空间直线与平面-----知识要点

合集下载

初中数学知识归纳空间直角坐标系中平面和直线的方程

初中数学知识归纳空间直角坐标系中平面和直线的方程

初中数学知识归纳空间直角坐标系中平面和直线的方程在初中数学中,学习空间直角坐标系是非常重要的一部分。

掌握好平面和直线的方程,对于解题和图像的分析都有着关键的作用。

本文将对空间中平面和直线的方程进行归纳总结。

一、平面的方程在空间直角坐标系中,平面由一个点和一个法向量确定。

常见的平面方程有点法式和一般式。

1.1 点法式设平面上一点P的坐标为(x0, y0, z0),平面的法向量为(a, b, c),则平面上任意一点M(x, y, z)到点P的位置矢量为PM = (x - x0, y - y0, z - z0)。

根据平面上的点和法向量的垂直关系,可得:a(x - x0) + b(y - y0) + c(z - z0) = 0这就是平面的点法式方程,也可写成:ax + by + cz + d = 0其中d = -(ax0 + by0 + cz0)。

1.2 一般式将平面的点法式方程展开,可得平面的一般式方程:Ax + By + Cz + D = 0其中A, B, C, D为常数,满足A² + B² + C² ≠ 0。

将一般式方程展开后,即可得到一般式方程的标准形式。

二、直线的方程直线是空间中的一个重要对象,研究直线方程可以帮助我们更好地理解直线的性质并解决相关问题。

2.1 参数方程参数方程是直线方程表示的一种常用形式。

设直线上一点P的坐标为(x0, y0, z0),直线的方向向量为(a, b, c),则直线上任意一点M的位置矢量为:PM = (x - x0, y - y0, z - z0)由于直线上所有点的位置矢量都与方向向量平行,可得:(x - x0)/a = (y - y0)/b = (z - z0)/c这就是直线的参数方程形式,也可以写成:x = x0 + at, y = y0 + bt, z = z0 + ct其中t为参数,表示直线上的不同点。

这种方程表示了直线上所有的点。

备战高考数学复习考点知识与题型讲解53---空间直线、平面的平行

备战高考数学复习考点知识与题型讲解53---空间直线、平面的平行

备战高考数学复习考点知识与题型讲解第53讲空间直线、平面的平行考向预测核心素养直线、平面平行的判定及其性质是高考中的重点考查内容,涉及线线平行、线面平行、面面平行的判定及其应用等内容.解题要求有较强的推理论证能力,广泛应用转化与化归的思想.直观想象、逻辑推理一、知识梳理1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)⎭⎬⎫l∥aa⊂αl⊄α⇒l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)⎭⎬⎫l∥αl⊂βα∩β=b⇒l∥b2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)⎭⎪⎬⎪⎫a∥βb∥βa∩b=Pa⊂αb⊂α⇒α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行⎭⎬⎫α∥βα∩γ=aβ∩γ=b⇒a∥b[提醒] 三种平行关系的转化常用结论1.平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ. 2.平行关系有关的性质(1)夹在两个平行平面之间的平行线段长度相等.(2)两条直线被三个平行平面所截,截得的对应线段成比例.(3)同一条直线与两个平行平面所成角相等.二、教材衍化1.(人A必修第二册P143习题8.5T1(1)改编)如果直线a∥平面α,那么直线a与平面α内的( )A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线都不相交解析:选D.因为直线a∥平面α,直线a与平面α无公共点,因此a和平面α内的任意一条直线都不相交.2.(人A必修第二册P142练习T2改编)平面α∥平面β的一个充分条件是( )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:选D.若α∩β=l,a∥l,a⊄α,a⊄β,a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.3.(人A必修第二册P138例3改编)如图是长方体被一平面所截得的几何体,四边形EFGH 为截面,则四边形EFGH的形状为________.解析:因为平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,所以EF∥HG.同理EH∥FG,所以四边形EFGH是平行四边形.答案:平行四边形一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)直线l平行于平面α内的无数条直线,则l∥α.( )(2)若直线l在平面α外,则l∥α.( )(3)若直线l∥b,直线b⊂α,则l∥α.( )(4)若直线l∥b,直线b⊂α,那么直线l平行于平面α内的无数条直线.( )答案:(1)×(2)×(3)×(4)√二、易错纠偏1.(线面平行的概念理解不清致误)已知M是两条异面直线a,b外一点,则过点M 且与直线a,b都平行的平面( )A.有且只有一个 B.有两个C.没有或只有一个 D.有无数个解析:选C.过点M作直线a′∥a,过点M作直线b′∥b,则直线a′,b′确定平面α.当a,b都不在由a′,b′确定的平面α内时,过点M且与a,b都平行的平面有且只有一个;当a⊂α或b⊂α时,过点M且与a,b都平行的平面不存在.2.(多选)(判断平行关系条件不明致误)如图所示,P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,下列结论正确的是( )A.OM∥PDB.OM∥平面PCDC.OM∥平面PDAD.OM∥平面PBA解析:选ABC.对于A,由于O为BD的中点,M为PB的中点,则OM∥PD,故正确;对于B,由于OM∥PD,OM⊄平面PCD,PD⊂平面PCD,则OM∥平面PCD,故正确;对于C,由于OM∥PD,OM⊄平面PAD,PD⊂平面PAD,则OM∥平面PAD,故正确;对于D,由于M∈平面PAB,故错误.故选ABC.3.(线面平行性质不清致误)在三棱柱ABC­A′B′C′中,截面A′B′C与平面ABC 交于直线a,则直线a与直线A′B′的位置关系为________.解析:在三棱柱ABC­A′B′C′中,A′B′∥AB,AB⊂平面ABC,A′B′⊄平面ABC,所以A′B′∥平面ABC.又A′B′⊂平面A′B′C,平面A′B′C∩平面ABC=a,所以A′B′∥a.答案:平行4.(面面平行性质不清致误)如图,平面α∥平面β,△PAB 所在的平面与α,β分别交于CD ,AB ,若PC =2,CA =3,CD =1,则AB =________.解析:由结论知PC PA =CD AB ,所以AB =PA ×CD PC =5×12=52.答案:52考点一 线面平行的判定与性质(多维探究)复习指导:以立体几何的定义和基本事实为出发点,认识和理解空间中直线与平面平行的有关性质与判定定理.角度1 直线与平面平行的判定如图所示,正方形ABCD 与正方形ABEF 所在的平面相交于AB ,在AE ,BD 上各有一点P ,Q ,且AP =DQ ,求证:PQ ∥平面BCE .【证明】 方法一:如图所示,作PM ∥AB 交BE 于M ,作QN ∥AB 交BC 于N ,连接MN ,因为正方形ABCD 和正方形ABEF 有公共边AB ,所以AE =BD ,又AP =DQ ,所以PE =QB ,又PM ∥AB ∥QN ,所以PM AB =PE AE =QB BD =QN DC ,所以PM AB =QNDC,又AB 綉DC ,所以PM 綉QN ,所以四边形PMNQ 为平行四边形,所以PQ∥MN,又MN⊂平面BCE,PQ⊄平面BCE,所以PQ∥平面BCE.方法二:如图,在平面ABEF内,过点P作PM∥BE交AB于点M,连接QM,则PM∥平面BCE,因为PM∥BE,所以APPE=AMMB,又AE=BD,AP=DQ,所以PE=BQ,所以APPE=DQBQ,所以AMMB=DQQB,所以MQ∥AD,又AD∥BC,所以MQ∥BC,所以MQ∥平面BCE,又PM∩MQ=M,所以平面PMQ∥平面BCE,又PQ⊂平面PMQ,所以PQ∥平面BCE.证明线面平行有两种常用方法一是线面平行的判定定理;二是先利用面面平行的判定定理证明面面平行,再根据面面平行的性质证明线面平行.角度2 直线与平面平行的性质四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM 上取一点G,过G和PA作平面PAHG交平面BMD于GH.求证:PA∥GH.【证明】如图所示,连接AC交BD于点O,连接MO,因为四边形ABCD是平行四边形,所以O是AC的中点,又M是PC的中点,所以AP∥OM.又MO⊂平面BMD,PA⊄平面BMD,所以PA∥平面BMD.又因为平面PAHG∩平面BMD=GH,且PA⊂平面PAHG,所以PA∥GH.在应用线面平行的性质定理进行平行转化时,一定要注意定理成立的条件,如:把线面平行转化为线线平行时,必须说清经过已知直线的平面和已知平面相交,这时才有直线与交线平行.|跟踪训练|如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,M是线段EF的中点.(1)求证:AM∥平面BDE;(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.解:(1)证明:如图,记AC与BD的交点为O,连接OE.因为O,M分别是AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m ∥AM ,所以l ∥m .考点二 面面平行的判定与性质(思维发散)复习指导:以立体几何的定义和基本事实为出发点,认识和理解空间中平面与平面平行的有关性质与判定定理.如图所示,在三棱柱ABC ­A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证: (1)B ,C ,H ,G 四点共面; (2)平面EFA 1∥平面BCHG . 【证明】 (1)因为G ,H 分别是A 1B 1,A 1C 1的中点,所以GH ∥B 1C 1,又B 1C 1∥BC ,所以GH ∥BC ,所以B ,C ,H ,G 四点共面. (2)在△ABC 中,E ,F 分别为AB ,AC 的中点, 所以EF ∥BC ,因为EF ⊄平面BCHG ,BC ⊂平面BCHG , 所以EF ∥平面BCHG .又因为G ,E 分别为A 1B 1,AB 的中点,AB =A 1B 1, 所以A 1G 綉EB ,所以四边形A 1EBG 是平行四边形, 所以A 1E ∥GB .因为A 1E ⊄平面BCHG ,GB ⊂平面BCHG , 所以A 1E ∥平面BCHG . 又因为A 1E ∩EF =E , 所以平面EFA 1∥平面BCHG .1.在本例条件下,若D 为BC 1的中点,求证:HD ∥平面A 1B 1BA . 证明:如图所示,连接HD ,A 1B ,BC 1, 因为D 为BC 1的中点,H 为A 1C 1的中点,所以HD ∥A 1B , 又HD ⊄平面A 1B 1BA ,A 1B ⊂平面A 1B 1BA , 所以HD ∥平面A 1B 1BA .2.在本例条件下,若D 1,D 分别为B 1C 1,BC 的中点,求证:平面A 1BD 1∥平面AC 1D . 证明:如图所示,连接A 1C 交AC 1于点M ,因为四边形A 1ACC 1是平行四边形, 所以M 是A 1C 的中点,连接MD , 因为D 为BC 的中点, 所以A 1B ∥DM .因为A 1B ⊂平面A 1BD 1,DM ⊄平面A 1BD 1, 所以DM ∥平面A 1BD 1.又由三棱柱的性质知,D 1C 1綉BD , 所以四边形BDC 1D 1为平行四边形, 所以DC 1∥BD 1.又DC 1⊄平面A 1BD 1,BD 1⊂平面A 1BD 1, 所以DC 1∥平面A 1BD 1,又因为DC1∩DM=D,DC1,DM⊂平面AC1D,所以平面A1BD1∥平面AC1D.|跟踪训练|(多选)(2022·菏泽市东明一中月考)已知平面α∥平面β,P是α,β外一点,过P点的两条直线AC,BD分别交α于A,B,交β于C,D,且PA=6,AC=9,AB=8,则CD的长为( )A.20 B.16C.12D.4解析:选AD.因为过P点的两条直线AC,BD确定的平面分别交α于A,B,交β于C,D,且平面α∥平面β,所以可得AB∥CD,分两种情况:当点P在两平行平面之外时,PAPC=ABCD,则CD=20;当点P在两平行平面之间时,得PC=AC-AP=3,APPC=ABCD,则CD=4.故选AD.考点三平行关系中的探索性问题(综合研析)复习指导:能运用基本事实、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.如图,已知斜三棱柱ABC ­A 1B 1C 1中,点D ,D 1分别为AC ,A 1C 1上的点. (1)当A 1D 1D 1C 1等于何值时,BC 1∥平面AB 1D 1? (2)若平面BC 1D ∥平面AB 1D 1,求ADDC的值. 【解】(1)如图,取D 1为线段A 1C 1的中点,此时A 1D 1D 1C 1=1, 连接A 1B 交AB 1于点O ,连接OD 1.由棱柱的性质,知四边形A 1ABB 1为平行四边形, 所以点O 为A 1B 的中点.在△A 1BC 1中,点O ,D 1分别为A 1B ,A 1C 1的中点, 所以OD 1∥BC 1.又因为OD 1⊂平面AB 1D 1,BC 1⊄平面AB 1D 1, 所以BC 1∥平面AB 1D 1. 所以当A 1D 1D 1C 1=1时,BC 1∥平面AB 1D 1. (2)因为平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BDC 1=BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O , 所以BC 1∥D 1O ,同理AD 1∥DC 1. 因为A 1D 1D 1C 1=A 1O OB ,A 1D 1D 1C 1=DC AD, 又因为A 1O OB =1,所以DC AD =1,即ADDC=1.解决探索性问题的方法(1)根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设.(2)按类似于分析法的格式书写步骤:从结论出发“要使……成立”“只需使……成立”.|跟踪训练|如图,在正方体ABCD ­A 1B 1C 1D 1中,P ,Q 分别为对角线BD ,CD 1上的点,且CQ QD 1=BP PD =23. (1)求证:PQ ∥平面A 1D 1DA ; (2)若R 是AB 上的点,ARAB的值为多少时,能使平面PQR ∥平面A 1D 1DA ?请给出证明. 解:(1)证明:连接CP 并延长与DA 的延长线交于M 点,如图, 因为四边形ABCD 为正方形, 所以BC ∥AD , 故△PBC ∽△PDM , 所以CP PM =BP PD =23, 又因为CQ QD 1=BP PD =23,所以CQ QD 1=CP PM =23, 所以PQ ∥MD 1.又MD 1⊂平面A 1D 1DA ,PQ ⊄平面A 1D 1DA ,故PQ ∥平面A 1D 1DA .(2)当AR AB 的值为35时,能使平面PQR ∥平面A 1D 1DA .如图, 证明如下:因为AR AB =35,即BR RA =23,故BR RA =BP PD . 所以PR ∥DA .又DA ⊂平面A 1D 1DA ,PR ⊄平面A 1D 1DA , 所以PR ∥平面A 1D 1DA , 又PQ ∩PR =P ,PQ ∥平面A 1D 1DA . 所以平面PQR ∥平面A 1D 1DA .[A 基础达标]1.下列命题中正确的是( )A .若a ,b 是两条直线,且a ∥b ,那么a 平行于经过b 的任何平面B .若直线a 和平面α满足a ∥α,那么a 与α内的任何直线平行C .平行于同一条直线的两个平面平行D .若直线a ,b 和平面α满足a ∥b ,a ∥α,b ⊄α,则b ∥α解析:选D.A 中,a ,b 可以在同一平面内;B 中,a 与α内的直线也可能异面;C 中,两平面可相交;D 中,由直线与平面平行的判定定理知b ∥α,正确.2.(2022·济南模拟)如图所示的三棱柱ABC ­A 1B 1C 1中,过A 1B 1的平面与平面ABC 交于DE ,则DE 与AB 的位置关系是( )A .异面 B.平行 C .相交D.以上均有可能解析:选B.在三棱柱ABC ­A 1B 1C 1中,AB ∥A 1B 1.因为AB⊂平面ABC,A1B1⊄平面ABC,所以A1B1∥平面ABC.因为过A1B1的平面与平面ABC交于DE,所以DE∥A1B1,所以DE∥AB.3.如图,在四棱锥P­ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则( ) A.MN∥PDB.MN∥PAC.MN∥ADD.以上均有可能解析:选B.由题意得,因为MN⊂平面PAC,平面PAC∩平面PAD=PA,所以由直线与平面平行的性质定理可得,MN∥PA.4.若平面α截三棱锥所得截面为平行四边形,则该三棱锥中与平面α平行的棱有( )A.0条 B.1条C.2条 D.1条或2条解析:选C.如图所示,平面α即平面EFGH,则四边形EFGH为平行四边形,则EF∥GH.因为EF⊄平面BCD,GH⊂平面BCD,所以EF∥平面BCD.又因为EF⊂平面ACD,平面BCD∩平面ACD=CD,所以EF∥CD.又EF⊂平面EFGH,CD⊄平面EFGH.所以CD∥平面EFGH,同理,AB∥平面EFGH,所以与平面α(平面EFGH)平行的棱有2条.5.(多选)(2022·济南质检)下列四个命题中正确的是( )A.如果一条直线不在某个平面内,那么这条直线就与这个平面平行B.过直线外一点有无数个平面与这条直线平行C.过平面外一点有无数条直线与这个平面平行D.过空间一点必存在某个平面与两条异面直线都平行解析:选BC.A.如果一条直线不在某个平面内,那么这条直线就与这个平面平行或相交,故A错误;B.过直线外一点有且只有一条直线和已知直线平行,过这条直线有无数个平面与已知直线平行,故B正确;C.过平面外一点有无数条直线与这个平面平行,且这无数条直线在同一平面内,故C正确;D.过空间一点不一定存在某个平面与两条异面直线都平行,当此点在其中一条直线上时平面最多只能与另一条直线平行,故D错误.6.在下面给出的条件中,若条件足够推出a∥α,则在横线上填“OK”;若条件不能保证推出a∥α,则请在横线上补足条件:(1)条件:a∥b,b∥c,c⊂α,________,结论:a∥α;(2)条件:α∩β=b,a∥b,a⊂β,________,结论:a∥α.解析:(1)因为a∥b,b∥c,c⊂α,所以由直线与平面平行的判定定理得,当a⊄α时,a∥α.(2)因为α∩β=b,a∥b,a⊂β,则由直线与平面平行的判定定理得a∥α.答案:(1)a⊄α(2)OK7.如图,在正方体ABCD­A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长等于________.解析:因为EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,所以EF∥AC,所以点F为DC的中点.故EF=12AC= 2.答案: 28.(2022·西北师大附中高三模拟)设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________.(填序号)解析:由面面平行的性质定理可知,①正确;当m∥γ,n∥β时,n和m可能平行或异面,②错误;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以m∥n,③正确.答案:①或③9.在如图所示的一块木料中,棱BC平行于平面A′B′C′D′.(1)要经过平面A′B′C′D′内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线与平面ABCD是什么位置关系?并证明你的结论.解:(1)如图所示,过点P作B′C′的平行线,交A′B′,C′D′于点E,F,连接BE,CF.(2)EF∥平面ABCD.理由如下:因为BC∥平面A′B′C′D′,又因为平面B′C′CB∩平面A′B′C′D′=B′C′,所以BC∥B′C′,因为EF∥B′C′,所以EF∥BC,又因为EF⊄平面ABCD,BC⊂平面ABCD,所以EF∥平面ABCD.10.(2022·银川长庆高级中学模拟)如图,在四棱锥S­ABCD中,∠ADC=∠BCD=90°,AD=DC=SA=12BC=2,点E,G分别在线段SA,AD上,且SE=AE,AG=GD,F为棱BC上一点,且CF=1.证明:平面SCD∥平面EFG.证明:因为点E,G分别在线段SA,AD上,且SE=AE,AG=GD,故EG∥SD,又EG⊄平面SCD,SD⊂平面SCD,故EG∥平面SCD;因为∠ADC=∠BCD=90°,故AD∥BC,因为GD=FC=1,故四边形GDCF为平行四边形,故GF∥CD;又GF⊄平面SCD,CD⊂平面SCD,故GF∥平面SCD,因为GF⊂平面EFG,EG⊂平面EFG,EG∩FG=G,所以平面SCD∥平面EFG.[B 综合应用]11.(2022·重庆联考)如图,四棱柱ABCD­A1B1C1D1中,四边形ABCD为平行四边形,E,F分别在线段DB,DD1上,且DEEB=DFFD1=12,G在CC1上且平面AEF∥平面BD1G,则CGCC1=( ) A.12B.13C.23D .14 解析:选B.如图所示,延长AE 交CD 于H ,连接FH ,则△DEH ∽△BEA ,所以DH AB =DE EB =12.因为平面AEF ∥平面BD 1G ,平面AEF ∩平面CDD 1C 1=FH ,平面BD 1G ∩平面CDD 1C 1=D 1G ,所以FH ∥D 1G .又四边形CDD 1C 1是平行四边形,所以△DFH ∽△C 1GD 1,所以DF C 1G =DH C 1D 1,因为DH C 1D 1=DH AB =12,所以DF C 1G =12,因为DF FD 1=12,所以FD 1=C 1G ,DF =CG ,所以CG CC 1=13,故选B. 12.(多选)如图,在透明塑料制成的长方体容器ABCD ­A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜程度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜程度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图(3)所示时,AE ·AH 为定值解析:选AD.根据棱柱的特征并结合题中图形易知A 正确.由题图可知水面EFGH 的边EF 的长保持不变,但邻边的长却随倾斜程度而改变,可知B 错误.因为A 1C 1∥AC ,AC ⊂平面ABCD ,A 1C 1⊄平面ABCD ,所以A 1C 1∥平面ABCD ,当平面EFGH 不平行于平面ABCD 时,A 1C 1不平行于水面所在平面,故C 错误.当容器倾斜如题图(3)所示时,因为水的体积是不变的,所以棱柱AEH ­BFG 的体积V 为定值,又V =S △AEH ·AB ,高AB 不变,所以S △AEH 也不变,即AE ·AH 为定值,故D 正确.13.在三棱锥P­ABC中,PB=6,AC=3,G为△PAC的重心,过点G作三棱锥的一个截面,使截面平行于PB和AC,则截面的周长为________.解析:如图,过点G作EF∥AC,分别交PA,PC于点E,F,过点E作EN∥PB交AB于点N,过点F作FM∥PB交BC于点M,连接MN,则四边形EFMN是平行四边形(平面EFMN为所求截面),且EF=MN=23AC=2,FM=EN=13PB=2,所以截面的周长为2×4=8.答案:814.在正四棱柱ABCD­A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.解析:如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面PAO,QB⊄平面PAO,PO⊂平面PAO,PA⊂平面PAO,PO∩PA=P,所以D1B∥平面PAO,QB∥平面PAO,又D1B∩QB=B,所以平面D1BQ∥平面PAO.故当Q为CC1的中点时,有平面D1BQ∥平面PAO.答案:Q为CC1的中点[C 素养提升]15.如图,四棱锥P­ABCD的底面是平行四边形,PA=PB=AB=2,E,F分别是AB,CD 的中点,平面AGF∥平面PEC,PD∩平面AGF=G,且PG=λGD,则λ=________,ED与AF相交于点H,则GH=________.解析:因为四边形ABCD是平行四边形,所以AB∥CD,且AB=CD.又E,F分别是AB,CD的中点,所以AE=FD,又∠EAH=∠DFH,∠AEH=∠FDH,所以△AEH≌△FDH,所以EH=DH.因为平面AGF∥平面PEC,平面PED∩平面AGF=GH,平面PED∩平面PEC=PE,所以GH∥PE,则G是PD的中点,即PG=GD,故λ=1.因为PA=AB=PB=2,所以PE=3,GH=12PE=32.答案:13 216.如图,四边形ABCD是边长为3的正方形,DE⊥平面ABCD,AF⊥平面ABCD,DE=3,AF=1.(1)证明:平面ABF∥平面DCE;(2)在DE上是否存在一点G,使平面FBG将几何体ABCDEF分成上、下两部分的体积比为3∶5?若存在,求出点G的位置;若不存在,请说明理由.解:(1)证明:因为DE⊥平面ABCD,AF⊥平面ABCD,21 / 21 所以DE ∥AF ,因为DE ⊂平面DCE ,AF ⊄平面DCE ,所以AF ∥平面DCE ,因为四边形ABCD 是正方形,AB ∥CD ,AB ⊄平面DCE ,CD ⊂平面DCE ,所以AB ∥平面DCE ,因为AB ∩AF =A ,AB ⊂平面ABF ,AF ⊂平面ABF ,所以平面ABF ∥平面DCE .(2)假设存在一点G ,过G 作MG ∥BF 交EC 于点M ,连接BG ,BM ,FG ,BD ,如图,由V ABCDEF =V B ­ADEF +V B ­CDE =13×3×(1+3)×32+13×3×3×32=212, 设EG =t ,则V GFBME =V B ­EFG +V B ­EGM =212×38=6316. 过点C 作BF 的平行线CN 交ED 于点N ,则△ABF ≌△DCN ,所以DN =1,因为MG ∥BF ,所以MG ∥CN .所以△EGM ∽△ENC .设M 到ED 的距离为h ,则h 3=EM EC =EG EN =t 3-1,即h =32t , 则S △EGM =12×t ×32t =34t 2, V GFBME =V B ­EFG +V B ­EGM =13×3×12×3×t +13×3×34t 2=6316,即4t 2+8t -21=0,解得t =32或t =-72(舍), 则存在点G ,当EG =32时, 即G 为ED 的中点,此时满足条件.。

空间元素位置关系知识要点

空间元素位置关系知识要点
即二面角α-a-β=90° α⊥β.
②如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,
即若l⊥β,l α,则α⊥β.
(7)线、线关系和线、面关系的辨证法
7.空间中的各种角
㈠等角定理及其推论
定理:若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.
推论:若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.
③平行于同一直线的两直线平行,
即若a∥b,b∥c,则a∥c.
④垂直于同一平面的两直线平行,
即若a⊥α,b⊥α,则a∥b
⑤两平行平面与同一个平面相交,那么两条交线平行,
即若α∥β,α∩γ,β∩γ=b,则a∥b
(2)两直线垂直的判定
①定义:若两直线成90°角,则这两直线互相垂直.
②一条直线与两条平行直线中的一条垂直,也必与另一条垂直.
㈡异面直线所成的角
(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,
则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.
(2)取值范围:0°<θ≤90°.
(3)求解方法:①根据定义,通过平移,找到异面直线所成的角θ;
②解含有θ的三角形,求出角θ的大小.
㈢直线和平面所成的角
平行—没有公共点
共面
(1)直线与直线 相交—有且只有一个公共点
异面(既不平行,又不相交)
直线在平面内—有无数个公共点
(2)直线和平面 直线不在平面内 平行—没有公共点
(直线在平面外) 相交—有且只有一个公共点
相交—有一条公共直线(无数个公共点)
(3)平面与平面
平行—没有公共点
5.异面直线的判定

第03讲 空间直线、平面的平行 (精讲)(原卷版)-2023年高考数学一轮复习

第03讲 空间直线、平面的平行 (精讲)(原卷版)-2023年高考数学一轮复习

第03讲空间直线、平面的平行(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析题型一:直线与平面平行的判定与性质角度1:直线与平面平行的判定角度2:直线与平面平行的性质题型二:平面与平面平行的判定与性质角度1:平面与平面平行的判定角度2:平面与平面平行的性质题型三:平行关系的综合应用第四部分:高考真题感悟第一部分:知识点精准记忆知识点一:直线与平面平行1、直线与平面平行的定义直线l与平面α没有公共点,则称直线l与平面α平行.2、直线与平面平行的判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行符号表述: a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭3、直线与平面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行符号表述:a α,a β⊂,b αβ=⇒a b知识点二:平面与平面平行1、平面与平面平行的定义两个平面没有公共点2、平面与平面平行的判定定理如果一个平面内的有两条相交直线平行于另一个平面,那么这两个平面平行.符号表述:βαααββ////,//,⇒⎪⎭⎪⎬⎫=⊂⊂b a P b a b a3、平面与平面平行的性质定理3.1性质定理两个平行平面,如果另一个平面与这两个平面相交,那么两条交线平行.符号语言3.2性质 ////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭两个平面平行,则其中一个平面内的直线平行与另一平面符号语言:,a a αβαβ⊂⇒1.(2022·全国·高一课时练习)判断正误.(1)若平面//α平面β,l ⊂平面β,m ⊂平面α,则lm .( )(2)夹在两平行平面之间的平行线段相等.( )2.(2022·全国·高一课时练习)已知长方体ABCD A B C D ''''-,平面α平面ABCD EF =,平面α平面A B C D E F ''''''=,则EF 与E F ''的位置关系是( ) A .平行 B .相交 C .异面 D .不确定3.(2022·全国·高一课时练习)在正方体1111F EFG E G H H -中,下列四对截面彼此平行的一对是( )A .平面11E FG 与平面1EGHB .平面1FHG 与平面11F H GC .平面11F H H 与平面1FHED .平面11E HG 与平面1EH G4.(2022·全国·高一课时练习)若一个平面内的两条直线分别平行于另一个平面内的两条直线,则这两个平面的位置关系是( )A .一定平行B .一定相交C .平行或相交D .以上判断都不对5.(2022·全国·高一课时练习)直线//a 平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线( )A .至少有一条B .至多有一条C .有且只有一条D .没有6.(2022·全国·高二课时练习)若平面//α平面β,直线a α⊂,则a与β的位置关系是____________.题型一:直线与平面平行的判定与性质角度1:直线与平面平行的判定典型例题例题1.(2022·四川绵阳·高二期末(理))如图,三棱柱111ABC A B C -的侧棱与底面垂直,2AC =,3BC =4AB =,12AA =,点D 是AB 的中点(1)求证:1//AC 平面1CDB ;(2)求直线1AC 与直线1CB 所成角的余弦值.例题2.(2022·四川凉山·高一期末(文))已知直三棱柱ABC A B C '''-中,AA C C ''为正方形,P ,O 分别为AC ',BC 的中点.(1)证明:PO ∥平面ABB A '';(2)若ABC 是边长为2正三角形,求四面体B AOC '-的体积..题型归类练1.(2022·四川成都·高一期末(理))在四棱锥P -ABCD 中,四边形ABCD 为矩形,平面ABCD ⊥平面PAB ,点E ,F 分别在线段CB ,AP 上,且CE EB =,=AF FP .(1)求证://EF 平面PCD ;2.(2022·重庆市第七中学校高一期末)如图,正三棱柱111ABC A B C -的所有棱长均为2,E 为线段11B C 的中点,F 为正方形11ACC A 对角线的交点.(1)求证:EF ∥面1B AC ;(2)求三棱锥111C B A C -的体积.3.(2022·河北石家庄·高一期末)如图,在直三棱柱111ABC A B C -中,2AC BC ==90ACB ∠=︒.12AA =,D 为AB 的中点.(1)求证:1AC ∥平面1B CD ;(2)求异面直线1AC 与1B C 所成角的余弦值.4.(2022·四川南充·高二期末(文))如图,四棱锥P ABCD -的底面是正方形,PA ⊥平面ABCD ,E ,F 分别为AB ,PD 的中点,且2PA AD ==.(1)求证:AF ∥平面PEC ;(2)求三棱锥C PEF -的体积.角度2:直线与平面平行的性质典型例题例题1.(2022·山东·济南市章丘区第四中学高一阶段练习)如图,四边形ABCD 为长方形,PD ⊥平面ABCD ,2PD AB ==,4=AD ,点E 、F 分别为AD 、PC 的中点.设平面PDC 平面PBE l =.(1)证明://DF 平面PBE ;(2)证明://DF l ;(3)求三棱锥P BDE -的体积.例题2.(2022·吉林·双辽市第一中学高三期末(文))如图,三棱锥P ABC -中,AC ,BC ,PC 两两垂直,AC BC =,E ,F 分别是AC ,BC 的中点,ABC 的面积为8,四棱锥P ABFE -的体积为4.(1)若平面PEF 平面=PAB l ,求证://EF l ;(2)求三棱锥P ABC -的表面积.题型归类练 1.(2022·重庆巴蜀中学高二期末)如图所示,在四棱锥P ABCD -中,底面是直角梯形,AD BC ∥,90ADC ∠=︒,AC 和BD 相交于点N ,面PAC ⊥面ABCD ,22BC AD ==,1CD =,6PA PC ==.(1)在线段PD 上确定一点M ,使得PB ∥面ACM ,求此时PM MD的值;2.(2022·安徽池州·高一期末)在四棱锥V ABCD -中,底面ABCD 为平行四边形,BC ⊥平面VAB ,VA VB ⊥,设平面VAB 与平面VCD 的公共直线为l .(1)写出图中与l 平行的直线,并证明;3.(2022·全国·高三专题练习)刍(ch ú)甍(m éng )是几何体中的一种特殊的五面体.中国古代数学名著《九章算术》中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.求积术日:倍下表,上袤从之,以广乘之,又以高乘之,六而一.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶”现有一个刍甍如图所示,四边形ABCD 为长方形,//EF 平面ABCD ,ADE 和BCF △是全等的等边三角形.求证:EF∥DC ;4.(2022·全国·模拟预测(理))如图1,在矩形ABCD 中,点E 在边CD 上,2BC DE EC ==,将DAE △沿AE 进行翻折,翻折后D 点到达P 点位置,且满足平面PAE ⊥平面ABCE ,如图2.(1)若点F 在棱PA 上,且EF ∥平面PBC ,求PF PA;5.(2022·全国·高三专题练习)如图,在四棱锥S -ABCD 中,底面ABCD 是菱形,60BAD ∠=︒,SAB △为等边三角形,G 是线段SB 上的一点,且//SD 平面GAC .求证:G 为SB 的中点题型二:平面与平面平行的判定与性质角度1:平面与平面平行的判定典型例题例题1.(2022·北京延庆·高一期末)如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是1,A D BD 的中点.(1)求证:平面1A BD平面11CB D ; (2)求证:EF 平面11DCC D ;(3)求三棱锥1A BDA -的体积.例题2.(2022·山东山东·高一期中)如图,在长方体1111ABCD A B C D -中,4AB =,12BC BB ==,点E ,F 分别为边1AA ,1DD 的中点.(1)求三棱锥1E A BC -的体积;(2)证明:平面1CFA ∥平面BDE .例题3.(2022·福建省福州第一中学高一期末)如图①,在棱长为2的正方体1111ABCD A B C D -木块中,E 是1CC 的中点.(1)求四棱锥11E ABC D -的体积;(2)要经过点A 将该木块锯开,使截面平行于平面1BD E ,在该木块的表面应该怎样画线?(请在图②中作图,并写出画法,不必说明理由).题型归类练1.(2022·甘肃武威·高一期末)如图,在三棱柱111ABC A B C -中,E ,F 分别为线段1AC ,11A C 的中点.(1)求证://EF 平面11BCC B .(2)在线段1BC 上是否存在一点G ,使平面//EFG 平面11?ABB A 请说明理由.2.(2022·河南·模拟预测(文))如图,在四棱柱1111ABCD A B C D -中,四边形ABCD 是正方形,E ,F ,G 分别是棱1BB ,11B C ,1CC 的中点.(1)证明:平面1//A EF 平面1AD G ;(2)若点1A 在底面ABCD 的投影是四边形ABCD 的中心,124A A AB ==,求三棱锥11A AD G -的体积.3.(2022·湖南衡阳·高一期末)如图:正方体ABCD -A 1B 1C 1D 1棱长为2,E ,F 分别为DD 1,BB 1的中点.(1)求证:CF //平面A 1EC 1;(2)过点D 做正方体截面使其与平面A 1EC 1平行,请给以证明并求出该截面的面积.角度2:平面与平面平行的性质典型例题例题1.(2022·全国·高三专题练习)在三棱柱111ABC A B C -中,(1)若,,,E F G H 分别是1111,,,AB AC A B A C 的中点,求证:平面1EFA //平面BCHG . (2)若点1,D D 分别是11,AC A C 上的点,且平面1//BC D 平面11AB D ,试求AD DC的值.例题2.(2022·辽宁锦州·高一期末)如图,已知四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,底面ABCD 为矩形,且4PA PB ==,2AB =,3AD =,O 为棱AB 的中点,点E 在棱AD上,且13AE AD =.(1)证明:CE PE ⊥;(2)在棱PB 上是否存在一点F 使OF ∥平面PEC ?若存在,请指出点F 的位置并证明;若不存在,请说明理由.题型归类练1.(2022·江苏·高一课时练习)在三棱柱111ABC A B C -中,点D 、1D 分别是AC 、11A C 上的点,且平面1//BC D 平面11AB D ,试求AD DC的值.2.(2022·河北省唐县第一中学高一阶段练习)如图,四边形ABCD 为矩形,四边形BCEF 为直角梯形,BF //CE ,BF ⊥BC ,BF <CE ,BF =2,AB =1,AD 5(1)求证:BC ⊥AF ;(2)求证:AF //平面DCE ;3.(2022·全国·高三专题练习(文))如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,//AB DC ,2PA PD ==,4AB =,1DC =,22AD BC ==(1)求四棱锥P ABCD -的体积;(2)在线段PA 上是否存在点M ,使得∥DM 平面PBC ?若存在,求PM AM的值;若不存在,请说明理由.4.(2022·河北·张北县第一中学高一阶段练习)如图所示正四棱锥S ABCD -,2,2SA SB SC SD AB =====P 为侧棱SD 上的点.且3SP PD =,求:(1)正四棱锥S ABCD -的表面积;(2)侧棱SC 上是否存在一点E ,使得//BE 平面PAC .若存在,求SE EC的值;若不存在,试说明理由.题型三:平行关系的综合应用典型例题例题1.(2022·江苏·高一课时练习)下列四个正方体中,A 、B 、C 为所在棱的中点,则能得出平面//ABC 平面DEF 的是( )A .B .C .D .例题2.(2022·安徽师范大学附属中学高一期中)在棱长为4的正方体1111ABCD A B C D -中,点E F 、分别是棱1,BC CC 的中点,P 是侧面四边形11BCC B 内(不含边界)一点,若1//A P 平面AEF ,则线段1A P 长度的最小值是___________.例题3.(2022·江苏省姜堰第二中学高一阶段练习)正方体1111ABCD A B C D -的棱长为1,点M ,N 分别是棱BC ,1CC 的中点,动点P 在正方形11ADD A (包括边界)内运动,且//BP平面AMN ,则1PA 的长度范围为___.题型归类练1.(2022·安徽省宣城中学高二期末)已知正方体1111ABCD A B C D -的棱长为2,E F 、分别是棱1AA 、11A D 的中点,点P 为底面四边形ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为( )A .2B 5C 6D .222.(2022·江苏·扬中市第二高级中学高二期末)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,N 为BC 的中点.当点M 在平面DCC 1D 1内运动时,有MN //平面A 1BD 则线段MN 的最小值为( )A .1B 6C 2D 33.(2022·湖南·株洲二中高一期末)在棱长为1的正方体1111ABCD A B C D -中,点M ,N 分别是棱BC ,1CC 的中点,动点P 在正方形11(BCC B 包括边界)内运动.若1PA ∥平面AMN ,则1PA 的最小值是( )A .1B 5C 32D 64.(2022·北京通州·高一期末)如图,在正方体1111ABCD A B C D -中,E 为BC 的中点,F 为正方体棱的中点,则满足条件直线//EF 平面1ACD 的点F 的个数是___________.5.(2022·贵州·遵义市第五中学高二期中(理))如图,已知四棱锥P -ABCD 的底面是平行四边形,E 为AD 的中点,F 在PA 上,AP =λAF ,若PC //平面BEF ,则λ的值为_________.6.(2022·甘肃·武威第六中学模拟预测(理))在正三棱柱111ABC A B C -中,D ,E ,F 分别为11A B ,11B C ,11C A 的中点,2AB =,M 为BD 的中点,则下列说法正确的是______.①AF ,BE 为异面直线;②EM ∥平面ADF ;③若BE CF ⊥,则12AA =④若60BEC ∠=︒,则直线1A C 与平面11BCC B 所成的角为45°.1.(2022·全国·模拟预测(理))已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A .26B .27C .42D .62.(2022·全国·高考真题)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC⊥,E 是PB 的中点.OE平面PAC;(1)证明://3.(2022·全国·高考真题(文))小明同学参加综合实践活动,设计了一个封闭的包装盒,EAB FBC GCD HDA 包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,,,,均为正三角形,且它们所在的平面都与平面ABCD垂直.EF平面ABCD;(1)证明://(2)求该包装盒的容积(不计包装盒材料的厚度).4.(2022·宁夏中卫·三模(理))如图1,菱形ABCD 中,60A ∠=︒,4AB =,DE AB ⊥于E ,将AED 沿DE 翻折到A ED ',使A E BE '⊥,如图2.(1)求三棱锥C A BD -'的体积;(2)在线段A D '上是否存在一点F ,使EF ∥平面A BC '?若存在,求DFFA '的值;若不存在,说明理由.。

高一数学必修2直线平面平行的判定及其性质知识点讲解

高一数学必修2直线平面平行的判定及其性质知识点讲解

性质
判定
a′∩b′=
a,b⊂βa P′a∩b=P
无公
条件
∩b=P a∥ a∥a′b∥b′
共点
αb∥α
a′,b′⊂βa,
b⊂α
结论 α∥β α∥β
α∥β
性质
α∥ββ ∩γ= α∥β bα∩γ= a⊂β
a
a∥b a∥α
[究 疑 点] 1.若一直线平行于平面α,那么平面α内的任一条直线
与它有何位置关系? 提示:平行或异面. 2.若两平面平行,那么在一个平面内的任一条直线与 另一个平面内的任一条直线有何位置关系? 提示:平行或异面.
直线、平面平行的判定及其性质 以立体几何的定义、公理和定理为出发点,认 识和理解空间中线面平行的判定定理与有关性质.
[理 要 点] 一、直线与平面平行的判定与性质
判定
图形
性质
条件 a与α无交点 结论 a∥α
b∥α
a∥α
a∥αa⊂βα ∩β=b
a∩α= ∅
a∥b
二、面面平行的判定与性质 判定
图形
()
A.若a∥α,b∥a,则b∥α
B.a∥α,b∥α,a⊂β,b⊂β,则β∥α
C.若α∥β,b∥α,则b∥β
D.若α∥β,a⊂α,则a∥β
解析:A、C中b都可能在面内故错,B中α与β相交
也可行.
答案:D
AB∥CD,AD⊥DC,CD=2,DD1=AB=1,P、Q分别 是CC1、C1D1的中点.求证:AC∥平面BPQ.
条件变为E、F、G满足“DF∶D1F=1∶2,DG∶DA=1∶3, BE∶BB1=2∶3”,求证平面AD1E∥平面BGF.
证明:∵D1F∶DD1=2∶3 BE∶BB1=2∶3 DD1=BB1,∴D1F=BE 又D1F∥BE,∴四边形D1FBE为平行四边形, ∴D1E∥BF 又DG∶GA=1∶2 DF∶FD1=1∶2 ∴GF∥AD1 又AD1∩D1E=D1,GF∩BF=F ∴平面AD1E∥平面GFB

高中立体几何知识点总结

高中立体几何知识点总结

高中立体几何知识点总结(覆盖高中阶段所有推论及细节)一、平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.4. 三个平面最多可把空间分成8 部分.(X、Y、Z三个方向)二、空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a、b异面,a平行于平面,b与的关系是相交、平行、在平面内.④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点向这个平面所引的垂线段和斜线段)⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围)(直线与直线所成角)(斜线与平面成角)(直线与平面所成角)(向量与向量所成角推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.是异面直线,则过外一点P,过点P且与都平行平面有一个或没有,但与距离相等的点在同一平面内. (或在这个做出的平面内不能叫与平行的平面)三、直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线与平面内一条直线平行,则∥ . (×)(平面外一条直线)②直线与平面内一条直线相交,则与平面相交. (×)(平面上一条直线)③若直线与平面平行,则平面内必存在无数条直线与已知直线平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面.(×)(可能在此平面内)⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑦直线与平面、所成角相等,则∥.(×)(、可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.●若⊥,⊥,得⊥(三垂线定理),得不出⊥. 因为⊥,但不垂直OA.●三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行. [注]:①垂直于同一平面的两个平面平行.(×)(可能相交,垂直于同一条直线的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O作OA、OB分别垂直于,因为则.6. 两异面直线任意两点间的距离公式:(为锐角取加,为钝取减,综上,都取加则必有)7. ⑴最小角定理:(为最小角,如图)⑵最小角定理的应用(∠PBN为最小角)简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条.成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.五、棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:(为底面周长,是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:(是斜棱柱直截面周长,是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑵{四棱柱} {平行六面体} {直平行六面体} {长方体} {正四棱柱} {正方体}.{直四棱柱} {平行六面体}={直平行六面体}.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形;正棱柱的各个侧面都是全等的矩形.②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.⑷平行六面体:定理一:平行六面体的对角线交于一点,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为,则.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为,则.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形)②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直棱柱才行)③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形)④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形.②正棱锥的侧面积:(底面周长为,斜高为)③棱锥的侧面积与底面积的射影公式:(侧面与底面成的二面角为)附:以知⊥,,为二面角.则①,②,③①②③得.注:S为任意多边形的面积(可分别多个三角形的方法).⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直. 简证:A B⊥CD,AC⊥BD BC⊥AD. 令得,已知则 .iii. 空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.简证:取AC中点,则平面 90°易知EFGH为平行四边形 EFGH为长方形.若对角线等,则为正方形.3. 球:⑴球的截面是一个圆面.①球的表面积公式:.②球的体积公式:.⑵纬度、经度:①纬度:地球上一点的纬度是指经过点的球半径与赤道面所成的角的度数.②经度:地球上两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点的经线是本初子午线时,这个二面角的度数就是点的经度.附:①圆柱体积:(为半径,为高)②圆锥体积:(为半径,为高)③锥形体积:(为底面积,为高)4. ①内切球:当四面体为正四面体时,设边长为a,,,得.注:球内切于四面体:②外接球:球外接于正四面体,可如图建立关系式.六. 空间向量.1. (1)共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.注:①若与共线,与共线,则与共线.(×) [当时,不成立]②向量共面即它们所在直线共面.(×) [可能异面]③若∥,则存在小任一实数,使 .(×)[与不成立]④若为非零向量,则 .(√)[这里用到之积仍为向量](2)共线向量定理:对空间任意两个向量,∥的充要条件是存在实数(具有唯一性),使.(3)共面向量:若向量使之平行于平面或在内,则与的关系是平行,记作∥.(4)①共面向量定理:如果两个向量不共线,则向量与向量共面的充要条件是存在实数对x、y使.②空间任一点O和不共线三点A、B、C,则是PABC四点共面的充要条件.(简证:P、A、B、C四点共面)注:①②是证明四点共面的常用方法.2. 空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组x、y、z,使.推论:设O、A、B、C是不共面的四点,则对空间任一点P, 都存在唯一的有序实数组x、y、z使(这里隐含x+y+z≠1).注:设四面体ABCD的三条棱,其中Q是△BCD的重心,则向量用即证.3. (1)空间向量的坐标:空间直角坐标系的x轴是横轴(对应为横坐标),y轴是纵轴(对应为纵轴),z轴是竖轴(对应为竖坐标).①令=(a1,a2,a3), ,则∥(用到常用的向量模与向量之间的转化:)②空间两点的距离公式:.(2)法向量:若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果那么向量叫做平面的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n是平面的法向量,A B是平面的一条射线,其中,则点B到平面的距离为 .②利用法向量求二面角的平面角定理:设分别是二面角中平面的法向量,则所成的角就是所求二面角的平面角或其补角大小(方向相同,则为补角,反方,则为其夹角).③证直线和平面平行定理:已知直线平面,,且CDE三点不共线,则a∥的充要条件是存在有序实数对使 .(常设求解若存在即证毕,若不存在,则直线AB与平面相交).II. 竞赛知识要点一、四面体.1. 对照平面几何中的三角形,我们不难得到立体几何中的四面体的类似性质:①四面体的六条棱的垂直平分面交于一点,这一点叫做此四面体的外接球的球心;②四面体的四个面组成六个二面角的角平分面交于一点,这一点叫做此四面体的内接球的球心;③四面体的四个面的重心与相对顶点的连接交于一点,这一点叫做此四面体的重心,且重心将每条连线分为3︰1;④12个面角之和为720°,每个三面角中任两个之和大于另一个面角,且三个面角之和为180°.2. 直角四面体:有一个三面角的三个面角均为直角的四面体称为直角四面体,相当于平面几何的直角三角形. (在直角四面体中,记V、l、S、R、r、h分别表示其体积、六条棱长之和、表面积、外接球半径、内切球半径及侧面上的高),则有空间勾股定理:S2△ABC+S2△BCD +S2△ABD=S2△ACD.3. 等腰四面体:对棱都相等的四面体称为等腰四面体,好象平面几何中的等腰三角形.根据定义不难证明以长方体的一个顶点的三条面对角线的端点为顶点的四面体是等腰四面体,反之也可以将一个等腰四面体拼补成一个长方体.(在等腰四面体ABCD中,记BC = AD =a,AC = BD = b,AB = CD = c,体积为V,外接球半径为R,内接球半径为r,高为h),则有①等腰四面体的体积可表示为;②等腰四面体的外接球半径可表示为;③等腰四面体的四条顶点和对面重心的连线段的长相等,且可表示为;④h = 4r.二、空间正余弦定理.空间正弦定理:sin∠ABD/sin∠A-BC-D=sin∠ABC/sin∠A-BD-C=sin ∠CBD/sin∠C-BA-D空间余弦定理:cos∠ABD=cos∠ABCcos∠CBD+sin∠ABCsin∠CBD cos∠A-BC-D。

解析几何第三章知识点

解析几何第三章知识点

第三章 平面与空间直线版权所有,侵权必究§3.1 平面的方程1.平面的点位式方程在空间给定了一点M 0与两个不共线的向量a ,b 后,通过点M 0且与a ,b 平行的平面π 就惟一被确定. 向量a ,b 叫平面π 的方位向量. 任意两个与π 平行的不共线的向量都可作为平面π 的方位向量.取标架{}321,,;e e e O ,设点M 0的向径0r =0OM ={}000,,z y x ,平面π 上任意一点M 的向径为r =OM = {x ,y ,z }(如图). 点M 在平面π上的充要条件为向量M M 0与向量a ,b 共面. 由于a ,b 不共线,这个共面的条件可以写成M M 0= u a +v b而M M 0= r -r 0,所以上式可写成r = r 0+u a +v b(3.1-1)此方程叫做平面π 的点位式向量参数方程,其中u ,v 为参数.若令a = {1X ,1Y ,1Z },b = {2X ,2Y ,2Z },则由(3.1-1)可得⎪⎩⎪⎨⎧++=++=++=vZ u Z z z v Y u Y y y vX u X x x 210210210 (3.1-2)此方程叫做平面π 的点位式坐标参数方程,其中u ,v 为参数.(3.1-1)式两边与a ×b 作内积,消去参数u ,v 得(r -r 0,a ,b ) = 0(3.1-3)此即222111000Z Y X Z Y X z z y y x x ---=0 (3.1-4)这是π 的点位式普通方程.已知平面π上三非共线点i M (i = 1,2,3). 建立坐标系{O ;e 1, e 2, e 3},设r i = i OM ={i x ,i y ,i z },i = 1,2,3. 对动点M ,设r =OM ={x ,y ,z },取21M M 和31M M 为方位向量,M 1为定点,则平面π的向量参数方程,坐标参数方程和一般方程依次为r = 1r +u(2r -1r )+v(3r -r 1)(3.1-5) ⎪⎩⎪⎨⎧-+-+=-+-+=-+-+=)()()()()()(131211312113121z z v z z u z z y y v y y u y y x x v x x u x x(3.1-6)131313121212111z z y y x x z z y y x x z z y y x x ---------= 0(3.1-7)(3.1-5),(3.1-6)和(3.1-7)统称为平面的三点式方程.特别地,若i M 是π 与三坐标轴的交点,即1M (a ,0,0),2M (0,b ,0),3M (0,0,c ),其中abc ≠0,则平面π 的方程就是caba z y a x 00---=0 (3.1-8)即1=++czb y a x (3.1-9)此方程叫平面π的截距式方程,其中a ,b ,c 称为π 在三坐标轴上的截距.2.平面的一般方程在空间任一平面都可用其上一点M 0(x 0,y 0,z 0)和两个方位向量a = {1X ,1Y ,1Z },b = {2X ,2Y ,2Z }确定,因而任一平面都可用方程将其方程(3.1-4)表示. 将(3.1-4)展开就可写成Ax +By +Cz +D = 0(3.1-10)其中A =2211Z Y Z Y ,B =2211X Z X Z ,C =2211Y X Y X由于a = {1X ,1Y ,1Z }与b = {2X ,2Y ,2Z }不共线,所以A ,B ,C 不全为零,这说明空间任一平面都可用关于a ,b ,c 的一三元一次方程来表示.反之,任给一三元一次方程(3.1-10),不妨设A ≠0,则(3.1-10)可改写成02=++⎪⎭⎫ ⎝⎛+ACz ABy A D x A即000=--+ACA B zy AD x 它显然表示由点M 0 (-D / A ,0,0)和两个不共线的向量{B ,-A ,0}和{C ,0,-A }所决定的平面. 于是有定理3.1.1 空间中任一平面的方程都可表为一个关于变数x ,y ,z 的三元一次方程;反过来,任一关于变数x ,y ,z 的三元一次方程都表示一个平面.方程(3.1-10) 称为平面π 的一般方程. 3.平面的法式方程若给定一点M 0和一个非零向量n ,则过M 0且与n 垂直的平面π也被惟一地确定. 称n 为π的法向量. 在空间坐标系{O ;i ,j ,k }下,设0r = 0OM ={x 0,y 0,z 0},n = {A ,B ,C },且平面上任一点M 的向径r =OM ={x ,y ,z },则因总有M M 0⊥n ,有n (r -r 0) = 0(3.1-11) 也就是A (x -x 0)+B (y -y 0)+C (z -z 0) = 0(3.1-12)方程(3.1-11)和(3.1-12)叫平面π 的点法式方程. (3.1-12)中的系数A ,B ,C 有简明的几何意义,它们就是平面π 的一个法向量的分量.特别地,取M 0为自O 向π 所作垂线的垂足,而n 为单位向量. 当平面不过原点时,取n 为与OP 同向的单位向量n 0,当平面过原点时取n 0的正向为垂直与平面的两个方向中的任一个.设|OP | = p ,则OP = p n 0,由点P 和n 0确定的平面的方程为 n 0(r -p n 0) = 0式中r 是平面的动向径. 由于1)(20=n ,上式可写成n 0r -p = 0(3.1-13)此方程叫平面的向量式法式方程.若设r = {x ,y ,z },n 0 = {cos α,cos β,cos γ},则由(3.1-13)得x cos α+y cos β+z cos γ-p = 0(3.1-14)此为平面的坐标法式方程,简称法式方程.平面的坐标法式方程有如下特征:1°一次项系数是单位向量的分量,其平方和等于1; 2°常数项-p ≤0(意味着p ≥ 0). 3°p 是原点到平面的距离. 4.化一般方程为法式方程在直角坐标系下,若已知π的一般方程为Ax +By +Cz +D = 0,则n = {A ,B ,C }是π的法向量,Ax +By +Cz +D = 0可写为nr +D = 0(3.1-15)与(3.1-13)比较可知,只要以2221||1CB A ++±=±=n λ 去乘(3.1-15)就可得法式方程λAx +λBy +λCz +λD = 0 (3.1-16)其中正负号的选取,当D ≠0时应使(3.1-16)的常数项为负,D =0时可任意选.以上过程称为平面方程的法式化,而将2221CB A ++±=λ叫做法化因子.§3.2 平面与点的相关位置平面与点的位置关系,有两种情形,就是点在平面上和点不在平面上. 前者的条件是点的坐标满足平面方程. 点不在平面上时,一般要求点到平面的距离,并用离差反映点在曲面的哪一侧.1.点与平面间的距离定义3.2.1 自点M 0向平面π 引垂线,垂足为Q . 向量0QM 在平面π的单位法向量n 0上的射影叫做M 0与平面π之间的离差,记作δ = 射影n 00QM(3.2-1)显然δ = 射影n 00QM = 0QM ·n 0 =∣0QM ∣cos ∠(0QM ,n 0) =±∣0QM ∣当0QM 与n 0同向时,离差δ > 0;当0QM 与n 0反向时,离差δ < 0. 当且仅当M 0在平面上时,离差δ = 0.显然,离差的绝对值|δ |就是点M 0到平面π 的距离. 定理3.2.1 点M 0与平面(3.1-13)之间的离差为δ = n 0r 0-p (3.2-2)推论1 若平面π 的法式方程为 0cos cos cos =-++p z y x γβα,则),,(0000z y x M 与π间的离差=δp z y x -++γβαcos cos cos 000(3.2-3)推论2 点),,(0000z y x M 与平面Ax +By +Cz +D = 0间的距离为()2220000,CB A DCz By Ax M d +++++=π (3.2-4)2.平面划分空间问题,三元一次不等式的几何意义 设平面π的一般方程为Ax +By +Cz +D = 0那么,空间任何一点M (x ,y ,z )与平面间的离差为=δp z y x -++γβαcos cos cos = λ (Ax +By +Cz +D )式中λ为平面π的法化因子,由此有Ax +By +Cz +D =δλ1(3.2-5)对于平面π同侧的点,δ 的符号相同;对于在平面π的异侧的点,δ 有不同的符号,而λ一经取定,符号就是固定的. 因此,平面π:Ax +By +Cz +D = 0把空间划分为两部分,对于某一部分的点M (x ,y ,z ) Ax +By +Cz +D > 0;而对于另一部分的点,则有Ax +By +Cz +D < 0,在平面π上的点有Ax +By +Cz +D = 0.§3.3 两平面的相关位置空间两平面的相关位置有3种情形,即相交、平行和重合. 设两平面π1与π2的方程分别是π1: 11110A x B y C z D +++=(1)π2: 22220A x B y C z D +++=(2)则两平面π1与π2相交、平行或是重合,就决定于由方程(1)与(2)构成的方程组是有解还是无解,或无数个解,从而我们可得下面的定理.定理3.3.1 两平面(1)与(2)相交的充要条件是111222::::A B C A B C ≠(3.3-1)平行的充要条件是11112222A B C D A B C D ==≠(3.3-2)重合的充要条件是11112222A B C D A B C D ===(3.3-3)由于两平面π1与π2的法向量分别为11112222{,,},{,,}n A B C n A B C ==,当且仅当n 1不平行于n 2时π1与π2相交,当且仅当n 1∥n 2时π1与π2平行或重合,由此我们同样能得到上面3个条件.下面定义两平面间的夹角.设两平面的法向量间的夹角为θ,称π1与π2的二面角∠(π1,π2) =θ 或π-θ为两平面间的夹角.显然有12cos (,)ππ∠=±cos θ =(3.3-4)定理3.3.2 两平面(1)与(2)垂直的充要条件是0212121=++C C B B A A(3.3-5)例 一平面过两点 1(1,1,1)M 和2(0,1,1)M -且垂直于平面x +y +z = 0,求它的方程.解 设所求平面的法向量为n = {A ,B ,C },由于12{01,11,11}{1,0,2}M M =----=--在所求平面上,有12M M n ⊥, 120M M n ⋅=,即20A C --= .又n 垂直于平面x +y +z = 0的法线向量{1,1,1},故有 A +B +C = 0 解方程组20,0,A C A B C --=⎧⎨++=⎩得2,,A CBC =-⎧⎨=⎩ 所求平面的方程为2(1)(1)(1)0C x C y C z --+-+-=,约去非零因子C 得2(1)(1)(1)0x y z --+-+-=,即2x -y -z =0§3.4 空间直线的方程1.由直线上一点与直线的方向所决定的直线方程在空间给定了一点0000(,,)M x y z 与一个非零向量v = {X ,Y ,Z },则过点M 0且平行于向量v 的直线l 就惟一地被确定. 向量v 叫直线l 的方向向量. 显然,任一与直线l 上平行的飞零向量均可作为直线l 的方向向量.下面建立直线l 的方程.如图,设M (x ,y ,z ) 是直线l 上任意一点,其对应的向径是r = { x ,y ,z },而0000(,,)M x y z 对应的向径是r 0,则因M M 0//v ,有t ∈R ,M M 0= t v . 即有r -r 0= t v所以得直线l 的点向式向量参数方程r = r 0+t v (3.4-1)以诸相关向量的分量代入上式,得⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛Z Y X t z y x z y x 000根据向量加法的性质就得直线l 的点向式坐标参数方程为⎪⎩⎪⎨⎧+=+=+=Ztz z Yt y y Xtx x 000 (3.4-2)消去参数t ,就得直线l 的点向式对称方程为Zz z Y y y X x x 000-=-=- (3.4-3)此方程也叫直线l 的标准方程.今后如无特别说明,在作业和考试时所求得的直线方程的结果都应写成对称式.例1 设直线L 通过空间两点M 1(x 1,y 1,z 1)和M 2(x 2,y 2,z 2),则取M 1为定点,21M M 为方位向量,就得到直线的两点式方程为121121121z z z z y y y y x x x x --=--=-- (3.4-4)根据前面的分析和直线的方程(3.4-1),可得到||||||||||00v M M v t =-=r r 这个式子清楚地给出了直线的参数方程(3.4-1)或(3.4-2)中参数的几何意义:参数t 的绝对值等于定点M 0到动点M 之间的距离与方向向量的模的比值,表明线段M 0M 的长度是方向向量v 的长度的 |t | 倍.特别地,若取方向向量为单位向量v 0 = {cos α,cos β,cos γ}则(3.4-1)、(3.4-2)和(3.4-3)就依次变为r = r 0+t v 0(3.4-5)⎪⎩⎪⎨⎧+=+=+=γβαcos cos cos 000t z z t y y t x x (3.4-6)和γβαcos cos cos 000z z y y x x -=-=- (3.4-7)此时因 |v | = 1,t 的绝对值恰好等于l 上两点M 0与M 之间的距离.直线l 的方向向量的方向角α,β,γ cos α,cos β,cos γ 分别叫做直线l 的方向角和方向余弦.由于任意一个与v 平行的非零向量v'都可作为直线l 的方向向量,而二者的分量是成比例的,我们一般称X :Y :Z 为直线l 的方向数,用来表示直线l 的方向.2.直线的一般方程空间直线l 可看成两平面π1和π2的交线. 事实上,若两个相交的平面π1和π2的方程分别为π1: 11110A x B y C z D +++= π2: 22220A x B y C z D +++=那么空间直线l 上的任何一点的坐标同时满足这两个平面方程,即应满足方程组111122220,0.A x B y C z D A x B y C z D +++=⎧⎨+++=⎩ (3.4-8)反过来,如果点不在直线l 上,那么它不可能同时在平面π1和π2上,所以它的坐标不满足方程组(3.4-8).因此,l 可用方程组(3.4-8)表示,方程组(3.4-8)叫做空间直线的一般方程.一般说来,过空间一直线的平面有无限多个,所以只要在无限多个平面中任选其中的两个,将它们的方程联立起来,就可得到空间直线的方程.直线的标准方程(3.4-3)是一般方程的特殊形式. 将标准方程化为一般式,得到的是直线的射影式方程.将直线的一般方程化为标准式,只需在直线上任取一点,然后取构成直线的两个平面的两个法向量的向量积为直线的方向向量即可.例1将直线的一般方程10,2340.x y z x y z +++=⎧⎨-++=⎩ 化为对称式和参数方程.解 令y = 0,得这直线上的一点(1,0,-2).两平面的法向量为a = {1,1,1},b = {2,-1,3}因a ×b = {4,-1,-3},取为直线的法向量,即得直线的对称式方程为12413x y z -+==--令t z y x =-+=-=-32141,则得所求的参数方程为 14,,23.x t y t z t =+⎧⎪=-⎨⎪=--⎩§3.5 直线与平面的相关位置直线与平面的相关位置有直线与平面相交,直线与平面平行和直线在平面上3种情形. 设直线l 与平面π 的方程分别为L :000x x y y z z X Y Z ---== (1) π :Ax +By +Cz +D = 0(2)将直线l 的方程改写为参数式⎪⎩⎪⎨⎧+=+=+=tZz z tY y y tX x x 000. (3)将(3)代入(2),整理可得(AX +BY +CZ )t = -(Ax 0+By 0+Cz 0+D )(4)当且仅当AX +BY +CZ ≠0时,(4)有惟一解CZBY AX DCz By t +++++-=000Ax这时直线l 与平面π 有惟一公共点;当且仅当AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D ≠0时,方程(4)无解,直线l 与平面π 没有公共点;当且仅当AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D = 0时,(4)有无数多解,直线l 在平面π 上. 于是有定理3.5.1 关于直线(1)与平面(2)的相互位置,有下面的充要条件: 1)相交: AX +BY +CZ ≠02)平行:AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D ≠03)直线在平面上: AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D = 0以上条件的几何解释:就是直线l 的方向向量v 与平面π 的法向量n 之间关系. 1)表示v 与n 不垂直;2)表示v 与n 垂直且直线l 上的点(x 0,y 0,z 0)不在平面π 上; 3)表示v 与n 垂直且直线l 上的点(x 0,y 0,z 0)在平面π 上. 当直线l 与平面π 相交时,可求它们的交角. 当直线不与平面垂直时,直线与平面的交角ϕ 是指直线和它在平面上的射影所构成的锐角;垂直时规定是直角.设v = {X ,Y ,Z }是直线l 的方向向量,n = {A ,B ,C }是平面π 的法向量,则令∠(l ,π ) =ϕ,∠(v ,n ) = θ ,就有ϕ=-2πθ 或 ϕ= θ-2π(θ 为锐角) 因而sin ϕ =∣cos θ∣=vn v n ⋅⋅=222222ZY X CB A CZ BY AX ++++++ (3.5-1)§3.6 空间直线与点的相关位置任给一条直线l 的方程和一点M 0,则l 和M 0的位置关系只有两种:点在直线上和点不在直线上。

高中数学高考总复习---直线、平面平行的判定和性质知识讲解及考点梳理

高中数学高考总复习---直线、平面平行的判定和性质知识讲解及考点梳理
类型一、直线与平面平行的判定
例 1、【高清课堂:直线、平面平行的判定与性质例 1】 如图所示,已知 P、Q 是单位正方体 ABCD-A1B1C1D1 的面 A1B1BA 和面 ABCD 的中心。 证明:PQ//平面 BCC1B1
【证明】方法一:如图,取 B1B 中点 E,BC 中点 F,连接 PE、QF、EF, 因为在三角形 A1B1B 中,P、E 分别是 A1B 和 B1B 的中点,
举一反三: 【变式】(2015 春 澄城县期末)如图所示的多面体中,ABCD 是菱形,BDEF 是矩形, ED⊥面 ABCD,连结 AC,AC∩BD=O, (Ⅰ)求证:面 BCF∥面 AED; (Ⅱ)求证:AO 是四棱锥 A﹣BDEF 的高.
【证明】(Ⅰ)在矩形 BDEF 中,FB∥ED, ∵FB 不包含于平面 AED,ED 平面 AED, ∴FB∥平面 AED, 同理,BC∥平面 AED, 又 FB∩BC=B, ∴平面 FBC∥平面 EDA. (Ⅱ)解:∵ABCD 是菱形,∴AC⊥BD, ∵ED⊥面 ABCD,AC 面 ABCD,
2
如果两个平行平面同时与第三个平面相交,那么它们的交线平行.
2、 符号语言: 3、 面面平行的另一性质: 如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.
符号语言:

要点诠释:
平面与平面平行的判定与性质,同直线与平面平行的判定与性质一样,体现了转化与化
归的思想。三种平行关系如图:
性质过程的转化实施,关键是作辅助平面,通过作辅助平面得到交线,就可把面面平行 化为线面平行并进而化为线线平行,注意作平面时要有确定平面的依据。 【典型例题】

考点四、平面与平面平行的性质 4、 平行平面的性质定理:
如果两个平行平面同时与第三个平面相交,那么它们的交线平行.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线面垂直的定义
(逆)
由线面垂直得线线垂直.
课本46页10(2)
(大题中用时需证明)
三个两两垂直的平面的交线垂直。
九、空间直线与平面垂直的判定方法
பைடு நூலகம்名称
图形
条件结论
判定方法
(文字叙述)
线面垂直的定
⊥ , ⊥
( 为任意的)
一条直线若垂直于一平面内任意一条直线,则直线垂直于这个平面
线面垂直的判定定理

⊥ ⊥
面面垂直的定义
二面角 ⊥
是直二面角
两平面所成的二面角是直角叫这两平面互相垂直。
面面垂直的判定定理
a⊥ ⊥
一个平面经过另外一个平面的垂线,则这两个平面互相垂直。
课本37页8题
(大题中用时需证明)
⊥ , ⊥
如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直。
十一、空间角和距离的概念
平面图形
空间图形
表示方法
交点个数


线




直线:
一个


直线:

异面直线:两直线不同在任何一个平面内(定义)
(异面直线的判定方法)

三.空间直线和平面的位置关系
位置关系
图示
表示方法
交点个数
直线在平面内( )
无穷多个

线





( )

线





直线与平面斜交
一个
直线与平面垂直

一个
直线与平面平行

四.空间两平面的位置关系
(在大题中用时,
需证明)


七、空间两平面平行的判定方法
名称
图形
条件结论
判定方法
(文字叙述)
面面平行的定义
无公共点
两个平面没有公共点叫两个平面平行.
面面平行的判定定理
一个平面内两条相交直线分别与另一个平面平行,那么这两个平面平行.
课本35页例1
⊥ ⊥
垂直于同一直线的两个平面平行
补充(大题中用时应证明)
公理3:经过不在同一直线上的三点有且仅有一个平面.
确定一个平面的依据
推论1:经过一条直线和这条直线外点一点,有且仅有一个平面.
确定一个平面的依据
推论2经过两条相交直线,有且仅有一个平面.
确定一个平面的依据
推论3:经过两条平行直线有且仅有一个平面.
确定一个平面的依据
二.空间两直线的位置关系
位置关系
图示
异面直线
直线和平面
两个平面
夹角
图示


由一点出发的两条射线组成的图形。
异面直线所成的角:作 所成的角(锐角或直角)为异面直线所成的角。
直线与平面所成的角:a’是a在平面上的射影,a与a’所成锐角为直线与平面所成的角。
二面角的平面角:O在棱上,OA在α内,OA⊥棱,OB在β内,OB⊥棱,∠AOB是二面角的平面角。
平行于同一平面的两个平面平行
八、空间两条直线垂直的判定方法
名称
图形
条件结论
判定方法(文字叙述)
空间两条直线
垂直的定义
异面垂直
相交垂直
是异面直线
空间两直线所成角为直角称此两直线垂直.
三垂线定理



平面内一直线若与斜线的射影垂直则它与斜线垂直.
三垂线定理的逆定理



平面内一直线若与斜线垂直则与斜线的射影垂直.
空间直线与平面----概念定理
一.平面的基本性质及图示
基本性质
作用
图示
公理1:如果一条直线上的两个点在一个平面内,那么这条直线上所有点都在这个平面内.
判断线在面内的依据
公理2:如果两个平面有一个公共点,那么它们有且仅有一条通过这个点的公共直线.
判断两个平面相交的依据;证明点在线上的依据;确定交线位置
性质定理
一个平面同时与两个平行平面相交,那么这两条交线平行。
公理4
平行于同一条直线的两条直线互相平行
六、空间直线与平面平行的判定方法
名称
图形
条件结论
判定方法
(文字叙述)
线面平行的定义

无公共点
一条直线与一个平面没有公共点
线面平行的判定定理
由线线平行得线面平行
面面平行的性质
由面面平行得线面平行
课本46页11题
一条直线与平面内两条相交直线都相交,那么这条直线与这个平面垂直.
面面垂直的性质定理
⊥ , ⊥

两个平面垂直,在第一个平面内垂直于交线的直线垂直于另一个平面.
线面垂直的性质
⊥ , ⊥
由线线平行得线面垂直.
面面平行的性质


由面面平行得线面垂直.
十、空间两平面垂直的判定方法
名称
图形
条件结论
判定方法(文字叙述)
α范围
距离图示
定义
两平行直线间的距离:
异面直线间的距离:
平行直线和平面的距离:
平行平面间距离:
位置关系
图示
表示方法
交点个数





斜交:
无穷多个
垂直相交:
(定义)
┴ ,
无穷多个
两平面平行:
(定义)

五、空间两条直线平行的判定方法
名称
图形
条件结论
判定方法
(文字叙述)
平行线的定义

无公共点
在同一平面内,没有公共点
线面平行的
性质定理
线面平行得线线平行
线面垂直的
性质定理

b⊥
由线面垂直得线线平行
面面平行的
相关文档
最新文档