中考数学-专题练习:几何基础

合集下载

初三数学几何试题及答案

初三数学几何试题及答案

初三数学几何试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是直角三角形的判定条件?A. 两边相等B. 两边的夹角为90°C. 两边的夹角为60°D. 三边相等答案:B2. 一个圆的半径为5,那么它的直径是多少?A. 10B. 15C. 20D. 25答案:A3. 一个矩形的长是宽的两倍,如果宽是4厘米,那么矩形的面积是多少平方厘米?A. 16B. 32C. 64D. 128答案:B4. 一个等腰三角形的底边长为6厘米,两腰长为5厘米,那么它的高是多少厘米?A. 4B. 5C. 6D. 7答案:A5. 一个正方体的体积是27立方厘米,那么它的表面积是多少平方厘米?A. 54B. 108C. 216D. 486答案:A6. 一个圆的周长是2πr,那么它的面积是多少?A. πrB. πr²C. 2πr²D. 4πr²答案:B7. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长是多少?A. 5B. 7C. 8D. 9答案:A8. 一个平行四边形的对角线互相垂直且相等,那么这个平行四边形是:A. 矩形B. 菱形C. 正方形D. 梯形答案:B9. 一个三角形的三个内角分别是40°、50°和90°,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B10. 一个圆的面积是π,那么它的半径是多少?A. 1B. 2C. 3D. 4答案:A二、填空题(每题4分,共20分)1. 如果一个圆的直径是8厘米,那么它的半径是______厘米。

答案:42. 一个三角形的三个内角之和是______度。

答案:1803. 一个矩形的长是10厘米,宽是5厘米,那么它的对角线长度是______厘米。

答案:134. 如果一个等腰三角形的顶角是80°,那么它的底角是______度。

答案:505. 一个正五边形的内角和是______度。

中考数学几何专题复习

中考数学几何专题复习

专题 几何专题题型一考察概念基础知识点型例1如图1,等腰△ABC 的周长为21,底边BC = 5,AB 的垂直平分线是DE ,则△BEC 的周长为 ; 例2 如图2,菱形ABCD 中,60A ∠=°,E 、F 是AB 、AD 的中点,若2EF=,菱形边长是______.图1 图2 图3 例3 已知AB 是⊙O 的直径,PB 是⊙O 的切线,AB =3cm,PB =4cm,则BC = . 题型二折叠题型:折叠题要从中找到对就相等的关系,然后利用勾股定理即可求解; 沿DE 折叠,若48CDE ∠=°,则APD ∠等例4 D E ,分别为AC ,BC 边的中点,于 ;例5如图4.矩形纸片ABCD 的边长AB =4,AD =2.将矩形纸片沿 EF 折叠, 使点A 与点C 重合,折叠后在其一面着色图,则着色部分的面积为A . 8B .112C . 4D .52EDBC A P图4图5 图6题型三涉及计算题型:常见的有应用勾股定理求线段长度,求弧长,扇形面积及圆锥体积,侧面积,三角函数计算等;例6如图3,P 为⊙O 外一点,PA 切⊙O 于A,AB 是⊙O 的直径,PB 交⊙O 于C,PA =2cm,PC =1cm,则图中阴影部分的面积S 是A.2235cm π- B 2435cm π- C 24235cm π- D 2232cm π- 图3 题型四证明题型: 第二轮复习之几何一——三角形全等判定方法1:SAS例1如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且 AE=AF; 求证:△ACE ≌△ACF例2 在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED . 1求证:△BEC ≌△DEC ;2延长BE 交AD 于F ,当∠BED =120°时,求∠EFD 的度数.BD GFF ADFEBCDCBA EFG判定方法2:AASASA例3 如图,ABCD 是正方形,点G 是BC 上的任意一点,DE AG ⊥于 E ,BF DE ∥,交 AG 于F ,求证:AFBF EF =+.例4如图,在□ABCD 中,分别延长BA,DC 到点E,使得AE=AB, CH=CD 连接EH,分别交AD,BC 于点F,G;求证:△AEF ≌△CHG.判定方法3:HL 专用于直角三角形例5在△ABC 中,AB=CB,∠ABC=90o,F 为AB 延长线上一点,点E在BC上, 且AE=CF. 1求证:Rt △AB E ≌Rt △CBF; 2若∠CAE=30o,求∠ACF 度数.对应练习1.如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F.1证明:∠DFA = ∠FAB; 2证明: △ABE≌△FCE.2.如图,点E 是正方形ABCD 内一点,CDE ∆是等边三角形,连接EB 、EA ,延长BE 交边AD 于点F . 1求证:BCE ADE ∆≅∆;5分2求AFB ∠的度数.5分3.如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与AB 相交于F .1求证:△CEB ≌△ADC ;2若AD =9cm,DE =6cm,求BE 及EF 的长.第二轮复习之几何二——三角形相似Ⅰ.三角形相似的判定例1如图,在平行四边形ABCD 中,过点A 作AE ⊥BC,垂足为E,连接DE,F 为线段DE 上一点,且∠AFE =∠B. 1求证:△ADF ∽△DEC2若AB =4,AD =33,AE =3,求AF 的长. 例2如图9,点P 是正方形ABCD 边AB 上一点不与点A .B重合,连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE, PE 交边BC 于点F .连接BE 、DF;E B D A CF AF DEB CABCEFABCDF EF ED CBA 1求证:∠ADP=∠EPB ; 2求∠CBE 的度数; 3当APAB的值等于多少时.△PFD ∽△BFP 并说明理由.2.相似与圆结合,注意求证线段乘积,一般是转化证它所在的三角形相似;将乘积式转化为比例式→比例式边长定位到哪个三角形→找条件证明所在的三角形相似 例3 如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 交AC 与E,交BC 与D .求证:1D 是BC 的中点;2△BEC∽△ADC; 3BC 2=2AB CE .3.相似与三角函数结合,①若题目给出三角函数值一般会将给出的三角函数值用等角进行转化,然后求线段的长度②求某个角的三角函数值,一般会先将这个角用等角转化,间接求三角函数值例4如图,点E 是矩形ABCD 中CD 边上一点,⊿BCE 沿BE 折叠为⊿BFE,点F 落在AD 上.1求证:⊿ABE∽⊿DFE ;2若sin∠DFE=31,求tan∠EBC 的值. 练习一、选择题1、如图1,将非等腰ABC △的纸片沿DE 折叠后,使点A 落在BC 边上的点F 处.若点D 为AB 边的中点,则下列结论:①BDF △是等腰三角形;②DFE CFE ∠=∠;③DE 是ABC △的中位线,成立的有 A .①②B .①③C .②③D .①②③图1 图22.如图,等边△ABC 中,BD=CE,AD 与BE 相交于点P,则∠APE 的度数是A .45° B.55° C.60° D.75° 3.如图3,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE等于A .1013 B .1513 C .6013 D .7513MEDCBA图3 图4 图5GFE CBADAO BCXY4.如图4,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan∠AEC=CDBC;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM⊥DM;④BM=DM.正确结论的个数是 A1个 B2个 C3个 D4个5.如图5,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两个动点,且总使AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G,则FGAF= . 6.如图6,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,AC 平分∠BCD ,∠ADC = 120°,四边形ABCD 的周长为10cm .图中阴影部分的面积为 A. 32B.3C. 23D. 43图6 图7对折,使点A 落在点1A 处;已知7.如图7,在直角坐标系中,将矩形OABC 沿OB3=OA ,1=AB ,则点1A 的坐标是 ; A 、23,23 B 、23,3 C 、23,23 D 、21,23 三、解答题1如图,矩形ABCD 中,点E 是BC 上一点,AE =AD,DF⊥AE 于F,连结DE.求证:DF =DC .2.如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内.求证:1∠PBA =∠PCQ =30°;2PA =PQ .3.如图9,已知点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA .1求证:DE 平分∠BDC ;2若点M 在DE 上,且DC=DM ,求证: ME=BD . 4.如图5AB 是⊙O 的直径,AC 是弦,CD 是⊙O 的切线,C 为切点,AD ⊥CD 于点D .求证:1∠AOC =2∠ACD ; 2AC 2=AB ·AD . 、5.把一张矩形ABCD 纸片按如图方式折叠,使点A 与点E 重合,点C 与点F 重合E 、F 两点均在BD 上,折痕分别为BH 、DG;1求证:△BHE ≌△DGF ;2若AB =6cm,BC =8cm,求线段FG 的长;6.如图8,在Rt △ABC 中,∠BAC=90°,AC=2AB,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合, 连结BE 、EC .试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.ABCDEAC B DPQABCDEF 第二轮复习之几何三——四边形例1 如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD、等 边△ABE;已知∠BAC=30o,EF⊥AB,垂足为F,连结DF;1试说明AC=EF ;2求证:四边形ADFE 是平行四边形;例2如图,AD ∥FE,点B 、C 在AD 上,∠1=∠2,BF =BC⑴求证:四边形BCEF 是菱形⑵若AB =BC =CD,求证:△ACF ≌△BDE例3如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一 点,连结AG,点E 、F 分别在AG 上,连接BE 、DF,∠1=∠2 ,∠3=∠4.1证明:△ABE≌△DAF; 2若∠AGB=30°,求EF 的长.例4如图,在等腰梯形ABCD 中,已知AD BC ∥,AB DC =,2AD =, 4BC =延长BC 到E ,使CE AD =.1证明:BAD DCE △≌△;2如果AC BD ⊥,求等腰梯形ABCD 的高DF 的值.对应练习1.如图,在菱形ABCD 中,∠A=60°,点P 、Q 分别在边AB 、BC 上,且AP=BQ . 1求证:△BDQ ≌△ADP ;2已知AD=3,AP=2,求cos ∠BPQ 的值结果保留根号.2、如图,E F ,是四边形ABCD 的对角线AC 上两点,AF CE DF BE DFBE ==,,∥. 求证:1AFD CEB △≌△.2四边形ABCD 是平行四边形.3. 如罔7,在一方形ABCD 中.E 为对角线AC 上一点,连接EB 、ED,1求证:△BEC ≌△DEC :2延长BE 交AD 于点F,若∠DEB=140°.求∠AFE 的度数.4.如图,在梯形ABCD 中,AD ∥BC ,延长CB 到点E ,使BE =AD ,连接DE 交AB 于点M .1求证:△AMD ≌△BM E ;2若N 是CD 的中点,且M N=5,BE =2,求BC 的长.第二轮复习之几何四——圆Ⅰ、证线段相等例1:如图,AB 是⊙O 的直径,C 是的中点,CE ⊥AB 于 E ,BD 交CE 于点F .1求证:CF=BF ;2若CD =6, AC =8,则⊙O 的半径为 ___ ,CE 的长是 ___ .ABDEFCDAB EC F ACBDEFO2、证角度相等例2如图,AB 是⊙O 的直径,C 为圆周上一点,30ABC ∠=︒,过点B 的切线与CO 的延长线交于点D .:求证:1CAB BOD ∠=∠;2ABC ∆≌ODB ∆. 3、证切线点拨:证明切线的方法——连半径,证垂直;根据:过半径的外端且垂直于半径的直线是圆的切线例3如图,四边形ABCD 内接于⊙O,BD 是⊙O 的直径, AE⊥CD 于点E,DA 平分∠BDE;1求证:AE 是⊙O 的切线;2若∠DBC=30°,DE=1cm,求BD 的长;例4如图,点A 、B 、C 、D 都在⊙O 上,OC⊥AB,∠ADC=30°. 1求∠BOC 的度数;2求证:四边形AOBC 是菱形. 对应练习1.如图,已知⊙O 的直径AB 与弦CD 互相垂直,垂足为点E . ⊙O 的切线BF 与弦AD的延长线相交于点F ,且AD =3,cos ∠BCD= . 1求证:CD ∥BF ; 2求⊙O 的半径; 3求弦CD 的长.2.如图,点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,且AB =AD =AO .1求证:BD 是⊙O 的切线.2若点E 是劣弧BC 上一点,AE 与BC 相交于点F,且△BEF 的面积为8,cos∠BFA=32,求△ACF 的面积.1.一副三角板,如图所示叠放在一起,则图中∠α的度数是A .75B .60C .65D .55图1 图22.如图2,在边长为4的等边三角形ABC 中,AD 是BC 边上的高,点E 、F 是AD 上的两点,则图中阴影部分的面积是A .43B .33C .23D .33.如图3,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则AP 长不可能是DCBOADOBCA E 例7图43DOEC O图 8OFE BCADCB A O P D图3 图4 A B C D74. 如图4,直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是 A .247B .73C .724D .135.如图5,ABC △是等腰直角三角形,BC 是斜边,将ABP △绕点A 逆时针旋转后,能与ACP '△重合,如果3AP =,那么PP '的长等于 A .32B .23C .42 D .336. 图6,已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F,G,若∠ADF=80o ,则∠EGC 的度数为 图5 图67.如图,已知:在平行四边形ABCD 中,AB=4cm,AD=7cm,∠ABC 的平分线交AD•于点E,交CD 的延长线于点F,则DF=______cm .8.如图,矩形ABCD 中,AB =2,BC =3,对角线AC 的垂直平分线分别交AD,BC 于点E 、F,连接CE,则CE 的长________.9.如图,BD 是⊙O 的直径,OA ⊥OB,M 是劣弧错误!上一点,过点M 作⊙O 的切线MP 交OA 的延长线于P 点,MD 与OA 交于点N; 1求证:PM=PN ; 2若BD=4,PA=32AO,过B 点作BC ∥MP 交⊙O 于C 点,求BC 的长. 10.如图,在△ABC 中,以AB 为直径的⊙O 交BC 于点P,PD ⊥AC 于点D,且PD 与⊙O 相切.1求证:AB =AC ;2若BC =6,AB =4,求CD 的值.11.一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF,∠F=∠ACB=90°, ∠ E=45°,∠A=60°,AC=10,试求CD 的长.12.如图,四边形ABCD 是边长为a 的正方形,点G ,E 分别是边AB ,BC 的中点,∠AEF =90o,且EF 交正方形外角的平分线CF 于点F . 1证明:∠BAE =∠FEC ; 2证明:△AGE ≌△ECF ; 3求△AEF 的面积.13.如图,矩形ABCD 中,53AB AD ==,.点E 是CD 上的动点,以AE 为直径的O ⊙与AB 交于点F ,过点F 作FG BE ⊥于点G .1当E 是CD 的中点时:①tan EAB ∠的值为______________; ② 证明:FG 是O ⊙的68CEABD切线;2试探究:BE 能否与O ⊙相切 若能,求出此时DE 的长;若不能,请说明理由.几何之——解直角三角形1在△ABC 中,∠C=90°,sinA=45,则tanB =A .43B .34C .35D .452、在 ABC 中,若|sinA-22 |+23-cosB 2=0, ∠A.∠B 都是锐角,则∠C 的度数是A. 750B. 9003、如下左图,在△ABC 中,∠C=90°,AB=13,BC=5,则sinA 的值是A 、513B 、1213 C 、512D 、1354如上右图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=2, BC=5,CD=3,则tanC 等于A 、34B 、43C 、35D 、455、如,在矩形ABCD 中,DE⊥AC 于E,设∠ADE=α,且53cos =α, AB = 4, 则AD 的长为 . A3 B316 C 320 D 516 6在锐角△ABC 中,∠BAC=60°,BD、CE 为高,F 为BC 的中点,连接DE 、DF 、EF,则结论:①DF=EF;②AD:AB=AE :AC ;③△DEF 是等边三角形;④BE+CD=BC;⑤当∠ABC=45°时,BE=√2DE 中,一定正确的有A 、2个B 、3个C 、4个D 、5个7.084sin 45(3)4-︒+-π+-=为528.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离米,则这 个破面的坡度为 . 9.如图,已知直线1l∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= . 直角三角形常见模型1 张华同学在学校某建筑物的C 点处测得旗杆顶部A 点的仰角为30°,旗杆底部B 点的俯角为45°.若旗杆底部B 点到建筑物的水平距离BE=9米,旗杆台阶高1米,试求旗杆AB 的高度;2.海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B 在海船的北偏东DE OCBG FAABC DαAABCDEADBE图6i =1:3C60°方向,2小时后船行驶到C 处,发现此时灯塔B 在海船的北偏西45方向,求此时灯塔B 到C 处的距离; 3某年入夏以来,松花江哈尔滨段水位不断下降,一条船在松花江某段自西向东沿直线航行,在A 处测得航标C 在北偏东60°方向上;前进100m 到达B 处,又测得航标C 在北偏东45°方向上如图,在以航标C 为圆心,120m 为半径的圆形区域内有浅滩,如果这条船继续前进,是否有被浅滩阻碍的危险4如图6,梯形ABCD 是拦水坝的横断面图,图中3:1=i 是指坡面的铅直高度DE 与水平宽度CE 的比,∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD 的面积.结果保留三位有效数字.参考数据:3≈,2≈3 1.73≈。

人教版九年级数学中考几何基础专项练习及参考答案

人教版九年级数学中考几何基础专项练习及参考答案

人教版九年级数学中考几何基础专项练习例1. 如图, 某数学兴趣小组想测量一棵树CD 的高度, 他们先在点A 处测得树顶C 的仰角为30︒,然后沿AD 方向前行10m ,到达B 点, 在B 处测得树顶C 的仰角高度为60(A ︒、B 、D 三点在同一直线上) . 请你根据他们测量数据计算这棵树CD 的高度 (结 果精确到0.1)m . (参 1.414≈ 1.732)≈【解答】解:CBD A ACB ∠=∠+∠,603030ACB CBD A ∴∠=∠-∠=︒-︒=︒, A ACB ∴∠=∠, 10BC AB ∴==(米).在直角BCD ∆中,sin 105 1.7328.7CD BC CBD =∠==≈⨯=(米). 答: 这棵树CD 的高度为 8.7 米 .例2. 如图, 在边长为 6 的正方形ABCD 中,E 是边CD 的中点,将ADE ∆沿AE 对折至AFE ∆,延长EF 交边BC 于点G ,连接AG . (1) 求证:ABG AFG ∆≅∆; (2) 求BG 的长 .【解答】解: (1) 在正方形ABCD 中,AD AB BC CD ===,90D B BCD ∠=∠=∠=︒, 将ADE ∆沿AE 对折至AFE ∆,AD AF ∴=,DE EF =,90D AFE ∠=∠=︒, AB AF ∴=,90B AFG ∠=∠=︒,又AG AG =,在Rt ABG ∆和Rt AFG ∆中,AG AGAB AF=⎧⎨=⎩, ()ABG AFG HL ∴∆≅∆;(2)ABG AFG ∆≅∆,BG FG ∴=,设BG FG x ==,则6GC x =-,E 为CD 的中点,3CE EF DE ∴===, 3EG x ∴=+,∴在Rt CEG ∆中,2223(6)(3)x x +-=+,解得2x =,2BG ∴=.例3. 如图,Rt ABC ∆中,30B ∠=︒,90ACB ∠=︒,CD AB ⊥交AB 于D ,以CD 为较短的直角边向CDB ∆的同侧作Rt DEC ∆,满足30E ∠=︒,90DCE ∠=︒,再用同样的方法作Rt FGC ∆,90FCG ∠=︒,继续用同样的方法作Rt HIC ∆,90HCI ∠=︒. 若AC a =,求CI 的长 .【解答】解: 解法一: 在Rt ACB ∆中,30B ∠=︒,90ACB ∠=︒, 903060A ∴∠=︒-︒=︒, CD AB ⊥, 90ADC ∴∠=︒, 30ACD ∴∠=︒,在Rt ACD ∆中,AC a =,12AD a ∴=,由勾股定理得:CD ==同理得:3224aFC ==,3248a CH =⨯=, 在Rt HCI ∆中,30I ∠=︒,2HI HC ∴==,由勾股定理得:98aCI ==, 解法二:30DCA B ∠=∠=︒, 在Rt DCA ∆中,cos30CDAC︒=,cos302CD AC a ∴=︒=, 在Rt CDF ∆中,cos30CFCD︒=,3224CF a a ==,同理得:3cos304CH CF a =︒==, 在Rt HCI ∆中,30HIC ∠=︒,tan 30CHCI︒=,98CI a ==; 答:CI 的长为98a.例4. 如图所示, 已知四边形ABCD ,ADEF 都是菱形,BAD FAD ∠=∠,BAD ∠为锐角 .(1) 求证:AD BF ⊥;(2) 若BF BC =,求ADC ∠的度数 .【解答】(1) 证明: 如图, 连结DB 、DF . 四边形ABCD ,ADEF 都是菱形,AB BC CD DA ∴===,AD DE EF FA ===. 在BAD ∆与FAD ∆中,AB AF BAD FAD AD AD =⎧⎪∠=∠⎨⎪=⎩, BAD FAD ∴∆≅∆, DB DF ∴=,D ∴在线段BF 的垂直平分线上, AB AF =,A ∴在线段BF 的垂直平分线上, AD ∴是线段BF 的垂直平分线, AD BF ∴⊥;解法二:四边形ABCD ,ADEF 都是菱形,AB BC CD DA ∴===,AD DE EF FA ===.AB AF ∴=,BAD FAD ∠=∠,AD BF ∴⊥(等 腰三角形三线合一) ;(2) 如图, 设AD BF ⊥于H ,作DG BC ⊥于G ,则四边形BGDH 是矩形,12DG BH BF ∴==. BF BC =,BC CD =,12DG CD ∴=. 在直角CDG ∆中,90CGD ∠=︒,12DG CD =,30C ∴∠=︒, //BC AD ,180150ADC C ∴∠=︒-∠=︒.例5. 如图,矩形ABCD 中,AB AD >,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .(1)求证:ADE CED ∆≅∆; (2)求证:DEF ∆是等腰三角形.【解答】证明:(1)四边形ABCD 是矩形,AD BC ∴=,AB CD =.由折叠的性质可得:BC CE =,AB AE =,AD CE ∴=,AE CD =.在ADE ∆和CED ∆中,AD CEAE CD DE ED =⎧⎪=⎨⎪=⎩,()ADE CED SSS ∴∆≅∆.(2)由(1)得ADE CED ∆≅∆,DEA EDC ∴∠=∠,即DEF EDF ∠=∠,EF DF ∴=,DEF ∴∆是等腰三角形.例6. 如图所示,A 、B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段)AB ,经测量,森林保护中心P 在A 城市的北偏东30︒和B 城市的北偏西45︒的方向上,已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为1.732≈ 1.414)≈【解答】解:过点P 作PC AB ⊥,C 是垂足. 则30APC ∠=︒,45BPC ∠=︒,tan30AC PC =︒,tan 45BC PC =︒. AC BC AB +=,tan30tan 45100PC PC km ∴︒+︒=,∴(1)1003PC +=,50(350(3 1.732)63.450PC km km ∴=-≈⨯-≈>.答:森林保护区的中心与直线AB 的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.例7. 在菱形ABCD 中, 对角线AC 与BD 相交于点O ,5AB =,6AC =. 过D 点作//DE AC 交BC的延长线于点E . (1) 求BDE ∆的周长;(2) 点P 为线段BC 上的点, 连接PO 并延长交AD 于点Q . 求证:BP DQ =.【解答】(1) 解:四边形ABCD 是菱形,5AB BC CD AD ∴====,AC BD ⊥,OB OD =,3OA OC ==4OB ∴==,28BD OB ==,//AD CE ,//AC DE ,∴四边形ACED 是平行四边形,5CE AD BC ∴===,6DE AC ==,BDE ∴∆的周长是:810624BD BC CE DE +++=++=.(2) 证明:四边形ABCD 是菱形,//AD BC ∴,QDO PBO ∴∠=∠,在DOQ ∆和BOP ∆中QDO PBO OB ODQOD POB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()DOQ BOP ASA ∴∆≅∆, BP DQ ∴=.例8. 如图所示,在矩形ABCD 中,12AB =,20AC =,两条对角线相交于点O .以OB 、OC为邻边作第1个平行四边形1OBB C ,对角线相交于点1A ;再以11A B 、1A C 为邻边作第2个平行四边形111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边作第3个平行四边形1121O B B C ⋯依此类推. (1)求矩形ABCD 的面积;(2)求第1个平行四边形1OBB C ,第2个平行四边形和第6个平行四边形的面积.【解答】解:(1)四边形ABCD 是矩形,20AC =,12AB =90ABC ∴∠=︒,16BC =1216192ABCD S AB BC ∴=⋅=⨯=矩形.(2)1//OB B C ,1//OC BB ,∴四边形1OBB C 是平行四边形.四边形ABCD 是矩形,OB OC ∴=,∴四边形1OBB C 是菱形.1OB BC ∴⊥,1182A B BC ==,11162OA OB ===; 11212OB OA ∴==,111116129622OBB C S BC OB ∴=⋅=⨯⨯=菱形; 同理:四边形111A B C C 是矩形,11111116848A B C C S A B B C ∴=⋅=⨯=矩形;⋯⋯第n 个平行四边形的面积是:1922n nS =6619232S ∴==.例9. 如图,PA 与O 相切于A 点,弦AB OP ⊥,垂足为C ,OP 与O 相交于D 点,已知2OA =,4OP =.(1)求POA ∠的度数;(2)计算弦AB 的长.【解答】解:(1)PA 与O 相切于A 点,OAP ∴∆是直角三角形,2OA =,4OP =,1cos 2OA POA OP ∴∠==,60POA ∴∠=︒.(2)直角三角形中60AOC ∠=︒,2OA =,sin 6022AC OA ∴=︒=⨯=AB OP ⊥,2AB AC ∴==例10. 如图, 分别以Rt ABC ∆的直角边AC 及斜边AB 向外作等边ACD ∆及等边ABE ∆. 已知30BAC ∠=︒,EF AB ⊥,垂足为F ,连接DF .(1) 试说明AC EF =;(2) 求证: 四边形ADFE 是平行四边形 .【解答】证明: (1)Rt ABC ∆中,30BAC ∠=︒,2AB BC ∴=,又ABE ∆是等边三角形,EF AB ⊥,2AB AF ∴=AF BC ∴=,在Rt AFE ∆和Rt BCA ∆中,AF BC AE BA =⎧⎨=⎩, ()AFE BCA HL ∴∆≅∆,AC EF ∴=;(2)ACD ∆是等边三角形,60DAC ∴∠=︒,AC AD =,90DAB DAC BAC ∴∠=∠+∠=︒又EF AB ⊥,//EF AD ∴,AC EF =,AC AD =,EF AD ∴=,∴四边形ADFE 是平行四边形 .例11. 已知:如图,E 、F 在AC 上,//AD CB 且AD CB =,D B ∠=∠.求证:AE CF =.【解答】证明://AD CB ,A C ∴∠=∠,在ADF ∆和CBE ∆中,A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ADF CBE ASA ∴∆≅∆,AF CE ∴=,AF EF CE EF ∴+=+,即AE CF =.例12. 如图,直角梯形纸片ABCD 中,//AD BC ,90A ∠=︒,30C ∠=︒,折叠纸片使BC 经过点D ,点C 落在点E 处,BF 是折痕,且8BF CF ==.(1)求BDF ∠的度数;(2)求AB 的长.【解答】解:(1)8BF CF ==,30FBC C ∴∠=∠=︒,折叠纸片使BC 经过点D ,点C 落在点E 处,BF 是折痕,30EBF CBF ∴∠=∠=︒,60EBC ∴∠=︒,90BDF ∴∠=︒;(2)60EBC ∠=︒60ADB ∴∠=︒,8BF CF ==.sin 60BD BF ∴=︒=∴在Rt BAD ∆中,sin606AB BD =⨯︒=.例13. 已知: 如图, 在四边形ABCD 中,//AB CD ,对角线AC 、BD 相交于点O ,BO DO =. 求证: 四边形ABCD 是平行四边形 .【解答】证明://AB CD ,ABO CDO ∴∠=∠,在ABO ∆与CDO ∆中,ABO CDO BO DOAOB COD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABO CDO ASA ∴∆≅∆,AB CD ∴=,∴四边形ABCD 是平行四边形 .18.(7分)如图,小山岗的斜坡AC 的坡度是3tan 4α=,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6︒,求小山岗的高AB (结果取整数:参考数据:sin 26.60.45︒=,cos26.60.89︒=,tan 26.60.50)︒=.【解答】解:在直角三角形ABC 中,3tan 4AB BC α==,43ABBC ∴=在直角三角形ADB 中,tan 26.60.50ABBD ∴=︒=即:2BD AB =200BD BC CD -==422003AB AB ∴-=解得:300AB =米,答:小山岗的高度为300米.例14. 如图, 矩形ABCD 中, 以对角线BD 为一边构造一个矩形BDEF ,使得另一边EF 过原矩形的顶点C .(1) 设Rt CBD ∆的面积为1S ,Rt BFC ∆的面积为2S ,Rt DCE ∆的面积为3S ,则1S = 23S S +(用“>”、 “=”、 “<” 填空) ;(2) 写出如图中的三对相似三角形, 并选择其中一对进行证明 .【解答】(1) 解:112S BD ED =⨯,BDEF S BD ED =⨯矩形, 112BDEF S S ∴=矩形, 2312BDEF S S S ∴+=矩形, 123S S S ∴=+.(2) 答:BCD CFB DEC ∆∆∆∽∽.证明BCD DEC ∆∆∽;证明:90EDC BDC ∠+∠=︒,90CBD BDC ∠+∠=︒,EDC CBD ∴∠=∠,又90BCD DEC ∠=∠=︒,BCD DEC ∴∆∆∽.。

备战2023年九年级中考数学夯实基础知识点专题集训(几何计算与证明综合)+

备战2023年九年级中考数学夯实基础知识点专题集训(几何计算与证明综合)+

备战2023年中考数学夯实基础知识点专题集训(几何计算与证明综合)(总分:100分时间:60分钟) 一、选择题(30分)题号 1 2 3 4 5 6 7 8 9 10选项1. 如图,点A,B都在格点上,若213C=B,则AC的长为()A13B413C.13D.3132. 如图,在△ABC中,∠C=90°,D是BC边上一点,∠ADC=3∠BAD,BD=2,DC=1,则AB的值为( )A.1+13 B.3 2 C.2+ 5 D.193.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF;把纸片展平后再次折叠,使点A落在EF上的点A'处,得到折痕BM,BM与FF相交于点N.若直线B A’交直线CD于点O,BC=5,EN=1,则OD的长为()A132B133C134D135A.2 B.6C.13D134. 如图,线段10AB=,点C、D在AB上,1AC BD==.已知点P从点C出发,以每秒1个单位长度的速度沿着AB 向点D 移动,到达点D 后停止移动,在点P 移动过程中作如下操作:先以点P 为圆心,PA 、PB 的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面.设点P 的移动时间为(秒).两个圆锥的底面面积之和为S .则S 关于t 的函数图像大致是( )A .B .C .D .5.如图,AB 是⊙O 的直径,点C 为圆上一点,3,AC ABC =∠的平分线交AC 于点D ,1CD =,则⊙O 的直径为( )A 3B .23C .1D .26. 缙云山是国家级自然风景名胜区,上周周末,小明和妈妈到缙云山游玩,登上了香炉峰观景塔,从观景塔底中心D 处水平向前走14米到A 点处,再沿着坡度为0.75的斜坡AB 走一段距离到达B 点,此时回望观景塔,更显气势宏伟,在B 点观察到观景塔顶端的仰角为45︒再往前沿水平方向走27米到C 处,观察到观景塔顶端的仰角是22︒,则观景塔的高度DE 为( )(tan22°≈0.4)A .21米B .24米C .36米D .45米7. 如图,等边△ABC 的边长为4,点O 是△ABC 的外心,∠FOG =120°.绕点O 旋转∠FOG ,分别交线段AB 、BC 于D 、E 两点.连接DE 给出下列四个结论:①OD =OE ;②S △ODE =S △BDE ;③S 四边形ODBE 233BDE 周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .48. 如图,P 是面积为S 的平行四边形ABCD 内任意一点,PAD △的面积为1S ,△PBC 的面积为2S ,则( )A .122S S S +>B .122S S S +<C .122S S S +=D .12S S +的大小与P 点位置有关9. 如图,P 为AB 上任意一点,分别以AP 、PB 为边在AB 同侧作正方形APCD 、正方形PBEF,设CBE α∠=,则AFP ∠ 为( )A .2αB .90°﹣αC .45°+αD .90°﹣12α10. 如图,已知正方形ABCD ,点E 是边AB 的中点,点O 是线段AE 上的一个动点(不与A 、E 重合),以O 为圆心,OB 为半径的圆与边AD 相交于点M ,过点M 作⊙O 的切线交DC 于点N ,连接OM 、ON 、BM 、BN .记△MNO、△AOM、△DMN 的面积分别为S 1、S 2、S 3,则下列结论不一定成立的是( )A .S 1>S 2+S 3B .△AOM∽△DMNC .∠MBN=45°D .MN=AM+CN二、填空题:(24分) 11. 已知357abc==,那么a b ca-+=_________. 12.如图,数字代表所在正方形的面积,则A 所代表的正方形的面积为_________.13.如图,点C 、D 分别是半圆AOB 上的三等分点,若阴影部分的面积为32π,则半圆的半径OA 的长为__________.14. 如图,数字代表所在正方形的面积,则A 所代表的正方形的面积为_________.15. 如图,AB =12cm ,CA ⊥AB 于A ,DB ⊥AB 于B ,且AC =4cm ,P 点从B 向A 运动,速度为1cm/s,Q点从B向D运动,速度为2cm/s,P、Q两点同时出发,运动______秒后△CAP与△PQB全等.16.如图所示,将一个半径10cmOA=,圆心角90AOB∠=︒的扇形纸板放置在水平面的一条射线OM上.在没有滑动的情况下,将扇形AOB沿射线OM翻滚至OB再次回到OM上时,则半径OA的中点P运动的路线长为_____________cm.三、解答题(46分)17. 如图,将一张长方形纸片ABCD沿E折叠,使,C A两点重合.点D落在点G 处.已知=4AB,8BC=.(1)求证:AEF∆是等腰三角形;(2)求线段FD的长.18. 如图,在△ABC中,D是BC上的点,E是AD上一点,且AB ADAC CE=,∠BAD=∠ECA.(1)求证:AC2=BC•CD;(2)若AD是△ABC的中线,求CEAC的值.19. 如图,在▱ABCD中,E为CD边的中点,连接BE并延长,交AD的延长线于点F,延长ED至点G,使DG DE=,分别连接AE,AG,FG.(1)求证:BCE FDE≅△△;(2)当BF平分ABC∠时,四边形AEFG是什么特殊四边形?请说明理由.20.如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.21. 定义:有两边之比为12的三角形叫做智慧三角形.(1)如图1,在智慧三角形△ABC中,AB=2,BC=22AD为BC边上的中线,求AD的值;AC(2)如图2,△ABC是⊙O的内接三角形,AC为直径,过AB的中点D作DE⊥OA,交线段OA于点F,交⊙O于点E,连接BE交AC于点G.①求证:△ABE是智慧三角形;②设sin∠ABE=x,OF=y,若⊙O的半径为2,求y关于x的函数表达式;(3)如图3,在(2)的条件下,当AF:FG=5:3时,求∠BED的余弦值。

初三数学几何题基础

初三数学几何题基础

初三数学几何题基础
初三数学的几何题通常涵盖了以下基础知识点:
平面几何:
直线、线段、射线、角度等基本概念;
三角形、四边形、多边形的性质;
圆的基本性质,如圆心、半径、直径、圆周、圆心角、弧等;
圆的切线、弦、扇形、圆心角与弧度的关系等;
相似三角形的性质和判定方法。

空间几何:
空间中点、直线、平面、角度等基本概念;
空间图形的投影、旋转、平移等基本变换;
空间直角坐标系、向量的基本概念和运算;
空间中的立体图形,如立方体、棱柱、棱锥、球体等的性质和计算。

解题方法:
运用几何知识进行证明、推理和计算;
运用相似、共线、共点、平行线等几何关系进行问题的分析和解决;
运用等角定理、垂直定理、全等定理、三角函数等几何定理进行问题的求解;
运用几何图形的性质和计算方法解决实际问题。

几何证明:
利用已知条件证明几何命题的正确性;
运用几何定理和性质进行推理和证明;
运用反证法、归谬法等逻辑推理方法进行几何证明。

初三数学的几何题涉及的知识点较为基础,但在解题过程中需要学生灵活运用几何知识和方法,善于分析问题、推理和计算。

通过大量的练习和实践,可以提高学生的几何解题能力和应用能力。

2024年数学九年级上册几何基础练习题(含答案)

2024年数学九年级上册几何基础练习题(含答案)

2024年数学九年级上册几何基础练习题(含答案)试题部分一、选择题(每题2分,共20分)1. 在直角三角形ABC中,∠C是直角,AC=3cm,BC=4cm,求AB的长度。

A. 5cmB. 6cmC. 7cmD. 8cm2. 在等腰三角形ABC中,AB=AC,∠BAC=60°,求∠ABC的度数。

A. 60°B. 120°C. 30°D. 45°3. 在平行四边形ABCD中,AB=CD,AD=BC,∠A=90°,求∠C的度数。

A. 90°B. 45°C. 135°D. 180°4. 在梯形ABCD中,AB//CD,AD=BC,∠ABC=60°,求∠ADC的度数。

A. 60°B. 120°C. 90°D. 45°5. 在正方形ABCD中,对角线AC和BD相交于点O,求∠AOD的度数。

A. 45°B. 90°C. 135°D. 180°6. 在圆O中,半径OA=5cm,弦AB=8cm,求∠AOB的度数。

A. 30°B. 60°C. 90°D. 120°7. 在三角形ABC中,∠BAC=90°,BC=10cm,AC=6cm,求AB的长度。

A. 8cmB. 12cmC. 16cmD. 20cm8. 在等边三角形ABC中,AB=AC=BC,求∠ABC的度数。

A. 60°B. 120°C. 30°D. 45°9. 在矩形ABCD中,AB=CD,AD=BC,∠ABC=90°,求∠ADC的度数。

A. 90°B. 45°C. 135°D. 180°10. 在菱形ABCD中,AB=BC=CD=DA,∠ABC=60°,求∠ADC的度数。

山东各2019年中考数学分类解析-专项8:平面几何基础

山东各2019年中考数学分类解析-专项8:平面几何基础

山东各2019年中考数学分类解析-专项8:平面几何基础专题8:平面几何基础一、选择题1. 〔2018山东滨州3分〕借助一副三角尺,你能画出下面哪个度数的角【】A、65°B、75°C、85°D、95°【答案】B。

【考点】角的计算。

【分析】利用一副三角板可以画出75°角,用45°和30°的组合即可。

应选B。

2. 〔2018山东滨州3分〕一个三角形三个内角的度数之比为2:3:7,这个三角形一定是【】A、等腰三角形B、直角三角形C、锐角三角形D、钝角三角形【答案】D。

【考点】三角形内角和定理,比例的计算。

【分析】按比例计算出各角的度数即可作出判断:三角形的三个角依次为180°×22+3+7=30°,180°×32+3+7=45°,180°×72+3+7=105°,所以这个三角形是钝角三角形。

应选D。

3. 〔2018山东德州3分〕不一定在三角形内部的线段是【】A、三角形的角平分线B、三角形的中线C、三角形的高D、三角形的中位线【答案】C。

【考点】三角形的角平分线、中线、高和中位线。

【分析】因为在三角形中,它的中线、角平分线和中位线一定在三角形的内部,而钝角三角形的高在三角形的外部。

应选C。

4. 〔2018山东东营3分〕以下图形中,是中心对称图形的是【】A、 B、 C、 D、【答案】B。

【考点】中心称对形。

【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,A、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;B、将此图形绕圆心旋转180度正好与原来的图形重合,所以这个图形是中心对称图形;C、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;D、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形。

中考数学几何图形专题训练50题(含答案)

中考数学几何图形专题训练50题(含答案)

中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.下列四个图形中,不是正方体展开图的()A.B.C.D.2.小军从A地沿北偏西60°方向走10m到B地,再从B地向正南方向走20m到C 地,此时小军离A地().A.B.10m C.15m D.3.如图,在直线l上有A,B,C三点,则图中线段共有()A.4条B.3条C.2条D.1条4.如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.5.下列四个立体图形中,是棱锥的是()A.B.C .D .6.已知线段10cm AB =,点C 是直线AB 上一点,4cm BC =,点M 是线段AB 的中点,点N 是线段BC 的中点,则线段MN 的长度是( )A .3cmB .5cmC .3cm 或7cmD .5cm 或7cm7.下列说法正确的是( )A .一个平角就是一条直线B .连接两点间的线段,叫做这两点的距离C .两条射线组成的图形叫做角D .经过两点有一条直线,并且只有一条直线8.如图,OC 平分∠AOB ,若∠AOC =27°32′,则∠AOB =( )A .55°4′B .55°24′C .54°14′D .54°4′ 9.图,有一块含有30︒角的直角三角板的两个顶点放在直尺的对边上.如果242∠=︒,那么1∠的度数是( )A .18︒B .17︒C .16︒D .15︒ 10.下列各图都是由6个正方形组成的平面图形,其中不能看做是正方体表面展开图的是( )A.B.C.D.11.如图是一个正方体的表面展开图,则原正方体中与“中”字所在的面相对的面上标的字是()A.我B.的C.梦D.国12.如图所示,以O为顶点且小于180 的角有()A.6个B.7个C.8个D.9个13.下列说法中,正确的是().A.平角是一条直线B.周角是一条射线C.两条射线组成的图形是角D.一条射线绕它的端点旋转而成的图形叫做角14.如图,是一个正方体骰子的表面展开图,将其折叠成正方体骰子(点数朝外),如果1点在上面,3点在左面,在前面的点数为()A.2B.4C.5D.615.如图是一个小正方形的展开图,把展开图折叠成小正方形后,有“祝”字一面的相对面上的字是()A.考B.试C.成D.功16.如图,点C,D在线段AB上,AC=13AB,CD=12CB,若AB=3,则图中所有线段长的和是()A.6B.8C.10D.1217.下列几何体中,由曲面和平面围成的是()A.三棱柱B.圆锥C.球体D.正方体18.已知:如图,C是线段AB的中点,D是线段BC的中点,AB=20 cm,那么线段AD等于()A.15 cm B.16 cm C.10 cm D.5 cm19.下列说法中正确的是()A.两条射线组成的图形叫做角;B.各边相等的多边形叫做正多边形;C.一个圆分割成圆心角度数比位1∠2∠3的三个扇形,则最小扇形的圆心角是60°;D.小于平角的角可分为锐角和钝角两类.20.A、B两辆汽车沿着笔直的公路行驶,A车从甲地出发,B车从乙地出发,行驶到途中两车相遇,各自仍朝前进的方向行驶,到了目的地后立即返回,过了某一时刻,两车又在原地点相遇,则两车必定是()A.沿着同一条公路行驶B.沿着两条不同的公路行驶C.以上两种情况都有可能D.以上都不对二、填空题21.已知36a∠=︒,则a∠的补角的度数是__________.22.已知∠α=65°30′,则∠α的余角大小是_______.23.图中以A 为端点的线段共有______条.24.计算:34°25′20″×3=_______________25.一个角的余角比它的补角的14还少12︒,则这个角的度数为_______. 26.如图,从A 处观测C 处仰角30CAD ∠=︒,从B 处观测C 处的仰角45CBD ∠=︒,从C 处观测A 、B 两处的视角ACB =∠______度.27.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角形的斜边上,AC 与DM 、DN 分别交于点E 、F ,把∠DEF 绕点D 旋转到一定位置,使得DE=DF ,则∠BDN 的度数是_________ .28.数轴上的点P 对应的数是1-,将点P 向右移动8个长度单位得到点Q ,则线段PQ 的中点在数轴上对应的数是____________.29.在∠ABC 中,∠ABC 和∠ACB 的平分线交于点O ,且∠BOC =110°,则∠A 的度数是____________.30.若∠α=20°40′,则∠α的补角的大小为_____.31.如图,A 岛在B 岛的北偏东30°方向,C 岛在B 岛的北偏东80°方向,A 岛在C 岛北偏西40°方向,从A 岛看B ,C 两岛的视角∠BAC 是______ 度.32.点A 和点B 在同一平面上,如果从A 观察B ,B 在A 的北偏东14°方向,那么从B 观察A ,A 在B 的_____方向.33.已知线段AB=10cm ,直线AB 上有一点C ,且BC=4cm ,M 是线段AC 的中点,则线段BM 的长是_cm .34.如图,O 的弦AB 长为2,CD 是O 的直径,30,15ADB ADC ∠=︒∠=︒.∠O 的半径长为_________.∠P 是CD 上的动点,则PA PB +的最小值是_________.35.如图,将一副直角三角尺按图∠放置,使三角尺∠的长直角边与三角尺∠的某直角边在同一条直线上,则图∠中的∠1=______°.36.如图,已知∠ABC 的内角∠A=α°,分别作内角∠ABC 与外角∠ACD 的平分线,两条平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…以此类推得到∠A 2014,则∠A 2014的度数是_______.37.一副直角三角板叠放如图,90C E ∠=∠=︒.现将含45°角的三角板ADE 固定不动,把含30°角的三角板ABC (其中30CAB ∠=︒)绕顶点A 顺时针旋转角α(0180α︒<<︒).当旋转角在30°~180°的旋转过程中,使得两块三角板至少有一组对应边(所在的直线)互相平行,此时符合条件的α=________.38.已知∠AOB =80°,OC 为从O 点引出的任意一条射线,若OM 平分∠AOC ,ON 平分∠BOC ,则∠MON 的度数是_____.39.如图所示,若图中共有m 条线段,n 条射线,则m n +=__________________.40.如图,请你在有序号的方格中选出两个画出阴影,使它们与图中四个有阴影的正方形一起可以构成正方体表面的展开图,你选择的两个正方形是____________ (填序号,任填一组即可).三、解答题41.如图,直线AB 和CD 相交于点O ,35BOD ∠=︒,OA 平分EOC ∠,求EOD ∠的度数.42.图中哪些图形是立体图形,哪些是平面图形?平面图形:_______________;立体图形:_______________.43.如图,已知长方形ABCD 的长AB x =米,宽BC y =米,x ,y 满足()2540x y -+-=,一动点P 从A 出发以每秒1米的速度沿着A D C B →→→运动,另一动点Q 从B 出发以每秒2米的速度沿B C D A →→→运动,P ,Q 同时出发,运动时间为t .(1)x =______________,y =______________.(2)当 4.5t =时,求APQ △的面积;(3)当P ,Q 都在DC 上,且PQ 距离为1时,求t 的值44.如图1,已知A 、O 、B 三点在同一直线上,射线OD 、OE 分别平分∠AOC 、∠BOC .(1)求∠DOE 的度数;(2)如图2,在∠AOD 内引一条射线OF OC ⊥,其他不变,设()090DOF αα∠=︒︒<<︒.∠求∠AOF 的度数(用含α的代数式表示);∠若∠BOD 是∠AOF 的2倍,求∠DOF 的度数.45.如图,在77⨯的正方形网格中有一个格点ABC .(1)在图中作出ABC 关于直线l 对称的111A B C △(2)在直线l 上找到一点D ,使得AD CD +的值最小(在图中标出D 点位置,保留作图痕迹)46.如图,直线,EF CD 相交于点,,O OA OB OC ⊥平分AOF ∠.(1)若40AOE ∠=︒,求∠BOD 的度数;(2)若30BOE ∠=︒,求∠DOE 的度数.47.如图,点C 是线段AB 的中点,点D 在线段AB 上,且13AD AB =.(1)若4cm AD =,求线段CD 的长.(2)若3cm CD =,求线段AB 的长.48.(1)如图1,将两个正方形的一个顶点重合放置,若40AOD ∠=︒,则COB ∠=______度;(2)如图2,将三个正方形的一个顶点重合放置,求∠1的度数;(3)如图3,将三个正方形的一个顶点重合放置,若OF 平分DOB ∠,那么OE 平分AOC ∠吗?为什么?49.如图,90,60AOB COD AOC ∠=∠=︒∠=︒,射线ON 以10度/秒的速度从OD 出发绕点O 顺时针转动到OA 时停止,同时射线OM 以25度/秒的速度从OA 出发绕点O 逆时针转动到OD 时停止,设转动时间为t 秒.(1)当OM ON 、重合时,求t 的值;(2)当ON 平分BOD ∠时,试通过计算说明OM 平分AOD ∠;(3)当t 为何值时,MON ∠与AOD ∠互补?参考答案:1.D【分析】由正方体展开图的特征即可判定出正方体的展开图.【详解】解:由正方体展开图的特征即可判定D不是正方体的展开图,故选:D.【点睛】本题主要考查了几何体的展开图,解题的关键是熟记正方体展开图的特征.2.D【详解】试题分析:根据题意可得:A、B、C三点构成直角三角形,BC为斜边,则根据直角三角形的性质可得:,故选D.3.B【详解】线段有:AB、AC、BC.故选:B.4.D【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【详解】面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选D.【点睛】此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.5.B【分析】逐一判断出各选项中的几何体的名称即可得答案.【详解】A是棱柱,不符合题意;B是棱锥,符合题意,C是球体,不符合题意;D是圆柱,不符合题意;故选B.【点睛】本题考查了几何体的识别,熟练掌握常见几何体的图形特征是解题的关键.6.C=-;点C在点B右侧时,【分析】根据题意知,点C在点B左侧时,MN BM BN+MN BM BN =,因为点M 是线段AB 的中点,点N 是线段BC 的中点,分别算出,BM BN 长度,代入计算即可.【详解】解:因为点C 是直线AB 上一点,所以需要分类讨论:(1)点C 在点B 左侧时,作图如下:∠10cm AB =,4cm BC =, ∠152BM AB cm ==,122BN BC cm ==, 又∠MN BM BN =-,∠=523MN cm -=.(2)当点C 在点B 右侧时,作图如下:由(1)知,152BM AB cm ==,122BN BC cm ==, ∠+MN BM BN =,∠+=5+2=7cm MN BM BN =,综上所述,MN 的长度是3cm 或7cm .故选:C【点睛】本题考查线段长度的计算,根据题意分类讨论是解题关键.7.D【分析】根据平角、两点间的距离、角的定义和直线公理逐项进行解答即可得.【详解】A 、平角的两条边在一条直线上,故本选项错误;B 、连接两点的线段的长度叫做两点间的距离,故此选项错误;C 、有公共端点是两条射线组成的图形叫做角,故此选项错误;D 、经过两点有一条直线,并且只有一条直线,正确,故选:D .【点睛】本题考查了平角、两点间的距离、角的概念以及直线公理的内容,熟练掌握相关知识是解题的关键.8.A【分析】由OC 平分∠AOB 可得到∠AOB=2∠AOC ,代入计算可得解.【详解】解:OC 平分∠AOB ,则227322?554AOB AOC ∠=∠=︒'⨯=︒', 故选:A【点睛】本题考查了角平分线和角的计算,比较基础.9.A【分析】如解图所示,依据60ABC ∠=︒,242∠=︒,即可得到18EBC ∠=︒,再根据BE CD ,即可得出118EBC ∠=∠=︒.【详解】:如图,∠60ABC ∠=︒,242∠=︒,∠18EBC ∠=︒,∠BE CD ,∠118EBC ∠=∠=︒,故选:A .【点睛】此题考查了平行线的性质,掌握两直线平行,内错角相等是解决此题的关键. 10.D【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:正方体共有11种表面展开图,A 、B 、C 项都是正方体的展开图,D 出现了“田”字格,故不是正方体的展开图;故选择:D.【点睛】本题考查的是正方体的展开图,以及学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.11.C【分析】利用正方体及其表面展开图的特点解题.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“国”与面“我”相对,面“梦”与面“的”相对,“中”与面“梦”相对.故选:C.12.D【分析】根据图形,找出以O为顶点的所有小于180°的角即可.【详解】解:以O为顶点且小于180°的角有:∠AOC,∠COD,∠DOE,∠EOB,∠AOD,∠AOE,∠COE,∠COB,∠DOB.一共有9个;故选择:D.【点睛】本题考查了角的表示,解题的关键是要找到图中两两相交直线的交点,作为角的顶点,且找出的角要小于180°.13.D【分析】根据角的定义即可判断.【详解】如果一个角的终边继续旋转,旋转到与始边成一条直线时,所成的角叫做平角,故A错误;当终边旋转到与始边重合时,所成的角叫做周角,故B错误;有公共端点的两条不重合的射线组成的图形叫做角,故C错误;一条射线绕它的端点旋转而成的图形叫做角,故D正确.故选D.【点睛】此题考查了角的定义,掌握角的两种定义和周角、平角的定义是解题的关键. 14.A【分析】利用正方体及其表面展开图的特点可知“3点”和“4点”相对,“5点”和“2点”相对,“6点”和“1点”相对,当1点在上面,3点在左面,可知5点在后面,继而可得出2点在前面.【详解】这是一个正方体的表面展开图,共有六个面,其中面“3点”和面“4点”相对,面“5点”和面“2点”相对,面“6点”和面“1点”相对,如果1点在上面,3点在左面,可知5点在后面,2点在前面;故选A.【点睛】此题考查学生的空间想象能力,先找到每个面的对面,进而确定它们的位置. 15.D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答即可.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,∠“祝”与“功”是相对面.故选:D.【点睛】本题主要考查了展开与折叠,注意正方体的空间图形,从相对面入手,分析及解答问题.16.C【详解】解:∠AB=3,∠AC=13AB=13×3=1,∠BC=3-1=2,∠CD=12CB=12×2=1,∠AD=1+1=2,CB=1+1=2,DB=2-1=1,即图中所有线段长的和是AC+AD+AB+CD+CB+DB=1+2+3+1+2+1=10.故选C.17.B【分析】三棱柱由平面组成、圆锥由曲面和平面组成、球体由曲面组成、正方体由平面组成,结合各图形的特点可得出答案.【详解】解:三棱柱由平面组成、圆锥由曲面和平面组成、球体由曲面组成、正方体由平面组成;故选:B【点睛】此题考查了认识立体图形的知识,熟练掌握是解题的关键.18.A【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∠点C是线段AB的中点,AB=20cm,∠BC=12AB=12×20cm=10cm,∠点D是线段BC的中点,∠BD=12BC=12×10cm=5cm,∠AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.19.C【详解】A. 由公共端点的两条射线组成的图形叫做角,故不正确;B. 各边相等,且各角也相等的多边形叫做正多边形,故不正确;C. 一个圆分割成圆心角度数比位1∠2∠3的三个扇形,则最小扇形的圆心角是1360123⨯++=60°,正确; D. 小于平角的角可分为锐角,直角和钝角三类,故不正确.故选C .【点睛】本题考查了角、正多边形、圆心角的定义,以及角的分类,熟练掌握各知识点是解答本题的关键.20.A【详解】解:根据题意,两车必定沿着同一条公路行驶.故选A .21.144°【分析】根据补角的定义即可求出a ∠的补角的度数.【详解】解: a ∠的补角的度数是180°-a ∠=180°-36°=144°故答案为: 144°.【点睛】此题考查的是求一个角的补角,掌握补角的定义是解决此题的关键.22.24°30′##24.5°【分析】如果两个角的和为90°,则这个两个角互为余角,根据互为余角的两个角的和为90°作答.【详解】解:根据定义∠α的余角度数是90°﹣65°30′=24°30′.故答案为:24°30′.【点睛】本题考查角互余的概念:和为90度的两个角互为余角.属于基础题,较简单. 23.3【分析】根据线段的定义分别写出各条线段即可【详解】解:图中以A 为端点的线段有线段AB ,线段AC ,线段AD ,共3条故答案为:3【点睛】本题考查了线段的定义,属于基础题,较简单24.10316'︒【分析】直接根据角的运算计算即可.【详解】160',1'60''︒==3425'20''310316'∴︒⨯=︒故答案为:10316'︒.【点睛】本题主要考查角的运算,掌握度分秒之间的关系是解题的关键.25.76︒【分析】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒-,根据题意列出方程即可求解.【详解】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒-()190180124x x ∴-=-- 19045124x x -=-- 3574x = 4573x =⨯ 76x =︒即这个角为76︒故答案为76︒.【点睛】此题主要考查角度的计算,解题的关键是根据题意列出方程求解.26.15【分析】根据三角形外角的性质求解即可.【详解】解:∠CBD ∠是ABC 的外角,∠CBD CAD ACB ∠=∠+∠,∠453015ACB CBD CAD ∠=∠-∠=︒-︒=︒.故答案为:15【点睛】本题考查了仰角的概念和三角形外角性质,掌握三角形的外角等于与它不相邻的两个内角的和是解题关键.27.120°【分析】根据等腰三角形的性质和特殊直角三角形的角度求得∠DFC ,进一步利用三角形外角的性质即可得到结果.【详解】解:如图,∠DE=DF ,∠EDF=30°, ∠∠DFC=12(180°-∠EDF )=75°,∠∠C=45°,∠∠BDN=∠DFC+∠C=75°+45°=120°.故答案为:120°.【点睛】本题考查了旋转的性质,直角三角形的性质,等腰三角形的性质,掌握三角形的内角和与外角的性质是解题的关键.28.3【分析】利用数轴得到点Q表示的数,再根据线段中点定义可得答案.【详解】解:∠点P对应的数是-1,将点P向右移动8个长度单位得到点Q,∠点Q表示的数为:-1+8=7,∠线段PQ的中点对应的数是1713 2-+-=故答案为:3.【点睛】本题考查了数轴,掌握数轴上两点间的距离是解决此题的关键.29.40°【分析】根据三角形内角和定理列式求出∠OBC+∠OCB,再根据角平分线的定义求出∠ABC+∠ACB,然后利用三角形的内角和定理列式计算即可得解.【详解】解:如图,在∠BOC中,∠BOC = 110°,∴∠OBC + ∠OCB = 180°- 110°= 70°,OB、OC分别是∠ABC和∠ACB的平分线,∴∠ABC = 2∠OBC,∠ACB=2∠OCB,∴∠ABC +∠ACB = 2×70°= 140°,∴在∠ABC中,∠A = 180°-(∠ABC+∠ACB)= 180°- 140°= 40°,故答案为:40°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.30.159°20′【详解】试题分析:根据∠α的补角=180°﹣∠α,代入求出即可.解:∠∠α=20°40′,∠∠α的补角=180°﹣20°40′=159°20′,故答案为159°20′.考点:余角和补角;度分秒的换算.31.70°【详解】由题意可知∠DBC=80°,∠DBA=30°,∠∠ABC=50°,又∠DB∠EC,∠ECA=40°,∠∠ECB=100°,∠∠ACB=60°,∠∠BAC=180°-60°-50°=70°32.南偏西14°.【分析】根据方位角的概念,画图正确表示出方位角,利用平行线的性质即可求解.【详解】由题意可知,∠1=14°,∠AC∠BD,∠∠1=∠2=14°,根据方向角的概念可知,由点B测点A的方向为南偏西14°方向.故答案为:南偏西14°.【点睛】此题考查的知识点是方向角,解答此类题需要从运动的角度,正确画出方位角,即可解答.33.3或7【分析】根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【详解】当点C在线段AB上时,AC=AB−BC=10−4=6,点M是线段AC的中点,AC=3,MA=12BM=AB−AM=10−3=7;当点C在线段的反向延长线上时,AC=AB+BC=10+4=14,点M是线段AC的中点,AM=1AC=7,2BM=AB−AM=10−7=3,故答案为:3或7.【点睛】本题考查了两点间的距离,利用线段的和差、线段中点的性质是解题关键,要分类讨论,以防遗漏.34. 2 【分析】∠连接,OA OB ,易证AOB 是等边三角形,弦AB 长为2,2OA OB ==,即可得到答案;∠先证90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,再用勾股定理求出AE 即可.【详解】解:∠连接,OA OB ,∠30,ADB ∠=︒ ∠60AOB ∠=︒, ∠OA OB =,∠AOB 是等边三角形, ∠弦AB 长为2, ∠2OA OB ==, 即O 的半径长为2, 故答案为:2 ∠∠15ADC ∠=︒, ∠230AOC ADC ︒∠=∠=, ∠90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,∠60BAO ∠=︒,∠2OA OE ==, ∠30OAE AEB ︒∠=∠=, ∠90BAE BAO OAE ∠=∠+∠=︒,∠AE ==即PA PB +的最小值是故答案为:【点睛】此题考查了圆周角定理、勾股定理、等边三角形的判定和性质、轴对称最短路径等知识,熟练掌握相关定理并灵活应用是解题的关键. 35.105【分析】利用三角形外角性质求解. 【详解】如图,∠∠2=30︒,∠3=45︒, ∠∠4=∠2+∠3=75︒, ∠∠1=1804105︒-∠=︒, 故答案为:105..【点睛】此题考查三角板的角度计算,三角形外角的性质,观察图形掌握各角度之间的位置关系是解题的关键. 36.201420141A 2α∠=【分析】由三角形的外角性质知:∠A=∠ACD-∠ABC ,而∠A 1=12(∠ACD-∠ABC ),即∠A 1=12∠A ,同理可得,∠A 2=12∠A 1,依此类推即可. 【详解】∠∠ACD 是∠ABC 的外角, ∠∠ACD =∠A +∠ABC ,∠1B A 平分∠ABC ,1CA 平分∠ACD ,∠112A BC ABC ∠=∠,112ACD ACD ∠=∠, ∠1A CD ∠是1A CB 的外角, ∠111ACD A BC A ∠=∠+∠, ∠11122ACD ABC A ∠=∠+∠, ∠()11122A ACD ABC A ∠=∠-∠=∠, 同理可得:1212A A ∠=∠, 根据规律可得:201420141A 2α∠=【点睛】本题考查的是三角形内角和定理及三角形外角的性质,找出规律是解答此题的关键.37.60°或105°或135°【分析】分类讨论:当//BC AD 时,当//AC DE 时,当//AB DE 时,利用角度之间的关系计算即可;【详解】解:如图当//BC AD 时,,90C CAD ︒∠=∠=∠903060a DAB ︒=-︒=∠=︒, 如图,当//AC DE 时,90E CAE ︒∠=∠=,则459030105DAB α︒=∠=︒+︒-︒=, 如图,当//AB DE 时,90A E B E ∠=∠=︒,∠4590135BAD α=∠=︒+︒=︒;综上:符合条件的α为60°或105°或135°, 故答案为:60°或105°或135°.【点睛】本题考查角度之间的计算,平行的性质,解题的关键是对平行的边进行分情况讨论.38.40°或140°【分析】根据角平分线的定义求得∠MOC =12∠AOC ,∠CON =12∠BOC ;然后根据图形中的角与角间的和差关系来求∠MON 的度数. 【详解】解:∠OM 平分∠AOC ,ON 平分∠BOC .∠∠MOC=12∠AOC,∠CON=∠BON=12∠BOC.如图1,∠MON=∠MOC-∠CON=12(∠AOC-∠BOC)=12∠AOB=12×80°=40°;如图2,∠MON=∠MOC+∠CON=12(∠AOC+∠BOC)=12(360°﹣∠AOB)=12×280°=140°.如图3,∠MON=∠MOC+∠CON=12(∠AOC+∠BOC)=12∠AOB=12×80°=40°;故答案为:40°或140°.【点睛】此题主要考查了角平分线的定义.注意“数形结合”数学思想在解题过程中的应用.39.26【分析】根据射线、线段的定义进而判断得出m,n的值再代入计算即可.【详解】解:图中共有10条线段,共有16条射线,则m=10,n=16,所以m n+=10+16=26.故答案为26.【点睛】此题主要考查了射线、线段的定义,熟练掌握它们的定义是解题关键.40.∠∠或∠∠或∠∠或∠∠【分析】观察所给图形结合正方体的平面展开图的特点进行填涂即可.【详解】根据正方体的展开图的特点,按如下方式进行填涂后可以构成正方体表面的展开图:故答案为:∠∠或∠∠或∠∠或∠∠.【点睛】本题主要考查正方体展开图的2-3-1型和2-2-2-型,掌握正方体的展开图是解题关键.41.110EOD ∠=︒.【分析】根据对顶角相等先求出∠AOC 的度数,然后根据角平分线的定义求出∠COE 的度数,最后根据∠OCE 与∠EOD 互为邻补角即可得出答案. 【详解】35BOD ∠=︒,35AOC ∴∠=︒OA 平分EOC ∠,223570COE AOC ∴∠=∠=⨯︒=︒ 180110EOD COE ∴∠=︒-∠=︒.【定睛】本题主要考查了角的和差运算,根据对顶角相等和角平分线的定义求出∠COE 是 解决此题的关键.42. ②③⑧ ①④⑤⑥⑦【分析】根据立体图形和平面图形定义分别进行判断. 【详解】解:∠∠∠是平面图形;∠∠∠∠∠是立体图形.【点睛】本题考查认识立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形. 43.(1)5,4(2)1APQ S =△平方米 (3)4t =【分析】(1)根据绝对值和乘方的非负性,即可求解;(2)根据题意得:当t =4.5时,点P 在CD 上,DP =0.5米,点Q 刚好到达点D 处,可得12PQ =米,再由12APQ S PQ AD =⋅⋅△,即可求解; (3)当P ,Q 都在DC 上,可得4 4.5t ≤≤,然后分两种情况讨论:当P 左Q 右时,当Q 左P 右时,即可求解.【详解】(1)解∠∠()2540x y -+-=, ∠50,40x y -=-=, ∠x =5,y =4, 故答案为:5,4;(2)解:当t =4.5时,P 走过的路程为4.5米,此时点P 在CD 上,DP =0.5米,Q 走过的路程为9米,刚好到达点D 处, ∠12PQ =米, ∠11141222APQ S PQ AD =⋅⋅=⨯⨯=△平方米;(3)解:点P 在DC 上,49t ≤≤,点Q 在DC 上,2 4.5t ≤≤, ∠4 4.5t ≤≤,当P 左Q 右时,4DP t =-,24CQ t =-,∠()()5424133PQ CD DP CQ t t t =--=----=-, ∠1331t -=, 解得:4t =当Q 左P 右时,4DP t =-,24CQ t =-,∠()()4245313PQ DP CQ CD t t t =+-=-+--=-, ∠3131t -=, 解得144.53t =>,不符题意,舍去. 综上,满足题意的4t =.【点睛】本题主要考查了动点问题,涉及绝对值和平方式的非负性,三角形面积的求解,解题的关键是关键题意用时间t表示出线段长度,列式求出t的值.44.(1)90°;(2)∠90°-2α°∠18°【分析】(1)根据角平分线的定义和平角的定义,即可求解;(2)∠根据余角的性质得:∠COE=∠DOF=α°,根据角平分线的定义,可得∠BOC=2α°,进而即可求解;∠用α分别表示出∠BOD和∠AOF的度数,结合∠BOD是∠AOF的2倍,列出关于α的方程,即可求解.【详解】(1)∠点A、O、B三点在同一直线上,射线OD、OE分别平分∠AOC、∠BOC,∠∠COD=12∠AOC,∠COE=12∠BOC,∠∠COD+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12×180°=90°,∠∠DOE=∠COD+∠COE=90°;(2)∠∠OE平分∠BOC,∠∠BOC=2∠COE,∠OF∠OC,∠∠COF=∠COD+∠DOF=90°,∠∠COE+∠COD=90°,∠∠COE=∠DOF=α°,∠∠BOC=2α°,∠∠AOF+∠BOC=90°,∠∠AOF=90°-2α°;∠∠∠BOE=∠COE=α°,∠∠BOD=∠BOE+∠DOE=90°+α°,∠∠BOD=2∠AOF=2(90°-2α°)=180°-4α°,∠90°+α°=180°-4α°,∠α=18,即:∠DOF=18°.【点睛】本题主要考查角的和差倍分,涉及余角的定义和性质,平角的定义,角平分线的定义,根据题意,列出一元一次方程,是解题的关键.45.(1)图见解析(2)图见解析【分析】(1)分别作出A ,B ,C 的对应点111A B C ,,即可; (2)连接1AA ,1CA 交l 于点D ,点D 即为所求. 【详解】(1)如图所示; (2)如图所示:【点睛】本题考查了作图—轴对称变换,最短问题,解决本题的关键是熟练掌握基本知识.46.(1)20°;(2)60°【分析】(1)先求出∠AOF =140°,然后根据角平分线的定义求出∠AOC =70°,再由垂线的定义得到∠AOB =90°,则∠BOD =180°-∠AOB -∠AOC =20°;(2)先求出∠AOE =60°,从而得到∠AOF =120°,根据角平分线的性质得到∠AOC =60°,则∠COE =∠AOE +∠AOC =120°,∠DOE =180°-∠COE =60°. 【详解】解:(1)∠∠AOE =40°, ∠∠AOF =180°-∠AOE =140°, ∠OC 平分∠AOF , ∠∠AOC =12∠AOF =70°, ∠OA ∠OB , ∠∠AOB =90°,∠∠BOD =180°-∠AOB -∠AOC =20°;(2)∠∠BOE=30°,OA∠OB,∠∠AOE=60°,∠∠AOF=180°-∠AOE=120°,∠OC平分∠AOF,∠∠AOC=12∠AOF=60°,∠∠COE=∠AOE+∠AOC=60°+60°=120°,∠∠DOE=180°-∠COE=60°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.47.(1)2 cm;(2)18cm【分析】(1)先求出AB的长,再结合线段中点的定义求出AC的长,进而即可求解;(2)设AB=x cm,则13AD x=cm,根据线段的中点的定义,列出方程,进而即可求解.【详解】(1)∠13AD AB=,AD=4 cm,∠AB=3×4=12 cm,∠点C是线段AB的中点,∠AC=12AB=11262⨯=cm,∠CD=AC-AD=6-4=2 cm;(2)设AB=x cm,则13AD x=cm,∠点C是线段AB的中点,∠AB=2(AD+CD),即x=2(13x+3),解得:x=18,∠AB=18cm.【点睛】本题主要考查线段的和差倍分以及一元一次方程的应用,利用一元一次方程解决问题,是解题的关键.48.(1)140;(2)20°;(3)OE平分∠AOC,见解析【分析】(1)根据正方形各角等于90°,得出∠COD+∠AOB=180°,再根据∠AOD=40°,∠COB=∠COD+∠AOB-∠AOD,即可得出答案;(2)根据已知得出∠1+∠2,∠1+∠3的度数,再根据∠1+∠2+∠3=90°,最后用∠1+∠2+∠1+∠3-(∠1+∠2+∠3),即可求出∠1的度数;(3)根据∠COD=∠AOB和等角的余角相等得出∠COA=∠DOB,∠EOA=∠FOB,再根据角平分线的性质得出∠DOF=∠FOB=12∠DOB和∠EOA=12∠DOB=12∠COA,从而得出答案.【详解】解:(1)∠两个图形是正方形,∠∠COD=90°,∠AOB=90°,∠∠COD+∠AOB=180°,∠∠AOD=40°,∠∠COB=∠COD+∠AOB-∠AOD=140°故答案为:140;(2)如图,由题意知,∠1+∠2=50°∠,∠1+∠3=60°∠,又∠1+∠2+∠3=90°∠,所以:∠+∠-∠得:∠1=20°;(3)OE平分∠AOC,理由如下:∠∠COD=∠AOB,∠∠COA=∠DOB(等角的余角相等),同理:∠EOA=∠FOB,∠OF平分∠DOB,∠12DOF FOB DOB∠=∠=∠,∠1122EOA DOB COA ∠=∠=∠,∠OE平分∠AOC.【点睛】本题考查了角的和差运算,与余角和补角的有关的计算,根据所给出的图形,找到角与角的关系是本题的关键.49.(1)307t =;(2)见解析;(3)247t =或367t = 【分析】(1)根据题意10,25150DON t AOM t AOD ∠=∠=∠=︒, ,当OM ON 、重合时,+DON AOM AOD ∠∠=∠,计算即可;(2)根据题意可得=60BOD AOC ∠∠=︒,由ON 平分BOD ∠可计算出3t =,故25375AOM ∠=⨯=︒,即可说明OM 平分AOD ∠;(3)根据题意可得30MON ∠=︒分两种情况说明,当OM ON 、重合之前和OM ON 、重合之后分别计算即可.【详解】由题意:10,25DON t AOM t ∠=∠=()190,60COD AOC ∠=∠=150AOD COD AOC ∴∠=∠+∠=当,ON OM 重合时,DON AOM AOD ∠+∠=∠1025150t t ∴+= 解得:307t = ()290AOB COD ∠=∠=90AOC BOC BOD BOC ∴∠+∠=∠+∠=60BOD AOC ∴∠=∠= ON 平分BOD ∠1302DON BOD ∴∠=∠= ∠30103t =÷= ∠1253752AOM AOD ∠=⨯==∠ OM ∴平分AOD ∠()3150,180AOD AOD MON ∠=∠+∠=30MON ∴∠=当OM 与ON 重合前150DON MON AOM ∠+∠+∠=103025150 t t++=解得:247 t=当OM与ON重合后150 DON AOM MON∠+∠-∠= 102530150t t+-=解得:367 t=∴当247t=或367t=时,MON∠与AOD∠互补【点睛】本题考查的是角的综合题,一元一次方程的解法,旋转的性质,有一定的难度,分情况讨论是难点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考专题练习-几何基础专题例1. 如图, 某数学兴趣小组想测量一棵树CD 的高度, 他们先在点A 处测得树顶C 的仰角为30︒,然后沿AD 方向前行10m ,到达B 点, 在B 处测得树顶C 的仰角高度为60(A ︒、B 、D 三点在同一直线上) . 请你根据他们测量数据计算这棵树CD 的高度 (结 果精确到0.1)m . (参 1.414≈ 1.732)≈【解答】解:CBD A ACB ∠=∠+∠,603030ACB CBD A ∴∠=∠-∠=︒-︒=︒, A ACB ∴∠=∠, 10BC AB ∴==(米).在直角BCD ∆中,sin 105 1.7328.7CD BC CBD =∠==≈⨯=(米). 答: 这棵树CD 的高度为 8.7 米 .例2. 如图, 在边长为 6 的正方形ABCD 中,E 是边CD 的中点,将ADE ∆沿AE 对折至AFE ∆,延长EF 交边BC 于点G ,连接AG . (1) 求证:ABG AFG ∆≅∆; (2) 求BG 的长 .【解答】解: (1) 在正方形ABCD 中,AD AB BC CD ===,90D B BCD ∠=∠=∠=︒, 将ADE ∆沿AE 对折至AFE ∆,AD AF ∴=,DE EF =,90D AFE ∠=∠=︒, AB AF ∴=,90B AFG ∠=∠=︒,又AG AG =,在Rt ABG ∆和Rt AFG ∆中,AG AGAB AF=⎧⎨=⎩, ()ABG AFG HL ∴∆≅∆; (2)ABG AFG ∆≅∆,BG FG ∴=,设BG FG x ==,则6GC x =-,E 为CD 的中点,3CE EF DE ∴===, 3EG x ∴=+,∴在Rt CEG ∆中,2223(6)(3)x x +-=+,解得2x =,2BG ∴=.例3. 如图,Rt ABC ∆中,30B ∠=︒,90ACB ∠=︒,CD AB ⊥交AB 于D ,以CD 为较短的直角边向CDB ∆的同侧作Rt DEC ∆,满足30E ∠=︒,90DCE ∠=︒,再用同样的方法作Rt FGC ∆,90FCG ∠=︒,继续用同样的方法作Rt HIC ∆,90HCI ∠=︒. 若AC a =,求CI 的长 .【解答】解: 解法一: 在Rt ACB ∆中,30B ∠=︒,90ACB ∠=︒, 903060A ∴∠=︒-︒=︒, CD AB ⊥, 90ADC ∴∠=︒, 30ACD ∴∠=︒,在Rt ACD ∆中,AC a =,12AD a ∴=,由勾股定理得:CD ==,同理得:3224aFC ==,3248a CH =⨯=, 在Rt HCI ∆中,30I ∠=︒,2HI HC ∴==,由勾股定理得:98aCI ==, 解法二:30DCA B ∠=∠=︒, 在Rt DCA ∆中,cos30CDAC︒=,cos302CD AC a ∴=︒=, 在Rt CDF ∆中,cos30CFCD︒=,3224CF a a =⨯=,同理得:3cos304CH CF a =︒==, 在Rt HCI ∆中,30HIC ∠=︒,tan 30CHCI︒=,98CI a ==; 答:CI 的长为98a.例4. 如图所示, 已知四边形ABCD ,ADEF 都是菱形,BAD FAD ∠=∠,BAD ∠为锐角 .(1) 求证:AD BF ⊥;(2) 若BF BC =,求ADC ∠的度数 .【解答】(1) 证明: 如图, 连结DB 、DF . 四边形ABCD ,ADEF 都是菱形,AB BC CD DA ∴===,AD DE EF FA ===. 在BAD ∆与FAD ∆中,AB AF BAD FAD AD AD =⎧⎪∠=∠⎨⎪=⎩, BAD FAD ∴∆≅∆, DB DF ∴=,D ∴在线段BF 的垂直平分线上, AB AF =,A ∴在线段BF 的垂直平分线上, AD ∴是线段BF 的垂直平分线, AD BF ∴⊥;解法二:四边形ABCD ,ADEF 都是菱形,AB BC CD DA ∴===,AD DE EF FA ===.AB AF ∴=,BAD FAD ∠=∠,AD BF ∴⊥(等 腰三角形三线合一) ;(2) 如图, 设AD BF ⊥于H ,作DG BC ⊥于G ,则四边形BGDH 是矩形,12DG BH BF ∴==. BF BC =,BC CD =,12DG CD ∴=. 在直角CDG ∆中,90CGD ∠=︒,12DG CD =,30C ∴∠=︒, //BC AD ,180150ADC C ∴∠=︒-∠=︒.例5. 如图,矩形ABCD 中,AB AD >,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .(1)求证:ADE CED ∆≅∆; (2)求证:DEF ∆是等腰三角形.【解答】证明:(1)四边形ABCD 是矩形,AD BC ∴=,AB CD =.由折叠的性质可得:BC CE =,AB AE =,AD CE ∴=,AE CD =.在ADE ∆和CED ∆中,AD CEAE CD DE ED =⎧⎪=⎨⎪=⎩,()ADE CED SSS ∴∆≅∆.(2)由(1)得ADE CED ∆≅∆,DEA EDC ∴∠=∠,即DEF EDF ∠=∠,EF DF ∴=,DEF ∴∆是等腰三角形.例6. 如图所示,A 、B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段)AB ,经测量,森林保护中心P 在A 城市的北偏东30︒和B 城市的北偏西45︒的方向上,已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为1.732≈ 1.414)≈【解答】解:过点P 作PC AB ⊥,C 是垂足. 则30APC ∠=︒,45BPC ∠=︒,tan30AC PC =︒,tan 45BC PC =︒. AC BC AB +=,tan30tan 45100PC PC km ∴︒+︒=,∴(1)1003PC +=,50(350(3 1.732)63.450PC km km ∴=-≈⨯-≈>.答:森林保护区的中心与直线AB 的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.例7. 在菱形ABCD 中, 对角线AC 与BD 相交于点O ,5AB =,6AC =. 过D 点作//DE AC 交BC的延长线于点E . (1) 求BDE ∆的周长;(2) 点P 为线段BC 上的点, 连接PO 并延长交AD 于点Q . 求证:BP DQ =.【解答】(1) 解:四边形ABCD 是菱形,5AB BC CD AD ∴====,AC BD ⊥,OB OD =,3OA OC ==4OB ∴==,28BD OB ==,//AD CE ,//AC DE ,∴四边形ACED 是平行四边形,5CE AD BC ∴===,6DE AC ==,BDE ∴∆的周长是:810624BD BC CE DE +++=++=.(2) 证明:四边形ABCD 是菱形,//AD BC ∴, QDO PBO ∴∠=∠,在DOQ ∆和BOP ∆中QDO PBO OB ODQOD POB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()DOQ BOP ASA ∴∆≅∆, BP DQ ∴=.例8. 如图所示,在矩形ABCD 中,12AB =,20AC =,两条对角线相交于点O .以OB 、OC为邻边作第1个平行四边形1OBB C ,对角线相交于点1A ;再以11A B 、1A C 为邻边作第2个平行四边形111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边作第3个平行四边形1121O B B C ⋯依此类推. (1)求矩形ABCD 的面积;(2)求第1个平行四边形1OBB C ,第2个平行四边形和第6个平行四边形的面积.【解答】解:(1)四边形ABCD 是矩形,20AC =,12AB =90ABC ∴∠=︒,16BC ==1216192ABCD S AB BC ∴=⋅=⨯=矩形.(2)1//OB B C ,1//OC BB ,∴四边形1OBB C 是平行四边形.四边形ABCD 是矩形,OB OC ∴=,∴四边形1OBB C 是菱形.1OB BC ∴⊥,1182A B BC ==,11162OA OB ===; 11212OB OA ∴==,111116129622OBB C S BC OB ∴=⋅=⨯⨯=菱形; 同理:四边形111A B C C 是矩形,11111116848A B C C S A B B C ∴=⋅=⨯=矩形;⋯⋯第n 个平行四边形的面积是:1922n n S =6619232S ∴==.例9. 如图,PA 与O 相切于A 点,弦AB OP ⊥,垂足为C ,OP 与O 相交于D 点,已知2OA =,4OP =.(1)求POA ∠的度数;(2)计算弦AB 的长.【解答】解:(1)PA 与O 相切于A 点,OAP ∴∆是直角三角形,2OA =,4OP =,1cos 2OA POA OP ∴∠==, 60POA ∴∠=︒.(2)直角三角形中60AOC ∠=︒,2OA =,sin 602AC OA ∴=︒== AB OP ⊥,2AB AC ∴==例10. 如图, 分别以Rt ABC ∆的直角边AC 及斜边AB 向外作等边ACD ∆及等边ABE ∆. 已知30BAC ∠=︒,EF AB ⊥,垂足为F ,连接DF .(1) 试说明AC EF =;(2) 求证: 四边形ADFE 是平行四边形 .【解答】证明: (1)Rt ABC ∆中,30BAC ∠=︒,2AB BC ∴=,又ABE ∆是等边三角形,EF AB ⊥,2AB AF ∴=AF BC ∴=,在Rt AFE ∆和Rt BCA ∆中,AF BC AE BA=⎧⎨=⎩, ()AFE BCA HL ∴∆≅∆,AC EF ∴=;(2)ACD ∆是等边三角形,60DAC ∴∠=︒,AC AD =,90DAB DAC BAC ∴∠=∠+∠=︒又EF AB ⊥,//EF AD ∴,AC EF =,AC AD =,EF AD ∴=,∴四边形ADFE 是平行四边形 .例11. 已知:如图,E 、F 在AC 上,//AD CB 且AD CB =,D B ∠=∠.求证:AE CF =.【解答】证明://AD CB ,A C ∴∠=∠,在ADF ∆和CBE ∆中,A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ADF CBE ASA ∴∆≅∆,AF CE ∴=,AF EF CE EF ∴+=+,即AE CF =.例12. 如图,直角梯形纸片ABCD 中,//AD BC ,90A ∠=︒,30C ∠=︒,折叠纸片使BC 经过点D ,点C 落在点E 处,BF 是折痕,且8BF CF ==.(1)求BDF ∠的度数;(2)求AB 的长.【解答】解:(1)8BF CF ==,30FBC C ∴∠=∠=︒,折叠纸片使BC 经过点D ,点C 落在点E 处,BF 是折痕,30EBF CBF ∴∠=∠=︒,60EBC ∴∠=︒,90BDF ∴∠=︒;(2)60EBC ∠=︒60ADB ∴∠=︒,8BF CF ==.sin 60BD BF ∴=︒=∴在Rt BAD ∆中,sin606AB BD =⨯︒=.例13. 已知: 如图, 在四边形ABCD 中,//AB CD ,对角线AC 、BD 相交于点O ,BO DO =. 求证: 四边形ABCD 是平行四边形 .【解答】证明://AB CD ,ABO CDO ∴∠=∠,在ABO ∆与CDO ∆中,ABO CDO BO DOAOB COD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABO CDO ASA ∴∆≅∆,AB CD ∴=,∴四边形ABCD 是平行四边形 .18.(7分)如图,小山岗的斜坡AC 的坡度是3tan 4α=,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6︒,求小山岗的高AB (结果取整数:参考数据:sin 26.60.45︒=,cos26.60.89︒=,tan 26.60.50)︒=.【解答】解:在直角三角形ABC 中,3tan 4AB BC α==, 43AB BC ∴= 在直角三角形ADB 中,tan 26.60.50AB BD∴=︒= 即:2BD AB =200BD BC CD -==422003AB AB ∴-= 解得:300AB =米,答:小山岗的高度为300米.例14. 如图, 矩形ABCD 中, 以对角线BD 为一边构造一个矩形BDEF ,使得另一边EF 过原矩形的顶点C .(1) 设Rt CBD ∆的面积为1S ,Rt BFC ∆的面积为2S ,Rt DCE ∆的面积为3S ,则1S = 23S S +(用 “>”、 “=”、 “<” 填空) ;(2) 写出如图中的三对相似三角形, 并选择其中一对进行证明 .【解答】(1) 解:112S BD ED =⨯,BDEF S BD ED =⨯矩形, 112BDEF S S ∴=矩形, 2312BDEF S S S ∴+=矩形, 123S S S ∴=+.(2) 答:BCD CFB DEC ∆∆∆∽∽.证明BCD DEC ∆∆∽;证明:90EDC BDC ∠+∠=︒,90CBD BDC ∠+∠=︒,EDC CBD ∴∠=∠,又90BCD DEC ∠=∠=︒,BCD DEC ∴∆∆∽.。

相关文档
最新文档