北师大版七年级数学上册《角的比较》典型例题(含答案)
七年级数学北师大版上册4.4 角的比较(含答案)

4.4 角的比较专题一角的比较与运算、角平分线的定义1.若∠1=20°18′,∠2=20°15′30′′,∠3=20.25°,则()A.∠1>∠2>∠3 B.∠2>∠1>∠3C.∠1>∠3>∠2 D.∠3>∠1>∠22.已知点P和∠MAN,现有四个等式:①∠PAM=∠NAP;②∠PAN=∠MAN;③∠MAP=∠MAN;④∠MAN=2∠MAP.其中一定能推出AP是角平分线的等式有()A.1个B.2个C.3个D.4个3.如图,已知∠AOC=90°,∠COB=α,OD平分∠AOB,则∠COD等于()A.B.45°﹣C.45°﹣αD.90°﹣α4.点M,O,N顺次在同一直线上,射线OC,OD在直线MN同侧,且∠MOC=64°,∠DON=46°,则∠MOC的平分线与∠DON的平分线夹角的度数是()A.85°B.105°C.125°D.145°5.如图,∠ABC=90°,则∠DBE的度数是.6.已知∠AOB=40°,过点O引射线OC,若∠AOC∶∠COB=2∶3,且OD平分∠AOB,则∠COD=.7.如图,AB>AC,AD平分∠BAC,且CD=BD.试说明∠B与∠C的大小关系.8.如图甲所示,将一副三角尺的直角顶点重合在点O处.(1)①∠AOD和∠BOC相等吗?说明理由.②∠AOC和∠BOD在数量上有何关系?说明理由.(2)若将这幅三角尺按图乙所示摆放,三角尺的直角顶点重合在点O处.①∠AOD和∠BOC相等吗?说明理由.②∠AOC和∠BOD的以上关系还成立吗?说明理由.状元笔记:【知识要点】1.比较角的大小.2.角的分类及角的和差倍分.3.角平分线的概念.【温馨提示】根据角平分线定义得出所求角与已知角的关系转化求解,根据题意画出图形是解题的关键.参考答案:1.A2.A3.B 解析:∵∠AOC=90°,∠COB=α,∴∠AOB=90°+α.∵OD平分∠AOB,∴∠AOD=∠AOB=(90°+α)=45°+,∠COD=∠AOC﹣∠AOD=90°﹣(45°+)=45°﹣.4.C 解析:如图,设∠MOC的平分线为OE,∠DON的平分线为OF,∵∠MOC=64°,∠DON=46°,∴∠MOE=∠MOC=×64°=32°,∠NOF=∠DON=×46°=23°,∴∠EOF=180°﹣∠MOE﹣∠NOF=180°﹣32°﹣23°=125°.5.50°解析:根据图形,易得∠DBE=∠ABC﹣∠ABE﹣∠COD=90°﹣30°﹣10°=50°.6.4°或100°解析:如图(1),射线OC在∠AOB的内部,图(2)射线OC在∠AOB的外部.(1)设∠AOC、∠COB的度数分别为2x、3x,则2x+3x=40°,∴x=8°,∠AOC=2x=16°,∠AOD=×40°=20°,∴∠COD=∠AOD﹣∠AOC=20°﹣16°=4°.(2)设∠AOC、∠COB的度数分别为2x、3x,则∠AOB=3x﹣2x=x=40°,∴∠AOC=2x=80°,∠AOD=20°,∴∠COD=∠AOC+∠AOD=80°+20°=100°.7.解:由题意知,∠C=180°﹣∠CAD﹣∠CDA,∠B=180°﹣∠DAB﹣∠ADB,∵AB>AC,AD平分∠BAC,且CD=BD,∴∠CAD=∠BAD,∠CDB<∠ADB,∴∠C>∠B.8.解:(1)①相等.理由:∵∠AOD=90°+∠BOD,∠BOC=90°+∠BOD,∴∠AOD和∠BOC相等.②∠AOC+∠BOD=180°.理由:∵∠AOC+90°+∠BOD+90°=360°,∴∠AOC+∠BOD=180°;(2)①相等.理由:∵∠AOD=90°﹣∠BOD,∠BOC=90°﹣∠BOD,∴∠AOD和∠BOC相等.②成立.理由:∵∠AOC=90°+90°﹣∠BOD,∴∠A OC+∠BOD=180°.。
最新北师大版七年级上数学:4.4《角的比较》课时练习(含答案)

4.4角的比较基础题知识点1角的测量及大小比较1.在∠AOB的内部任取一点C,作射线OC,则一定存在( )A.∠AOB>∠AOCB.∠AOC=∠BOCC.∠BOC>∠AOCD.∠AOC>∠BOC2.用“<”“=”或“>”填空:(1)若∠α=∠β,∠β=∠γ,则∠α____∠γ;(2)若∠1+∠2=70°,∠3+∠2=100°,则∠1____∠3.3.比较两个角的大小,有以下两种方法(规则):(1)用量角器度量两个角的大小,用度数表示,则角度大的角大(2)构造图形,如果一个角包含(或覆盖)另一个角,则这个角大.对于如图给定的∠ABC与∠DEF,用以上两种方法分别比较它们的大小.知识点2角的平分线及角的运算4.借助一副三角尺,你能画出下面哪个度数的角( )A .65°B .75°C .85°D .95° 5.如图,下列条件中不能确定OC 平分∠AOB 的是( )A .∠AOC =∠BOCB .∠AOC =12∠AOB C .∠AOB =2∠BOC D .∠AOC +∠BOC =∠AOB6.如图所示,已知O 是直线AB 上一点,∠1=40°,OD 平分∠BOC ,则∠2的度数是( )A .20°B .25°C .30°D .70°7.如图所示,已知∠AOC =∠COD =∠BOD ,若∠COD =14°34′,则∠AOB 的度数是( )A .28°68′B .44°42′C .43°2′D .43°42′8.如图,OB 是∠AOC 的平分线,∠BOC =30°,∠COD =40°,求∠AOD 的度数.中档题9.(滨州中考)如图,OB是∠AOC的平分线,OD是∠COE的平分线,如果∠AOB=40°,∠COE=60°,则∠BOD的度数为( )A.50°B.60°C.65°D.70°10.如图,OC是∠AOB的平分线,∠BOD=14∠DOC,∠BOD=10°,则∠AOD的度数为( )A.50°B.60°C.70°D.80°11.若∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.20°或60°D.40°12.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=________°.13.如图,∠AOD=120°,∠2=2∠1=60°,求:(1)∠DOC的度数;(2)∠BOD的度数.14.如图,点O是直线AB上的一点,∠AOC=130°,OB平分∠COD,OE平分∠AOD,求∠AOE的度数.综合题15.如图,∠AOB是直角,∠AOC=50°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小也会发生改变吗,为什么?参考答案基础题1.A 2.(1)=(2)<3.(1)略.(2)如图所示.故∠DEF大.4.B5.D6.D7.D8.因为OB 是∠AOC 的平分线,所以∠AOC =2∠BOC. 因为∠BOC =30°,所以∠AOC =2×30°=60°.因为∠AOD =∠AOC +∠COD ,∠COD =40°,所以∠AOD =60°+40°=100°. 中档题9.D 10.C 11.C 12.4013.(1)∠DOC =∠AOD -∠2=120°-60°=60°.(2)因为∠2=2∠1=60°,所以∠1=30°.所以∠BOD =∠AOD +∠1=120°+30°=150°.14.因为点O 在直线AB 上,所以∠AOB =∠AOC +∠BOC =180°. 因为∠AOC =130°,所以∠BOC =50°.因为OB 平分∠COD ,所以∠COD =2∠COB =100°.所以∠AOD =360°-∠AOC -∠COD =360°-130°-100°=130°. 因为OE 平分∠AOD ,所以∠AOE =12∠AOD =65°. 综合题15.(1)∠MON =∠MOC -∠CON =12(∠BOC -∠AOC)=12∠AOB =45°. (2)当∠AOC 的大小发生改变时,∠MON 的大小不会发生改变.理由同(1).。
新北师大版七年级上《4.4角的比较》课后作业含答案

4.4 角的比较1.已知∠AOB=90°,∠BOC=100°,则射线OC( )A.在∠AOB内B.在∠AOB外C.在∠AOB的内或外D.有可能与OA重合2.如图,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为( )A.120° B.130°C.135° D.140°3.如图,OA⊥OB,∠BOC=30°,OD平分∠AOC,则∠BOD的度数是( )度.A.40 B.60C.20 D.304.如图,∠1+∠2等于( )A.60° B.90°C.110° D.180°5.(1)23周角=________,(2)14平角=________.(3)把一个周角16等分,每份是________度的角.6.如图所示,直线AB ,CD 相交于点O ,OA 平分∠EOC,若∠EOC=130°,则∠EOD=________,∠AOD=________.7.若射线OC 是∠AOB 的平分线.(1)当∠AOB 是44°22′时,∠AOC 是多大? (2)如果∠BOC 是21°17′时,∠AOB 是多大?(3)如果∠AOC 与∠AOB 的和是69°36′,那么∠BOC 是多大?∠BOC的度数.9.如图所示,∠AOC=30°,∠BOC=50°,OD是∠AOB的平分线,求∠AOB和∠COD的度数.(2015·邵阳)如图所示,已知点O是直线AB上一点,∠1=60°,则∠2的度数是( )A .20°B .70°C .120°D .130°课后作业1.B ∠BOC>∠AOB,故射线OC 在∠AOB 外. 2.C ∠BOD=∠AOC=∠EOC+∠AOE =90°+45° =135°3.D ∠BOD=∠AOB-∠AOD =90°-12∠AOC=90°-60° =30°4.B ∠1+∠2=180°-90°=90°. 5.(1)240° (2)45° (3)22.56.50°,115° ∵∠EOC=130°,∴∠EOD=180°-∠EOC=180°-130°=50°, ∵OA 平分∠COE,∴∠AOE=12∠COE=12×130°=65°,∴∠AOD=∠AOE+∠DOE=65°+50°=115°.7.解:(1)∵∠AOC=12∠AOB=12×44°22′=22°11′;(2)∵∠BOC=12∠AOB,∴∠AOB=2∠BOC=2×21°17′=42°34′;(3)23°12′ 设∠AOC 为x°,则∠AOB 为2x°,∴x+2x =69°36′,∴x=23°12′,∴∠BO C =∠AOC=23°12′. 8.解:∵OD 平分∠COE,OB 平分∠AOC, ∴∠COD=12∠COE,∠BOC=12∠AOC.∵∠AOE 是平角,∴∠COD+∠BOC=12(∠COE+∠AOC)=12∠AOE=12×180°=90°.设∠COD 为2x°,则∠BOC 为3x°, 2x +3x =90, ∴5x=90,x =18.∴∠COD=2x =36°,∠BOC=3x =54°.9.解:∠AOB=∠AOC+∠BO C =30°+50°=80°.因为OD 是∠AOB 的平分线,所以∠AOD=12∠AOB=12×80°=40°,∠COD=∠AOD-∠AOC=40°-30°=10°中考链接C ∠2=180°-∠1=180°-60°=120°.。
北师大版初中数学七年级上册练习4.4 角的比较练习题

角的比较班级:___________姓名:___________得分:__________一、选择题(每小题8分,共40分)1.如图,∠AOC=90°,ON是锐角∠COD的平分线,OM是∠AOD•的平分线,•则∠MON 的度数是()(1题图)(2题图)A.90°B.45°C.60°D.802.把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.70° B.90° C.105°D.120°3. 如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°4.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A.100°B.110°C.115°D.120°5.如图,直线AB,CD相交于点O,OA平分∠COE,∠COE=70°,则∠BOD的度数是()A.20° B.30° C.35° D.40°二、填空题(每小题8分,共40分)6.如图,∠AOB=∠COD=90°,∠AOD=146°,则∠BOC=______度.(6题图)(7题图)(8题图)(9题图)7.如图,∠AOB=90°,∠MON=60°,OM平分∠AOB,ON平分∠BOC,则∠AOC=______.8.如图,直线AB、CD相交于点O,∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°,则∠EOF的度数为______.9.如图,OC是∠AOD的平分线,OB是∠AOC的平分线,若∠COD=53°18′,则∠AOD=______,∠BOC=______.10.已知∠AOB=45°,从点O引一条射线OC,使∠AOC:∠AOB=4:3,则∠BOC=______.三、解答题(共20分)11. 已知∠AOB=90°,∠COD=30°.(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是_______;如图2,若OB恰好平分∠COD,则∠AOC的度数是_________;(2)当∠COD从图1的位置开始,绕点O逆时针方向旋转180°,作射线OM平分∠AOC,射线ON平分∠BOD,在旋转过程中,发现∠MON的度数保持不变.①∠MON的度数是____;②请选择下列图3、图4、图5、图6四种情况中的两种予以证明.12.如图,已知OM、ON分别是∠AOB、∠BOC的平分线,射线OP在∠AOC的内部,若要使∠AOP与∠MON相等,则OP应满足什么条件?为什么?参考答案一、选择题1.B【解析】∵ON是锐角∠COD的角平分线,∴∠CON=∠COD,∵ON是锐角∠COD的角平分线,∴∠AOM=∠AOD=(∠AOC+∠COD)=45°+∠CON,∴∠COM=∠AOC-∠AOM=90°-(45°+∠CON)=45°-∠CON,∴∠MON=∠COM+∠CON=45°-∠CON+∠CON=45°.故选B2.D【解析】左边三角形的角为30°,右边三角形的角为90°,拼在一起是120°故选D3. C【解析】∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON-∠MOC=90°-35°=55°.故选:C.4.C【解析】在△ABC中,∵∠ABC=80°,BP平分∠ABC,∴∠CBP=∠ABC=40°.∵∠ACB=50°,CP平分∠ACB,∴∠BCP=∠ACB=25°.在△BCP中∠BPC=180°-(∠CBP+∠BCP)=115°.故选C5.C【解析】∵∠COE=70°且OA平分∠COE,∴∠COA=∠AOE=35°又∠COA=∠BOD∴∠COA=∠BOD=35°.故选C.二、填空题6.34°【解析】∠AOB=∠COD=90°,∠AOD=146°则∠BOC=360°-2×90°-146°=34°则∠BOC=34度.7.120°【解析】∵∠AOB=90°,OM平分∠AOB,∴∠MOB=45°,∵∠MON=60°,ON平分∠BOC,∴∠BON=15°,∴∠NOC=15°,∴∠AOC=∠AOB+∠BOC=90°+30°=120°.故答案为:120°8.90°【解析】∵∠DOE=∠BOE,∠BOE=28°,∴∠DOB=2∠BOE=56°;又∵∠AOD+∠BOD=180°,∴∠AOD=124°;∵OF平分∠AOD,∴∠AOF=∠DOF= ∠AOD=62°,∴∠EOF=∠DOF+∠DOE=62°+28°=90°.故答案是:90°9. 106°36′;26°39′【解析】∵OC是∠AOD的平分线,∴∠AOD=2∠COD,∠AOC=∠COD,∵∠COD=53°18′,∴∠AOD=2×53°18′=106°36′,∠AOC=53°18′,∵OB是∠AOC的平分线,∴∠BOC= ∠AOC= ×53°18′=26°39′,故答案为:106°36′;26°39′.10. 105°或15°【解析】∵∠AOB=45°,∠AOC:∠AOB=4:3,∴∠AOC=60°当OC在OA的外侧时,∠BOC=∠AOC+∠AOB=60°+30°=105°;当OC在OB的外侧,∠BOC=∠AOC-∠AOB=60°-45°=15°.故答案为:105°或15°.三、解答题11.解:(1)∵点O、A、C在同一条直线上∴∠BOD=∠AOB-∠COD=90°-30°=60°∵OB平分∠COD∴∠COB=∠COD=×30°=15°∴∠AOC=∠AOB-∠COB=90°-15°=75°(2)①∠MON=60°②图4证明:∵OM平分∠AOC,ON平分∠BOD ∴∠MOC=∠AOC,∠BON=∠BOD∵∠AOD=∠AOB+∠COD-∠BOC=∠AOC+∠BOC+∠BOD∴∠AOC+∠BOD+2∠BOC=∠AOB+∠COD=90°+30°=120°∴∠MON=∠MOC+∠COB+∠BON=∠AOC+∠BOC+∠BOD=×120°=60°图5证明:∵OM平分∠AOC,ON平分∠BOD ∴∠MOC=∠AOC,∠BON=∠BOD∵∠AOD=∠AOB+∠COD+∠BOC=∠AOC+∠BOD-∠BOC∴∠AOC+∠BOD-2∠BOC=∠AOB+∠COD=90°+30°=120°∴∠MON=∠MOC+∠CON=∠MOC+∠BON-∠BOC=∠AOC+∠BOD-∠BOC=×120°=60°.12.解:OP应满足的条件:OP是∠AOC的角平分线,因为OM、ON分别是∠AOB、∠BOC 的平分线,所以∠AOM=∠BOM,∠BON=∠CON又∠AOP=∠AOM+∠MOP,∠MON=∠BOM+∠BOIN,当∠AOP=∠MON时,则有∠MOP=∠BON=∠NOC,所以∠MOP+∠POB=∠BON+∠POB,即∠MOB=∠PON,所以∠AOM=∠MOB=∠PON,又因为∠AOM+∠MOP=∠PON+∠NOC,所以∠AOP=∠POC,即OP平分∠AOC。
北师大版数学七年级上册 第四章 基本平面图形 4.4 角的比较 同步练习题 含答案

北师大版数学七年级上册 第四章 基本平面图形 4.4 角的比较同步练习题1. 下列说法中,正确的有( )①小于90°的角是锐角;②等于90°的角是直角;③大于90°的角是钝角; ④平角等于180°;⑤周角等于360°. A .5个 B .4个 C .3个 D .2个 2.下列各角中是钝角的是( )A.15周角B.23平角C.14周角D.23直角 3.如果两个角的和等于180°,那么这两个角可以都是( ) A .锐角 B .钝角 C .直角 D .平角4.如图,射线OC ,OD 分别在∠AOB 的内部、外部,下列结论错误的是( )A .∠AOB<∠AODB .∠BOC<∠AOBC .∠COD>∠AOD D .∠AOB>∠AOC 5.如图所示,若∠AOB =∠COD ,那么( )A .∠1>∠2B .∠1=∠2C .∠1<∠2D .∠1与∠2的大小不能确定 6. 如果OC 是∠AOB 的平分线,则下列结论不正确的是( ) A .∠AOC =∠BOC B .∠AOC =12∠AOBC .∠AOB =2∠BOCD .∠AOB =∠AOC7. 如图所示,已知O 是直线AB 上一点,∠1=40°,OD 平分∠BOC ,则∠2的度数是( )A .20°B .25°C .30°D .70° 8. 借助一副三角尺,你能画出下面哪个度数的角( ) A .65° B .75° C .85° D .95°9. 若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( )A .∠AOC =∠BOCB .∠AOB =2∠BOC C .∠AOC =12∠AOB D .∠AOC +∠BOC =∠AOB10. 如图,直线AB ,CD 相交于点O ,OA 平分∠EOC ,若∠EOC =60°,则∠BOD 的度数是( )A .30°B .35°C .40°D .45°11. 如图所示,已知∠AOB =120°,OM 平分∠AOB ,ON 平分∠MOA ,则∠AON =_______.12. 如图,∠AOB=90°,OE 是∠AOB 的平分线,OD 是∠BOC 的平分线,若∠EOD =70°,则∠BOC 的度数是_______.13. 将一副三角板叠放在一起,使直角顶点重合于O ,则∠AOC +∠DOB 的度数为________.14. 如图,∠AOC 与∠BOD 都是直角,∠BOC =60°,则∠AOD =______________.15. 已知α,β是两个钝角,计算16(α+β)的值,甲、乙、丙、丁四名同学算出了四种不同的答案,分别是24°,48°,76°,86°,其中只有一个答案是正确的,则正确的是_________. 16. 把一副三角尺如图所示拼在一起.(1)写出图中∠A ,∠B,∠BCD,∠D,∠A ED 的度数; (2)用“<”将上述各角连接起来.17. 如图,点O在直线AB上,画一条射线OC,量得∠AOC=50°,已知OD,OE 分别是∠AOC,∠BOC的平分线,求∠DOE的度数.18. 如图,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)(2)(3)的结果能看出什么规律?参考答案:1---10 CBCCB DDBDA 11. 30° 12. 50° 13. 180° 14. 120° 15. 48°16. 解:(1)∠A =30°,∠B =90°,∠BCD =150°,∠D =45°,∠AED =135° (2)∠A <∠D <∠B <∠AED <∠BCD17. 解:∠BOC =180°-∠AOC =130°,因为OD ,OE 分别是∠AOC ,∠BOC 的平分线,所以∠DOC =12∠AOC =25°,∠COE =12∠BOC =65°,∠DOE =∠DOC +∠COE =90°18. 解:(1)因为OM 平分∠AOC ,所以∠MOC =12∠AOC ,因为ON 平分∠BOC ,所以∠NOC =12∠BOC ,所以∠MON =∠MOC -∠NOC = 12∠AOC -12∠BOC =12(∠AOC -∠BOC)=12∠AOB =12×90°=45° (2)∠MON =12α (3)∠MON =45° (4)∠MON =12∠AOB。
北师大版七年级数学上《角的比较》

如图,OC是 AOB 的平分线,BOD
1 COD, BOD 15 ,则: 3 COD ___, BOC ___, AOB ___ .
(1)比较 AOB, AOC, AOD, AOE 的 大小,并指出其中的锐角、直角、钝角、平角.
(2)试比较 BOC 和 DOE 的 大小. (3)小亮通过折叠的方法,
使OD与OC重合,OE落在 BOC
的内部,所以 BOC 大于DOE . 你能理解这种方法吗?
(4)请在图中画出小亮折叠的折 痕OF,DOF 与 COF 有什么大 小关系? 从一个角的顶点引出的一条射
还记得怎样比较线段的长短吗? 类似地,你能比较角的大小吗?
与比较线段的长短类似,如果直接观察难以 判断,我们可以有两种方法对角进行比较: 一种方法是用量角器量出它们的度数,再进 行比较; 另一种方法是将两个角的顶点及一条边重合, 另一条边放在重合边的同侧就可以比较大小.
根据图4-19求解下列问题:
线,把这个角分成两个相等的角,
这条射线叫做这个角的平分线. 如图4-20,射线OC是 AOB 的平分线.这时, AOC BOC 1 AOB (或 AOB 2AOC
2, DEF 的度数.
(2)量一量,验证你的估计.
如图,在方格纸上有三个角. (1)先估计每个角的大小,再用量角器量一量; (2)找出三个角之间的等量关系.
七年级数学上册 4.4角的比较例题与讲解(北师大七年级上)

4 角的比较1.角的大小比较(1)度量法:先用量角器测量出各角的度数,再按照角的度数比较大小,从而确定两个角的大小关系.(2)叠合法:两个角比较大小时,把两个角的顶点和一条边分别重合,另一条边放在重合边的同侧,根据另一条边的位置确定角的大小.如比较∠ABC 和∠DEF 的大小,可把∠DEF 移到∠ABC 上,使它的顶点E 和∠ABC 的顶点B 重合,一边ED 和BA 重合,另一边EF 和BC 落在BA 的同一侧.①如果EF 和BC 重合(如图1),那么∠DEF 等于∠ABC ,记作∠DEF =∠ABC ; ②如果EF 落在∠ABC 的外部(如图2),那么∠DEF 大于∠ABC ,记作∠DEF >∠ABC ; ③如果EF 落在∠ABC 的内部(如图3),那么∠DEF 小于∠ABC ,记作∠DEF <∠ABC .【例1】 如图,求解下列问题:(1)比较∠COD 和∠COE 的大小;(2)借助三角尺,比较∠EOD 和∠COD 的大小;(3)用量角器度量,比较∠BOC 和∠COD 的大小.分析:(1)可用叠合法比较.∠COD 和∠COE 有一条公共边OC ,而OD 在∠COE 的内部,故∠COD 小;(2)我们要选择三角尺的一个角来估算这两个角的度数,就可以达到比较的目的;(3)通过度量容易得出结论.解:(1)由图可以看出,∠COD <∠COE .(2)用三角尺中30°的角分别和这两个角比较,可以发现∠EOD <30°,∠COD >30°,所以∠EOD <∠COD .(3)通过度量可知:∠BOC =46°,∠COD =44°,所以,∠BOC >∠COD .2.角的平分线(1)定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线. ①角平分线是以角的顶点为端点的特殊射线,它在角的内部;②角平分线把角分成两个相等的角.(2)角平分线的表示:①OC 是∠AOB 的平分线;②∠AOC =∠COB =12∠AOB ,∠AOB =2∠AOC =2∠COB .(3)作角平分线的方法:①利用量角器量出角的度数,取角的度数的一半并画出射线;②折叠:把已知角的两边重合后再折叠,可得已知角的平分线.【例2】 如图,已知∠AOC =80°,∠BOC =50°,OD 平分∠BOC ,求∠AOD .分析:由图可知∠AOD =∠AOC +∠DOC ,所以只要求出∠DOC 即可.解:因为OD 平分∠BOC ,所以∠DOC =12∠BOC . 又因为∠BOC =50°,所以∠DOC =12×50°=25°. 所以∠AOD =∠AOC +∠DOC =80°+25°=105°.3.角平分线及角的和、差计算(1)角的和、差的意义如图,①和:∠AOB =∠1+∠2;②差:∠1=∠AOB -∠2,∠2=∠AOB -∠1.(2)角平分线及角的和、差计算与角有关的计算,是本节的重点,也是易错点. 解决这类问题,关键是根据角平分线得到相等的角,或求出一个较大的角,借助于某一个中间的角,把未知量转化为已知量.(3)三角板中角的和与差一副三角板有两块,一块含30°角,60°角,90°角;一块含45°角,45°角,90°角. 借助于三角板,即可以画出上面的角. 利用三角板和角的和、差,还可以得到以下度数的角:15°,75°,105°,120°,135°,150°,165°.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【例3-1】 已知∠AOB =30°,∠BOC =20°,则∠AOC 的角度是__________. 错解:50°错解分析:误以为∠AOC 只是∠AOB 与∠BOC 的和,即∠AOC =∠AOB +∠BOC =30°+20°=50°.正解:10°或50°正解思路:如图,①∠AOC =∠AOB +∠BOC =30°+20°=50°;②∠AOC =∠AOB -∠BOC =30°-20°=10°. 【例3-2】 如图,AOC 为一直线,OD 是∠AOB 的平分线,∠BOE =12∠EOC ,∠DOE=72°,求∠EOC 的度数.分析:本题中角之间的关系较复杂,直接求解有困难,可以通过设未知数、列方程的方法求解.设∠AOB =x °,因为OD 是∠AOB 的平分线,所以∠BOD =⎝⎛⎭⎫x 2°;观察图形知,∠AOB 和∠BOC 互为补角,所以∠BOC =(180-x )°;又因为∠BOE =12∠EOC ,所以∠BOE =13∠BOC =⎝⎛⎭⎫180-x 3°;然后根据∠DOE =∠BOD +∠BOE =72°可列出方程x 2+180-x 3=72,解方程求出x 的值后,再根据∠EOC =23(180-x )°求出∠EOC 的度数. 解:设∠AOB =x °,则∠BOD =⎝⎛⎭⎫x 2°,∠BOC =(180-x )°,∠BOE =⎝⎛⎭⎫180-x 3°,由∠DOE =72°可得x 2+180-x 3=72. 解这个方程,得x =72.∴∠EOC =23(180-x )°=72°.4.角的分类(1)角的分类:根据角的度数,常常把大于0°而小于180°的角分为锐角、直角、钝角三类.(2)各种角的规定:锐角:大于0°且小于90°的角.直角:等于90°的角.钝角:大于90°且小于180°的角.平角:等于180°的角.周角:等于360°的角.(3)角之间的关系:锐角<直角<钝角<平角<周角.1平角=2直角=180°;1周角=2平角=4直角=360°.若没有特别说明,我们平常所说的角是指小于平角的角.【例4】 如图,解答下列问题:(1)比较图中∠AOB ,∠AOC ,∠AOD 的大小;(2)找出图中的直角、锐角和钝角.分析:(1)角的大小可以观察得出;(2)根据各类角的特征观察得出.解:(1)∠AOD >∠AOC >∠AOB ;(2)直角有∠AOC ,锐角有∠AOB ,∠BOC ,∠COD ,钝角有∠AOD ,∠BOD .。
北师大版七年级上册 4.4 角的比较 同步练习题

4.4 角的比较(含答案)一.选择题:(四个选项中只有一个是正确的,选出正确选项填在题目的括号内)1.已知∠α=18°18′,∠β=18.18°,∠γ=18.3°,下列结论正确的是( )A.∠α=∠βB.∠α<∠βC.∠α=∠γD.∠β>∠γ2.如图,OC平分∠AOB,则∠AOC与∠BOD的大小关系是()A.∠AOC >∠BOD B.∠AOC <∠BOD C.∠AOC=∠BOD D.不能确定3.如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,则∠BOD等于()A.145° B.110° C.70° D.35°4.如图,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20° B.25° C.30° D.70°5.借助一副三角尺,能画出的角度是()A.65° B.75° C.85° D.95°6.借助一副三角尺,不能画出的角度是()A.15° B.135° C.160° D.105°7.点P在∠AOB内部,连结OP,现在有四个等式:①∠POA=∠BOP;②∠POA=12∠BOA;③∠AOB=2∠BOP;④∠AOB=12∠AOP;其中,能表示OP为角平分线的有()A.1个B.2个C.3个D.4个8.已知点O是直线AB上一点,OC是一条射线,则∠AOC与∠BOC 的大小关系是()A.∠AOC >∠BOC B.∠AOC <∠BOC C.∠AOC=∠BOC D.不能确定9.如图,∠AOE=∠BOC,OD平分∠COE;则图中除∠AOE=∠BOC 外,相等的角共有()A.1对B.2对C.3对D.4对10.已知∠AOB=50°,∠BOC=30°,OD平分∠AOC,则∠AOD的度数为()A.20° B.80° C.10°或40° D.20°或80°二.填空题:(将正确答案填在题目的横线上)11.OC是∠AOB内部的一条射线,若∠AOC=1________,则OC2平分∠AOB;若OC是∠AOB的角平分线,则_________=2∠AOC;12.如图,AB,CD相交于点O,∠AOE=90°,∠COE=44°,则∠AOD= ____ ;13.如图,∠AOB=125°,∠AOC=∠BOD=90°,则∠COD=________;14.如图,∠AOB=90°,若∠BOC=30°,OD平分∠AOC,则∠BOD= ;15.如图,若CD平分∠ACE,BD平分∠ABC,∠A=46°,则∠D=______°;三.解答题:(写出必要的说明过程,解答步骤)16.如图,OB平分∠COD,∠AOB=90°,∠AOC=125°,求∠DOC 的度数;17.如图,点O在直线AB上,∠BOC=40°,OD平分∠AOC,求∠BOD的度数;18.如图,直线AB,CD相交于点O,OE是∠AOC的角平分线,∠DOE=5∠AOE,求∠BOD的度数;19.已知一条射线OA,如果从点O再引两条射线OB、OC,使∠AOB=60°,∠BOC=20°,求∠AOC的度数;20.如图,AC是一条直线,O为AC上一点,∠AOB=120°,OE,OF分别平分∠AOB,∠BOC;(1)求∠EOF的大小;(2)当OB绕点O向OA或OC旋转时(但不与OA,OC重合),OE,OF仍为∠AOB,∠BOC的平分线,问:∠EOF的大小是否改变?说明理由;21.如图,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC;(1)求∠MON的度数;(2)若∠AOB=α,∠BOC=β(∠BOC为锐角),其他条件不变,求∠MON 的度数(用α,β表示);(3)写出从(1),(2)得出的规律;4.4 角的比较参考答案:1~10 CABDB CCDCC11.∠AOB ,∠AOB ;12.134°;13.55°;14.30°;15.23°;16.70°;17.110°;18.60°;19.40°或80°;20.(1)90°;(2)∠EOF 的度数不变,仍是90°;理由:21.(1)∵0009030120AOC AOB BOC ∠=∠+∠=+=(2)1122MON COM CON AOC BOC ∠=∠-∠=∠-∠(3)12MON AOB ∠=∠;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《角的比较》典型例题
例1 如图,求解下列问题:
(1)比较AOC
∠、
、
、的大小,并找出其中的锐角、直
∠
∠
AOD
AOE
AOB∠
角、钝角、平角;
(2)在图中的角中找出三个等量关系.
例2 如图,求解下列问题
(1)比较COD
∠的大小;
∠和COE
(2)借助三角尺,比较EOD
∠的大小;
∠和COD
(3)用量角器度量,比较BOC
∠的大小.
∠和COD
例3 根据图,回答下列问题
(1)AOC
∠是哪两个角的和?
(2)AOB
∠是哪两个角的差?
(3)如果COD
∠的大小关系如何?
∠与DOB
AOB∠
=
∠,那么AOC
例4 李明这样给直角定义:“小于钝角而大于锐角的角”,你认为对吗?为什么?
例5 下列三个说法是否正确?
(l)两条射线组成的图形叫做角;
(2)平角是一条直线;
(3)周角是一条射线。
参考答案
例1 分析 AOB ∠是平角,AOC ∠是钝角,AOD ∠是直角,AOE ∠是锐角这就找到了这几个角的大小关系;相等关系通过观察图也容易找到,如:.DOC EOD COE ∠+∠=∠
解 (1)由图可以看出,AOE AOD AOC AOB ∠>∠>∠>∠;
(2)等量关系有:
EOD AOE AOD BOD AOD AOB DOC EOD COE ∠+∠=∠∠=∠=∠∠+∠=∠,22,,….
说明:(1)如果已知角是锐角、直角、周角、平角,我们就以直接由它们之间的关系比较出它们的大小;(2)如果两个直角有一条公共边,并且另一边都在公共边的同侧,根据图形也能观察出两个角的大小.
例 2 分析 (1)是显然的;(2)通过度量也容易得出结论;(3)我们要选择三角尺的一个角来估算这两个角大的度数,就可以达到比较的目的.
解 (1)由图可以看出,COE COD ∠<∠;
(2)用三角尺中30°的角分别和这两个角比较,
可以发现︒>∠︒<∠30,30COD EOD ,所以COD BOD ∠<∠;
(3)通过度量可知:︒=∠︒=∠44,46COD BOC ,所以,COD BOC ∠>∠. 说明:当借助三角尺比较两个角的大小时我们选择的三角尺的角要适当;当两个角的大小非常接近时,我们可以借助量角器来比较这两个角的大小. 例3 解:(1)AOC ∠是AOB ∠与BOC ∠的和.
(2)AOB ∠是AOC ∠与BOC ∠的差,或AOB ∠是AOD ∠与BOD ∠的差.
(3)因为COD AOB ∠=∠,
所以BOC COD BOC AOB ∠+∠=∠+∠,即DOB AOC ∠=∠.
说明:等式的性质也适用于几何中的量,如长度、角度等等.
例4 解:不对!因为我们是按这样的顺序来定义角的概念的:由角→平角与周角→直角→锐角与钝角. 几何里我们是用前面已学的概念来说明后面未学的概念,一环扣一环,形成按角的大小分类的各个概念的结构. 锐角、钝角已经用直角的概念来说明它们的特征了,故再用锐角、钝角的概念来描述直角,就犯了循
环定义的错误.
例5 分析:(1)两条射线如果没有公共端点就不构成角。
(2)平角是两边成特殊位置的角,平角也有顶点和两边并可以确定角的内部;平角的两边成一直线。
两边的顶点分直线成两条射线。
(3)周角是两边重合成一条射线的角,不是一条射线。
解:以上三种说法都不正确。