的基础——量子力学的基本概念和基本理论,掌握原子的角动量量子规则. 第四章 原子的精细结构:电子的自旋理解原子磁矩、电子自旋的概念,使学生掌握微观领域独有的自旋运动,理解自旋与轨道相互作用,理解关于原子角动量的矢量模式,理解原子角动量的耦合方式,理解原子磁矩与原子角动量的关系,理解磁场对原子磁矩的作用,理解原子光谱精细结构产生的原因,理解塞曼效应与原子角动量的关系.222ˆˆ31()ˆ22J SL g J-=+,,j z j j B m g μμ=-,0,1,2,,j m j=±±± ,类氢原子L-S 耦合43()2(1)Z U E n l l α∆=+,2211()4e eB m g m g m ννπ'=+-,帕刑-巴拉克效应(2)2s L ee BU m m m =+ , 第五章 多电子原子:泡利原理理解氦光谱和能级、角动量耦合、泡利原理、周期表、多电子组态和原子能态、洪特定则的内容.掌握两个角动量耦合的一般法则,理解两个价电子原子的光谱和能级,理解泡利原理,了解元素周期表、原子壳层理论,了解多电子组态和原子能态的关系,了解用ML 投影方法给出原子基态.第六章X射线:理解X射线产生的机制,了解X射线的吸收,了解吸收限、掌握康普顿散射.第七章原子核物理学概论:认识核的基本特性,掌握结合能、核自旋、核磁矩等概念,了解核力、核结构模型,了解核衰变的统计规律、α衰变、β衰变、了解γ衰变.参考书目1 韦斯科夫.二十世纪物理学.科学出版社,19792 费米夫人.原子在我家中.科学出版社,19793 王福山.近代物理学史研究(一)(1983),(二)(1986).复旦大学出版社.二、部分习题(一)论述题1.夫朗克—赫兹实验的原理和结论。

《原子物理学》教学大纲

《原子物理学》教学大纲

《原子物理学》课程教学大纲一、课程基本信息英文名称 Atomic Physics 课程代码 PHYS2030课程性质 大类基础课程 授课对象 物理学专业学 分 3 学 时 54主讲教师 修订日期 2021年9月指定教材 杨福家,原子物理学(第四版)[M], 北京:高等教育出版社,2008.二、课程目标(一)总体目标:使学生通过以原子结构为中心,以实验事实为线索,了解原子和原子核层次的物质结构及运动和变化规律,揭示宏观现象与规律的本质;学习相关问题所需要的量子力学基本概念,掌握物质微观结构三个层次的物理过程、研究方法,培养创新思维;对物质世界有更深入的认识,获得在本课程领域内分析和处理一些最基本问题的初步能力。

(二)课程目标:课程目标1:使学生初步了解并掌握原子的结构和运动规律,了解物质世界的原子特性,原子层次的基本相互作用,为今后继续学习量子力学、固体物理学、近代物理实验等课程打下坚实基础。

课程目标2:在学习原子物理学的过程中引导学生学会近代物理的研究方法,提高其分析问题和解决问题的能力。

课程目标3:使学生了解并适当涉及一些正在发展的原子物理学科前沿,扩大视野,引导学生勇于思考、乐于探索发现,培养其良好的科学素质。

课程目标4:通过重大科学发现过程的讲授和科学家生平事迹的介绍,培养学生树立辩证唯物主义世界观。

通过探究式教学,锻炼学生的科学探究和创新能力。

通过学习和了解人类对物质结构认识的发展史、教材中的重大科学事件和物理学家的传记等,体会物理学家的物理思想和科学精神,培养学生的爱国热情,探索未知、追求真理、永攀高峰的责任感和使命感。

(三)课程目标与毕业要求、课程内容的对应关系表1:课程目标与课程内容、毕业要求的对应关系表课程目标对应课程内容对应毕业要求课程目标1第一章第二章第三章第四章第五章第六章 掌握数学、物理相关的基础知识、基本物理实验方法和实验技能, 具有运用物理学理论和方法解决问题、解释或理解物理规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典物理学的困难
进入 20 世纪后,经典物理学受到冲击。经典理论在解 释一些新的试验结果上遇到了严重的困难。
主要是以下以个问题: 1 )黑体辐射问题 ; 2 )光电效应 ; 3 )氢原子光谱
新的实验现象的发现暴露了经典理论的局限性,迫使 人们去寻找新的物理概念,建立新的理论,于是量子力 学就在这场物理学的危机中诞生。
子化概念与经典力学不相容。带 有人为的性质,其物理本质还不 清楚。
爱因斯坦与玻尔
§3-1 玻尔理论的局限性
玻尔量子理论首次打开了认识原子 结构的大门,取得了很大的成功。 但是它的局限性和存在的问题也逐 渐为人们所认识。
玻尔理论将微观粒子视为经典力学 中的质点,把经典力学的规律用于 微观粒子,使其理论中有难以解决 的内在矛盾,故有重大缺陷。
如:为什么核与电子间的相互作用存在, 但处于定态的加速电子不辐射电磁波?电 子跃迁时辐射(或吸收)电磁波的根本原 因何在?……
WERNER HEISENBERG
(1901-1976)
薛定谔 ERWIN SCHRODINGER (1887-1961)
狄拉克 PAUL DIRAC (1902-1984)
量子论
原子内的微观世界:
1 量子.化(连续无级) 2 随机.性(必然性、因果关系) 3 模糊.量(测量的宏观准确性)
Atomic Physics 原子物理学
第三章:量子力学导论
第一节 玻尔理论的困难 第二节 波粒二相性
第三节 不确定关系 第四节 波函数极其统计解释 第五节 薛定谔方程 第六节 平均值与算符 第七节 氢原子的薛定谔方程
பைடு நூலகம்
经典物理学的成功
19 世纪末,物理学理论在当时看来已经发 展到相当完善的阶段。主要表现在以下两个方 面: (1) 应用牛顿力学讨论了从天体到地上各 种尺度的力学客体的运动。牛顿力学应用于分 子运动也取得有益的结果。 1897 年汤姆逊发 现了电子,这个发现表明电子的行为类似于一 个牛顿粒子。 (2) 光的波动性在 1803 年由托马斯 . 杨 的衍射实验有力揭示出来,麦克斯韦在 1864 年发现的光和电磁现象之间的联系把光的波动 性置于更加坚实的基础之上。
在“物质粒子的波粒二象性”思想的基础上,于 19251928 年间由海森堡、玻恩、薛定谔、狄拉克等人建立了量 子力学,它与相对论成了近代物理学的两大理论支柱。
量子力学的本质特征在 1927 年海森堡提出的不确定关系 中得到明确的反映,它是微观客体波粒二象性的必然结果。
玻恩
M.Born
海森堡
(1882-1970)
1905 年爱因斯坦在解释光电效应时提出光量子概 念。 1913 年玻尔引入量子态概念建立玻尔模型并成功地 解释了氢光谱。 1925 年泡利提出的不相容原理和同年乌 仑贝克、古兹米特提出的电子自旋假说,可很好地解释 元素周期性、塞曼效应等一系列实验事实。至此形成的 量子论称为旧量子论,有严重的缺陷。
(薛定谔的非难“糟透的跃迁”:在两能级间跃迁的电 子处于什么状态?)
玻尔理论的“缺陷” :
1. 不能证明较复杂的原子甚至比 氢稍复杂的氦原子的光谱;
2. 不能给出光谱的谱线强度(相 对强度);
3. 不能解释氢光谱的精细结构; 4. 只能处理周期运动不能处理非
束缚态问题,如散射问题; 5. 不能自洽。在理论上,能量量
相关文档
最新文档