红外辐射在大气中的传输
大气遥感第五章:大气中的热红外辐射传输

空间分辨率 (水平/垂直)
视 场 瞬时视角
(度)
mrad
AIRS大气红外探测仪 EOS(美国) 2300;6 3.74-15.4 13.5km-1km 49.5
1.1
用途 大气温度湿度
ASTER高级空间热辐射 热反射探测器
ATSR纵向扫描辐射仪
EOS (美国)
ERS-1 (欧空局)
14
2 (MWR)
ASTER模拟仪器
美国
20
8-12
始于1991年 65或104 2或5.0
云,陆地测量
CIS中国成像光谱仪
DAIS-7915数值式 航空成像光谱仪 DAIS-16115数值式 航空成像光谱仪 GER-63通道扫描仪
ISM红外成像光谱仪
中国 美国 美国 美国 法国
1
3.53-3.94
始于1993年
80
大气不仅是削弱热红外辐射的介质,而且它本身也发射热红外 辐射,有时甚至发射的辐射会超出吸收的部分。
总之,热红外辐射在大气中的传输,是一种漫射辐射在无散射 但有吸收又有发射的介质中的传输。
热红外光谱和温室效应
➢ 地气系统维持辐射平衡状态,吸收太阳辐射的同 时,也向太空发射辐射,地气系统发射的辐射称 为热红外辐射。由能量守恒原理,令 表示地
热红外遥感系统
热红外遥感在海面温度、陆面温度、大气温度、大气 水汽、云顶温度的遥测中具有无可替代的地位。热红外遥 感传感器的发展十分迅速,现在使用和即将投入使用的热 红外传感器达几十种之多。我们把主要的热红外传感器的 有关信息列于下表。
传感器
现在及将来地球观测计划红外传感器概览(星载部分)
卫星/计划 波段数 光谱范围
态分辨仪
大气湍流对红外的影响_概述及解释说明

大气湍流对红外的影响概述及解释说明1. 引言1.1 概述大气湍流是指大气中存在的一种不规则、无序而且具有随机性的气体运动现象,其对红外辐射的传输产生了重要影响。
红外辐射在军事、航空航天、气象等领域应用广泛,因此了解大气湍流对红外辐射传输的影响机制对于优化红外成像系统的设计和提高其性能至关重要。
1.2 文章结构本文将从以下几个方面对大气湍流对红外辐射的影响进行深入研究。
首先,我们将介绍大气湍流概念及其特征,并讨论导致湍流形成的因素。
接着,我们将探讨红外辐射的基本特性以及在不同波长区域和应用领域中所具有的潜力。
然后,我们将说明红外传感器工作原理以及其在红外成像系统中的应用。
通过以上内容的铺垫,我们将详细介绍目前关于大气湍流对红外辐射影响机制研究的最新进展,包括温度涨落效应、折射率涨落效应以及散焦与模糊效应等方面,并总结当前存在的挑战和问题。
最后,我们将对现有解决方案进行分析并评估其优缺点,并展望未来研究方向和发展趋势。
1.3 目的本文旨在全面概述大气湍流对红外辐射的影响,并深入解释其影响机制。
通过对国内外相关研究成果的综述和分析,可以为红外成像系统的设计和性能提升提供参考,并为未来相关研究提出新的创新思路和方向。
2. 大气湍流概述:2.1 定义与特征:大气湍流是指在大气层中存在的一种不规则运动现象,具有随机性和不可预测性。
它是由于大气中温度、湿度、风向等因素的变化引起的。
大气湍流通常表现为空气的快速混合和乱流运动,导致空间和时间上的非均匀性。
大气湍流具有以下主要特征:- 无规则性: 大气湍流运动没有明确的周期性或规律性,其运动模式会不断变化。
- 尺度范围广: 大气湍流可以出现在非常小的尺度(例如微观颗粒周围)到非常大的尺度(例如行星尺度)之间。
- 能量耗散: 大气湍流会使空气能量从大尺度逐渐转移到小尺度,并最终以热能形式耗散掉。
2.2 影响因素:多个因素会影响大气湍流的生成和发展,其中包括:- 空间和时间上的温度差异: 温度差异会导致空气密度不均匀,从而产生湍流运动。
红外辐射度学基础概述

通过使用扫描仪对目标物体进行扫描,并记录每 个点的红外辐射强度。这种方法可以用于大面积 的目标物体测量。
遥感测量法
通过使用卫星或飞机搭载的红外探测器对地球表 面进行遥感测量,可以获取大面积的红外辐射数 据。
红外辐射测量的误差分析
探测器误差
01
由于探测器的响应特性、噪声和稳定性等因素,可能导致测量
详细描述
一切温度高于绝对零度的物体都会产生热辐射,其中红外辐射占据主要部分。物体的温度越高,其发射的红外辐 射的能量越大,波长越短。红外辐射在真空中传播速度与光速相同,约为3×10^8米/秒。在非真空环境中,红外 辐射可以穿透某些介质,如大气、烟雾等,传播距离受到介质特性的影响。
02 红外辐射度量学基础
红外辐射度学基础概述
目录
• 红外辐射的基本概念 • 红外辐射度量学基础 • 红外辐射的探测与测量 • 红外辐射的应用领域 • 红外辐射度学的未来发展
01 红外辐射的基本概念
红外辐射的定义
总结词
红外辐射是指波长介于可见光和微波 之间的电磁波,通常在0.75~1000μm 的波长范围内。
详细描述
红外辐射是电磁波的一种,其波长比 可见光长,比微波短。它不能被人眼 直接观察到,但可以通过特定的传感 器进行检测和测量。
大气污染监测
通过检测大气中污染物的红外光谱特征,分析污染物的种类和浓 度。
气候变化研究
利用卫星遥感技术监测地球表面温度和大气成分的红外辐射特征, 研究气候变化规律。
生物多样性保护
通过红外相机监测野生动物的活动和种群分布,为生物多样性保 护提供科学依据。
05 红外辐射度学的未来发展
新型红外探测技术的发展趋势
光子探测器
简述大气热红外辐射传输方程

简述大气热红外辐射传输方程大气热红外辐射传输方程是研究大气中红外辐射传输规律的重要方程。
通过解析和解决该方程,可以更准确地理解和描述大气中红外辐射的传输行为,进而提高气象预报和遥感应用的精度和可靠性。
大气热红外辐射传输方程描述了大气中红外辐射的传输过程。
在大气中,太阳辐射作用下的地表、云、大气分子等物体会发射出红外辐射,这些红外辐射在大气中传输,直到达到地球上的观测点或遥感器。
大气热红外辐射传输方程考虑了多种因素的影响,包括大气的温度、气体成分、湿度、云和颗粒物的分布等。
一般来说,大气热红外辐射传输方程可以表示为以下形式:I = I0 * exp(-τ) + S * [1 - exp(-τ)]其中,I是观测点上接收到的红外辐射强度,I0是地表发射的红外辐射强度,τ是大气的透射系数,S是大气散射引起的反射红外辐射。
大气的透射系数τ可以表示为:τ = τg * τm * τa其中,τg是地表到大气层顶的透射系数,τm是大气层顶到观测点的透射系数,τa是大气成分的透射系数。
大气的透射系数受到大气的吸收、发射、散射等过程的影响。
大气的吸收主要是由水汽、二氧化碳等温室气体引起的,而大气的发射主要是由大气温度引起的。
此外,大气中的云和颗粒物也会引起红外辐射的散射,造成额外的辐射源。
大气热红外辐射的传输方程对气象预报和遥感应用有重要意义。
在气象预报中,了解大气中红外辐射的传输规律,可以帮助预测气温、湿度等大气参数的变化。
在遥感应用中,通过观测红外辐射,并结合大气热红外辐射传输方程,可以反演地表温度、云高度、大气湿度等信息,从而为气象学、地质学等领域的研究提供重要依据。
总之,大气热红外辐射传输方程对于理解和描述大气中红外辐射的传播规律至关重要。
通过解决这一方程,我们可以更准确地预测和分析大气变化,提高气象预报和遥感应用的精确性和可靠性。
这对于气象学、地球科学和环境保护等领域的研究都具有重要意义。
第五章:大气中的热红外辐射传输[精选]
![第五章:大气中的热红外辐射传输[精选]](https://img.taocdn.com/s3/m/9de8372ab8f67c1cfad6b8c0.png)
14
2 (MWR)
8-12
3.7,11.0 12.0
90m/无 1km×1km
AVHRR甚高分辨率 NOAA-11 (美 5
0.58-12.4
1.1km
辐射仪
国)
星下点/无
CERES云和地球
EOS
3
0.3-12.0
21km
辐射能系统
(美国)
星下点/无
HiRDLA高分辨率临界动
EOS
20.4m/无
0.753-11.77 13km/2km
0.5-12.5 78m,156m/无
ISTOK-1红外光谱辐射仪 PRIRODA-1 64
系统
(俄罗斯)
0.4-16.0
0.75-3km/无
LISS-3线形成像自扫描传 IRS-1C/1D
4
感器3型
(印度)
0.52-17.5
23.5m/无
21urad 陆地表面,水和云
dId (,)I(,)B (,)
d I(d , )I(, )B (,)
无散射大气LW辐射传输方程
向上和向下强度的解为
热红外辐射的大气传输方程
(1)地球与大气都是发射红外辐射的辐射源; (2)通过大气中的任一平面射出的都是具有各个方向的漫射辐射; (3)只考虑吸收作用,忽略散射; (4)必须把大气的发射和吸收同时考虑; (5)假定大气是水平均一的。
扫描仪
AT-1(欧)
SR扫描辐射仪
FY-2中国
3
SROM海洋监测 光谱辐射仪
ALMAZ-IB 11 (中/俄)
TMG温室气体 干涉监测仪
VIRS可见光 红外光扫描仪
ADEOS (日本)
远红外的原理

远红外的原理
远红外,是指波长在3-1000微米范围内的红外辐射。
与可见光相比,远红外
波长更长,能够穿透一定的物质,因此在许多领域有着广泛的应用。
那么,远红外的原理是什么呢?
首先,我们来了解一下远红外的产生原理。
远红外辐射是由物体的热运动产生的,当物体的温度高于绝对零度时,分子和原子就会不断地做热运动,这种热运动会产生电磁辐射,其中就包括了远红外波段的辐射。
因此,远红外辐射是与物体的温度密切相关的,温度越高,产生的远红外辐射就越强。
其次,远红外的传播原理是怎样的呢?远红外辐射在空气中的传播与可见光类似,都是通过辐射传播的。
远红外波长较长,能够穿透一定的物质,因此在大气中的传播会受到一定的影响。
在大气中,远红外辐射会受到水汽、二氧化碳等气体的吸收和散射,因此在远距离传播时会有一定的衰减。
此外,远红外的探测原理是怎样的呢?远红外辐射可以被许多物体所吸收,因
此在红外热像仪、红外测温仪等设备中有着广泛的应用。
这些设备利用远红外辐射与物体的热量之间的关系,来实现对物体温度的测量和成像。
最后,远红外的应用原理是怎样的呢?远红外辐射在医疗、军事、工业等领域
有着广泛的应用。
在医疗领域,远红外被用于治疗肌肉骨骼疾病、促进血液循环等;在军事领域,远红外被用于夜视仪、导弹制导等;在工业领域,远红外被用于红外测温、红外成像等。
总的来说,远红外的原理涉及到远红外的产生、传播、探测和应用等方面,它
是与物体的热运动和温度密切相关的,具有广泛的应用前景。
通过深入了解远红外的原理,我们可以更好地应用远红外技术,推动远红外技术在各个领域的发展和应用。
简述大气热红外辐射传输方程

简述大气热红外辐射传输方程
大气热红外辐射传输方程是描述大气中热红外辐射传输过程的数学表达式。
它是基于辐射传输理论,考虑了大气中的各种因素,如温度、湿度、气体浓度等,来描述热红外辐射在大气中的传输规律。
热红外辐射是指物体在热平衡状态下,由于其温度而发射的电磁波。
在大气中传输过程中,热红外辐射会受到各种因素的影响,如大气吸收、散射、反射等。
为了描述这些影响因素,大气热红外辐射传输方程引入了各种参数和变量。
要考虑大气的温度分布。
大气温度的垂直分布是不均匀的,随着高度的增加会逐渐降低。
这个温度分布会影响到大气中的各种辐射过程。
大气中的吸收和散射也是需要考虑的因素。
大气中的气体、云、气溶胶等都可以对热红外辐射起到吸收和散射的作用。
这些作用会改变辐射的传输路径和强度。
大气中的湿度也会对热红外辐射的传输产生影响。
水蒸气是大气中的主要成分之一,它对热红外辐射的吸收能力较强。
因此,湿度的变化会导致辐射的传输路径和强度发生变化。
大气中的气体浓度也需要考虑。
大气中的气体如二氧化碳、甲烷等也会对热红外辐射的传输产生影响。
它们可以吸收和放射热红外辐射,改变辐射的传输规律。
大气热红外辐射传输方程是一个复杂的数学表达式,它考虑了大气中的温度、湿度、气体浓度等因素,来描述热红外辐射在大气中的传输规律。
通过这个方程,我们可以了解热红外辐射在大气中的传输过程,为热红外辐射的应用提供理论依据。
不同海拔地区红外大气透过率的计算和测量

不同海拔地区红外大气透过率的计算和测量引言红外大气透过率是指红外辐射在大气中传播时所遇到的吸收与散射衰减程度。
不同海拔地区的红外大气透过率存在差异,这对于红外辐射探测和应用有重要影响。
本文将探讨不同海拔地区红外大气透过率的计算和测量方法。
一、红外大气透过率的计算方法1.辐射传输模型辐射传输模型是计算红外大气透过率的一种常用方法。
该模型基于大气的物理光学特性和理论,并考虑了大气中的吸收、散射和辐射传输等过程。
常用的辐射传输模型有MONO,LOWTRAN,MODTRAN等。
2.大气透过率计算公式大气透过率的计算可以利用以下公式:TIR = Itransmitted / Iincident其中,TIR为红外大气透过率,Itransmitted为大气中传输到地面的红外辐射强度, Iincident为地面向上辐射的红外辐射强度。
大气透过率还可以通过光学厚度(Optical Depth)来计算:TIR=e^(-τ)其中,τ为光学厚度,可通过测量或计算大气中的吸收系数、散射系数得到。
二、红外大气透过率的测量方法1.拉曼光谱法拉曼光谱法是一种测量大气中吸收和散射的方法,可用于计算红外大气透过率。
该方法利用激光器发出的激光经过大气传输后,通过检测激光的散射和吸收来计算透过率。
拉曼光谱法具有高精度和较广的适用范围,但设备价格较高。
2.太阳辐射法太阳辐射法是一种测量大气吸收的方法,通过测量太阳辐射经过大气传输后的减弱程度来计算透过率。
该方法需要在地面上设置接收器,测量太阳辐射入射和出射的强度,再根据大气吸收的程度计算透过率。
3.探空仪测量法探空仪测量法是利用航空器或地面站点上的探空仪测量大气参数来计算透过率的方法。
通过探空仪获得的大气温度、湿度、气压等参数,结合事先建立的大气模型和辐射传输模型,计算出大气透过率。
4.红外辐射传输模型利用已有的红外辐射传输模型,可以通过输入大气参数(如温度、湿度、压强等),进行模拟计算,得到不同波段下的红外大气透过率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
——红外技术及应用
(2)铅直对流运动:由于地表面的不均匀加热,产生铅直对流 运动。空气通过对流和湍流运动,高、低层的空气进 行交换,使近地面的热量、水汽、杂质等易于向上输 送,对成云致雨有重要作用。
(3)气象要素水平分布不均匀:由于对流层受地表的影响最 大,而地表的性质差异也是很大的,因此在对流层 中,温度、湿度的水平分布是不均匀的,特别是冷、 暖气团交绥的地带,即所谓锋区,往往有严重的天气 现象发生,如寒潮、梅雨、暴雨、大风、冰雹等。
9
——红外技术及应用
(二)平流层
1.界限:自对流层顶到55公里左右 2.特点: 1) 随着高度的增高,气温最初保持不变或微有上升,到25公里以上,气
温随高度增加而显著升高,在55公里高度上可达-3℃ ; 2)气流比较平衡,空气的垂直混合作用显著减弱;多晴好天气,能见度高。
(三)中间层
自平流层顶到85公里左右为中间层。该层的特点是: 气温随高度增高而上升, 并有相当强烈的垂直运动。该层的60-90公里高度上,有一个只在白天出现的电离 层,叫做D层。
6
——红外技术及应用 二、大气的垂直分层
观测证明,大气在垂直方向上的物理性质是有显著差 异的。根据温度、成分、电荷等物理性质,同时考虑到 大气的垂直运动等情况,可将大气分为五层 :对流层、 平流层、中间层、暖层、散逸层。
(一)对流层 对流层是地球大气中最低的一层,其底界是地面。 云、雾、雨、雪等主要大气现象都出现在此层。因而, 对流层是对人类生产、生活影响最大的一个层次,也是 各种大气研究的重点层次。
——红外技术及应用
大气概述 第一节 第二节 第三节 大气的组成 大气的结构 主要气象要素
1
——红外技术及应用
第 一 大气的组成 节
一、干洁空气
1 概念: 大气中除水汽、液体和固体杂质外的整个混合气体。 2 成分:主要成分是氮、氧、氩、二氧化碳等,此外还有少量的氢、 氖、氪、氙、臭氧等稀有气体 。 3 特点:(1)组成干洁空气的各种成分总是维持,(2)干洁空气的平均分 子量是28.996,(3)在垂直高度90km以下干洁空气的主要成分所占 比例不变 4 干洁空气中几种有影响的气体 (1)臭氧:含量少,20-25km最多;影响气温垂直分布,保护生物 (2)二氧化碳:集中于大气底部20公里,因时间和空间而不同(夏季较 少,冬季较多;城市较多,农村较少)强烈吸收长波辐 射,影响大气和地面温度;但含量过高影响会响人类健 康。
三、大气中的固体杂质和液体微粒
1.固体杂质
定义:悬浮于大气中的烟粒、尘埃、盐粒等。 来源:物质燃烧的烟粒、海水飞溅扬入大气后而被蒸发的盐粒,被风吹 起的土壤微粒及火山喷发的烟尘,流星燃烧所产生的细小微粒和 宇宙尘埃,还有细菌、微生物、植物的孢子花粉等 。
3
——红外技术及应用
含量分布:多集中在大气的底层,随时间、地区和天气 条件而变化(陆上多于海上,城市多于乡村, 冬季多于夏季 ) 作用:(1)吸收一部分太阳辐射和阻挡地面放热,对地面 和空气温度有一定影响; (2)使大气能见度变坏 ; (3)充当水汽凝结的核心,对云、雨的形成起重要 作用。
一、大气的高度
严格地说,不存在大气圈的上界。 大气圈的垂直范围通常有两种划法: (一)着眼于大气中出现的某些物理现象。大气中极光是出现高度最高 的物理现象,因此,可以把大气的上界定为1200公里。 (二)着眼于大气密度,用接近于星际的气体密度的高度来估计大气 的上界。按照人造卫星探测资料推算,这个上界大约在2000— 3000公里高度上。
分类 粉尘微粒 硫化物 氮化物 氧化物 卤化物 有机化合物 成分 碳粒、飞灰.碳酸钙、氧化锌、二氧化铅 二氧化硫、三氧化硫、硫酸、硫化氢、硫醇等 一氧化氮、二氧化氮、氨等 臭氧、过氧化物、一氧化碳等 氯、氟化氢、氯化氢等 碳化氢、甲醛、有机酸、焦油、有机卤化物、酮等
5
——红外技术及应用
第 二 大气的结构 节
(四)暖层:中间层顶至800公里高度
暖层有两个特点:(1)随着高度的增高,气温迅速升高空气就更稀薄。 (2)空气处于高度电离状态。从这一特征来说,暖层又可称为 电离层。
(五)散逸层
800公里高度以上的大气层,统称为散逸层。这一层的气温随高度的增高而升 高。这一层的主要特征是大气质点经常散逸至星际空间。
2.液体微粒
定义:悬浮大气中的水滴、过冷水滴和冰晶等水汽凝结 物。 作用:它们常聚集在一起,以云、雾等形式出现,使能 见度变坏,还能减弱太阳辐射和地面辐射。
4
——红外技术及应用 四、大气污染 定义:由于工业、交通运输业的发展,在废气不加以 回收利用的情况下,空气中增加了许多新的成分, 这就是所说的大气污染。 大气污染物:如下表
2
——红外技术及应用
二、水汽
来源:江、河、湖、海及潮湿物体表面的水分蒸发 . 分布:集中在大气底层,一般随高度的增高而减少 ;且因纬度、地势高
低以及海陆的不同而有差异:低纬>高纬、夏季>冬季、湿润地 区>干旱地区 作用:是大气唯一能发生相变的气体,产生天气现象; 对地面和空气温度产生影响; 在水平和垂直方向上进行物质与能量的交换。
2.主要的特征:
(1)气温随高度的升高而降低:由于对流层主要是从地面得到热量,因此 温度随高度增加而降低。 气温铅直梯度:对流层中气温随高度而降低的数值,在不同地区、不 同季节、不同高度是不一致的,平均而言,每上升100米, 气温 下降约0.65℃。这称为气温直减率,也叫气温铅直梯度。通常以y 表示:y=-dT/dZ=0.65℃/100m
10
——红外技术及应用
11
——红外技术及应用
12
——红外技术及应用
ห้องสมุดไป่ตู้
第 三 主要气象要素 节
度、风向、风力、云量、能见度、降水量、日照、辐 射等。
7
——红外技术及应用
1.界限:底层是下地垫面,上层随纬度和季节而不同
• 低纬度地区平均为17-18公里,中纬度地区为10-12公里,高纬度地区 为8-9公里 • 任何纬度尤其是中纬度的对流层厚度,夏季较大,冬季较小 • 同大气的总厚度比较起来,对流层是非常薄的,不及整个大气厚度的1 %。但是,由于地球引力的作用,这一层却集中了整个大气3/4的质 量和几乎全部的水汽。