微带巴伦设计与仿真
具有陷波特性的宽带微带线-槽线巴伦的设计

1 巴伦 的 设 计 与 结 构
提 出的具有 陷 波特性 的 宽带微 带线 一槽 线 巴伦 的
结构 如 图 1所示 。 巴伦 选 取 相 对介 电常 数 为 2 . 6 5 , 厚 度为 2 m m 的介 质基板 印制 。介 质 基 板 的上 层 是带 有
p e d a n c e b a n d wi d t h wi t h c i e n t s l e s s t ha n 一1 0 d B a n d i n s e  ̄l o s s be t t e r t ha n 一1 . 8 d B c o v e r s 0. 3 8—
a , r l a 2 0 1 5 年 第 2 8 卷 第 6 期
El e c t r o n i c S c i . &T e c h . / J u n . 1 5.2 01 5
d o i :1 0 . 1 6 1 8 0 / j . c n k i . i s s n l O 0 7— 7 8 2 0 . 2 0 1 5 . 0 6 . 0 4 7
通信 技 术 的快 速 发展 , 无线 频谱 资源 的 日趋 密 集 ,
使得通信设备的集成度逐渐增加 , 并可拥有多种无线 通信 模块 , 同时相 互稳 定 、 高效 地工作 。这也 就 对通 信 设 备 的前端 关键 部件 天线 提 出 了更 高 的要求 J 。
平衡 结 构 的天 线 一 般都 具 有 完 全 对 称 的 辐 射 臂 。 当采用 微带 线 、 共 面 波 导或 同轴 线 等 不 平衡 馈 线 馈 电 时, 为 实现 天线 馈 电 网 络 的 阻抗 匹配 并保 证 天线 的 电
HFSS验证性仿真实验报告样例

《微波技术与天线》HFSS仿真实验报告实验二印刷偶极子天线设计一、仿真实验内容和目的使用HFSS设计一个中心频率为2.45GHz的采用微带巴伦馈线的印刷偶极子天线,并通过HFSS软件Opitmetrics模块的参数扫描分析功能对印刷偶极子天线的一些重要结构参数进行参数扫描分析,分析这些参数对天线性能的影响。
二、设计模型简介整个天线分为5个部分,即介质层,偶极子天线臂,微带巴伦线,微带传输线,见图1。
天线各部分结构尺寸的初始值见表1。
图1 印刷偶极子天线结构图(顶视图)。
表1 印刷偶极子天线关键结构尺寸初始值。
三、建模和仿真步骤1、新建HFSS工程,添加新设计,设置求解类型:Driven Modal。
2、创建介质层。
创建长方体,名称设为Substrate,材质为FR4_epoxy,颜色为深绿色,透明度为0.6。
3、创建上层金属部分1)创建上层金属片,建立矩形面,名称Top_Patch,颜色铜黄色。
2)创建偶极子位于介质层上表面的一个臂。
画矩形面,名称Dip_Patch,颜色铜黄色。
3)创建三角形斜切角,创建一个三角形面,把由矩形面Top_Patch 和Dip_Patch组成的90折线连接起来。
4)合并生成完整的金属片模型。
4、创建下表面金属片1)创建下表面传输线Top_patch_1。
2)创建矩形面Rectangle1。
3)创建三角形polyline2。
4)镜像复制生成左侧的三角形和矩形面此步完成后得到即得到印刷偶极子天线三维仿真模型如图2所示。
5、设置边界条件1)分配理想导体。
2)设置辐射边界条件,材质设为air。
6、设置激励方式:在天线的输入端口创建一个矩形面最为馈电面,设置该馈电面的激励方式为集总端口激励,端口阻抗为50欧姆。
7、求解设置:求解频率(Solution Frequency)为2.45GHz,自适应网格最大迭代次数(Maximum Number of Passes):20,收敛误差(Maximum Delta S)为0.02。
传输线巴伦的原理设计、制作及测试

传输线平衡器(巴伦)的原理、设计、制作及测试一、平衡器(巴伦)的由来平衡器即Balancing Device,其主要作用是完成由单端传输(如:同轴线、微带线等)变换为差分传输(如:半波振子天线,推挽电路等)之间的变换,又称为平衡-不平衡变换器即Balance-Unbalance,英文将其合并缩写成一个新词Balun,音译为巴伦。
以下文中所提到的平衡器、平衡-不平衡变换器、巴伦,都是指这一类器件。
巴伦在无线电中有着广泛的用途,由于其原理结构多种多样,并且可以互相组合,使得许多朋友在自制巴伦时有无从下手的感觉,哪种结构适合?如何选择材料?如何计算制作参数?如何衡量巴伦的性能?对于我们业余爱好者,主要就是用在天线的馈电和高频功放中,完成平衡-不平衡及阻抗变换的作用,工作在短波1.8MHZ~30MHZ,并要求取材和制作容易。
结合我对巴伦的认识理解,认为传输线结构的巴伦,更适合短波通信,其性能好、取材方便、制作容易,但其理论不易理解,造成很多朋友将其搞成了磁耦合变压器结构,出现频带窄、功率容量小、驻波不平坦的问题,结果当然达不到传输线变换器的效果。
下面就我个人对传输线变换器的粗浅理解,简单描述一下做巴伦的情况,如需要更深入的了解可以参考有关文献资料,有不当之处,还请各位前辈指正,谢谢!二、传输线平衡器(巴伦)的简单原理平衡器有很多种,按平衡条件可以分为四大类:扼流式(扼制不平衡电流)、对称式(对地阻抗平衡)、倒相式(电压倒相)、磁耦合式(电流共扼)。
我这里主要描述一下基于传输线变换器的平衡-不平衡变换,同时具备阻抗变换作用的巴伦,兼有扼流式和磁耦合式的特征。
传输线变换器的结构如上图,它是在高频磁环上缠绕一组或几组传输线,利用不同的连接方法来完成阻抗变换和平衡-不平衡变换作用。
能量从变换器的始端到终端是通过传输线的分布电容、分布电感以及电磁能量交换的形式来传送的,这和通常的绕匝变压器不同,它克服了绕匝变压器在高频时由于线圈的分布电容所带来的不利影响,改善了高频特性。
微带巴伦设计与仿真.docx

微带巴伦设计与仿真在频率较高的情况下(大于 1GHz ), LC 巴伦由于电感,电容的寄生效应,自谐振频率等影 响,性能将变差,而在高频上,用微带线设计的巴伦在性能,尺寸上都比较理想,本文讲解在较高频率上如何设计微带线巴伦并进行ADS 仿真。
微带巴伦的结果如下所示:AA Ba 菲平耐入 AAE D B 3微带线A 的长度为0.5个波长,微带线 B 的长度为0.25个波长,波长为在实际基板上的信 号波长,需要考虑基板的介电常数。
巴伦的性能和所用的节数有关系,节数越多,频宽越宽,不过节数越多,尺寸也越大,上图为4节微带线巴伦。
F 面分别用ADS 对一节,两节,三节微带线巴伦进行仿真。
一节微带线巴伦:黑 S1PARAMETERS |' ..............................................SP1 .......................................St_art=3 GHz .......................Stop=4 GHzStep=10 MHz .......................■ TLIN ■ •-■TL3 -.Z=50,D OhmE=90F=3.5 GHz仿真结果:TLI 忖■ TLIN TL1- - - TLi - 子幫軒z ^5D 0衍祜 E=180. . , F 士grt ・• F^.5GHz ,F i.5GHz 叫丁口忖.'' HTL4 Z=50:0 Qhm E=18D .. ijermTermlNurri=1Z=60 OhmTjerm ” Term2 Num=2 Z=50 Ohm Term ' Tsrm3 - Num=3 Z=50 Ohm s ' pm4 freq=3.500GHz pM 犬(5(玄卄)二90.00。
|卜出汨£(2」))=90000大频宽内都保持180°正交,幅度在100MHz 范围内基本两路平衡输出保持一致,插损在0.5dB 左右。
一种P波段微带巴伦的设计

p r i n c i p l e s o f a b a l u n a n d i t s ma j o r p r o p e r t i e s a s we l l a s t h e d e s i g n s t e p s . A P — Ba n d ,d o u b l e - s i d e d
示 了巴伦 的低频 电路原理 。
备 中的 射 频 前 端 器 件 的研 究 发 展 带 来 了极 大 的机
遇 和挑 战 。巴伦 在 射频 收发 系统 中扮 演着 重要 的角
色 ,在大量 的电子设备 中有着极为广泛 的应用。
本 文重 点介 绍 了 巴伦 的基 本 工作 原理 及主 要设
计 指标 ,提 出了一 种双 层微 带功 分器 巴伦 的设 计方
给 出 了其主 要技 术 指标 及 设计 步骤 ,设 计 了一 种P 波段 双 面微 带 形 式 巴伦 ,并 结合 实物 验证 了这
种 设 计 的有 效 性和 可行 性 。
关 键 词 : 巴伦 ;双面 微 带 ;P 波 段
中 图分 类 号 :T N9 5 7 文 献 标 识 码 :A 文章编号 : 2 0 9 5 — 8 4 1 2( 2 o 1 5 ) 0 1 . 0 5 1 . 0 4
图1 巴伦低频 电路
法 ,从 理 论上 分析 了这 种 巴伦 的性能 ,并 结合 仿真
软 件给 出相应 的仿 真结 果 ,最后 通过 实物验 证 了这
种设计方法 的正确性和可行性 。
由图可 见 ,巴伦 初级 的一端 是接 地端 ,是 不平 衡端 口。 巴伦次 级端 口2 和端 口3 都 属非 接地端 ,对
引 言
随 着无 线 电通信 和微 波 电路技 术 的发展 ,无线 通 信 、雷 达 、 电子 对抗 等 电子设备 正 向着 集成 化 、
传输线巴伦的原理设计制作及测试

传输线平衡器(巴伦)的原理、设计、制作及测试一、平衡器(巴伦)的由来平衡器即Balancing Device,其主要作用是完成由单端传输(如:同轴线、微带线等)变换为差分传输(如:半波振子天线,推挽电路等)之间的变换,又称为平衡-不平衡变换器即Balance-Unbalance,英文将其合并缩写成一个新词Balun,音译为巴伦。
以下文中所提到的平衡器、平衡-不平衡变换器、巴伦,都是指这一类器件。
巴伦在无线电中有着广泛的用途,由于其原理结构多种多样,并且可以互相组合,使得许多朋友在自制巴伦时有无从下手的感觉,哪种结构适合?如何选择材料?如何计算制作参数?如何衡量巴伦的性能?对于我们业余爱好者,主要就是用在天线的馈电和高频功放中,完成平衡-不平衡及阻抗变换的作用,工作在短波1.8MHZ~30MHZ,并要求取材和制作容易。
结合我对巴伦的认识理解,认为传输线结构的巴伦,更适合短波通信,其性能好、取材方便、制作容易,但其理论不易理解,造成很多朋友将其搞成了磁耦合变压器结构,出现频带窄、功率容量小、驻波不平坦的问题,结果当然达不到传输线变换器的效果。
下面就我个人对传输线变换器的粗浅理解,简单描述一下做巴伦的情况,如需要更深入的了解可以参考有关文献资料,有不当之处,还请各位前辈指正,谢谢!二、传输线平衡器(巴伦)的简单原理平衡器有很多种,按平衡条件可以分为四大类:扼流式(扼制不平衡电流)、对称式(对地阻抗平衡)、倒相式(电压倒相)、磁耦合式(电流共扼)。
我这里主要描述一下基于传输线变换器的平衡-不平衡变换,同时具备阻抗变换作用的巴伦,兼有扼流式和磁耦合式的特征。
传输线变换器的结构如上图,它是在高频磁环上缠绕一组或几组传输线,利用不同的连接方法来完成阻抗变换和平衡-不平衡变换作用。
能量从变换器的始端到终端是通过传输线的分布电容、分布电感以及电磁能量交换的形式来传送的,这和通常的绕匝变压器不同,它克服了绕匝变压器在高频时由于线圈的分布电容所带来的不利影响,改善了高频特性。
巴伦的原理、设计、制作

一、平衡器(巴伦)的由来平衡器即Balancing Device,其主要作用是完成由单端传输(如:同轴线、微带线等)变换为差分传输(如:半波振子天线,推挽电路等)之间的变换,又称为平衡-不平衡变换器即Balance-Unbalance,英文将其合并缩写成一个新词Balun,音译为巴伦。
以下文中所提到的平衡器、平衡-不平衡变换器、巴伦,都是指这一类器件。
巴伦在无线电中有着广泛的用途,由于其原理结构多种多样,并且可以互相组合,使得许多朋友在自制巴伦时有无从下手的感觉,哪种结构适合?如何选择材料?如何计算制作参数?如何衡量巴伦的性能?对于我们业余爱好者,主要就是用在天线的馈电和高频功放中,完成平衡-不平衡及阻抗变换的作用,工作在短波1.8MHZ~30MHZ,并要求取材和制作容易。
结合我对巴伦的认识理解,认为传输线结构的巴伦,更适合短波通信,其性能好、取材方便、制作容易,但其理论不易理解,造成很多朋友将其搞成了磁耦合变压器结构,出现频带窄、功率容量小、驻波不平坦的问题,结果当然达不到传输线变换器的效果。
下面就我个人对传输线变换器的粗浅理解,简单描述一下做巴伦的情况,如需要更深入的了解可以参考有关文献资料,有不当之处,还请各位前辈指正,谢谢!二、传输线平衡器(巴伦)的简单原理平衡器有很多种,按平衡条件可以分为四大类:扼流式(扼制不平衡电流)、对称式(对地阻抗平衡)、倒相式(电压倒相)、磁耦合式(电流共扼)。
我这里主要描述一下基于传输线变换器的平衡-不平衡变换,同时具备阻抗变换作用的巴伦,兼有扼流式和磁耦合式的特征。
传输线变换器的结构如上图,它是在高频磁环上缠绕一组或几组传输线,利用不同的连接方法来完成阻抗变换和平衡-不平衡变换作用。
能量从变换器的始端到终端是通过传输线的分布电容、分布电感以及电磁能量交换的形式来传送的,这和通常的绕匝变压器不同,它克服了绕匝变压器在高频时由于线圈的分布电容所带来的不利影响,改善了高频特性。
巴伦的原理、设计、制作

一、平衡器(巴伦)的由来平衡器即Balancing Device,其主要作用是完成由单端传输(如:同轴线、微带线等)变换为差分传输(如:半波振子天线,推挽电路等)之间的变换,又称为平衡-不平衡变换器即Balance-Unbalance,英文将其合并缩写成一个新词Balun,音译为巴伦。
以下文中所提到的平衡器、平衡-不平衡变换器、巴伦,都是指这一类器件。
巴伦在无线电中有着广泛的用途,由于其原理结构多种多样,并且可以互相组合,使得许多朋友在自制巴伦时有无从下手的感觉,哪种结构适合?如何选择材料?如何计算制作参数?如何衡量巴伦的性能?对于我们业余爱好者,主要就是用在天线的馈电和高频功放中,完成平衡-不平衡及阻抗变换的作用,工作在短波1.8MHZ~30MHZ,并要求取材和制作容易。
结合我对巴伦的认识理解,认为传输线结构的巴伦,更适合短波通信,其性能好、取材方便、制作容易,但其理论不易理解,造成很多朋友将其搞成了磁耦合变压器结构,出现频带窄、功率容量小、驻波不平坦的问题,结果当然达不到传输线变换器的效果。
下面就我个人对传输线变换器的粗浅理解,简单描述一下做巴伦的情况,如需要更深入的了解可以参考有关文献资料,有不当之处,还请各位前辈指正,谢谢!二、传输线平衡器(巴伦)的简单原理平衡器有很多种,按平衡条件可以分为四大类:扼流式(扼制不平衡电流)、对称式(对地阻抗平衡)、倒相式(电压倒相)、磁耦合式(电流共扼)。
我这里主要描述一下基于传输线变换器的平衡-不平衡变换,同时具备阻抗变换作用的巴伦,兼有扼流式和磁耦合式的特征。
传输线变换器的结构如上图,它是在高频磁环上缠绕一组或几组传输线,利用不同的连接方法来完成阻抗变换和平衡-不平衡变换作用。
能量从变换器的始端到终端是通过传输线的分布电容、分布电感以及电磁能量交换的形式来传送的,这和通常的绕匝变压器不同,它克服了绕匝变压器在高频时由于线圈的分布电容所带来的不利影响,改善了高频特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微带巴伦设计与仿真
在频率较高的情况下(大于1GHz),LC巴伦由于电感,电容的寄生效应,自谐振频率等影响,性能将变差,而在高频上,用微带线设计的巴伦在性能,尺寸上都比较理想,本文讲解在较高频率上如何设计微带线巴伦并进行ADS仿真。
微带巴伦的结果如下所示:
微带线A的长度为0.5个波长,微带线B的长度为0.25个波长,波长为在实际基板上的信
号波长,需要考虑基板的介电常数。
巴伦的性能和所用的节数有关系,节数越多,频宽越宽,不过节数越多,尺寸也越大,上
图为4节微带线巴伦。
下面分别用ADS对一节,两节,三节微带线巴伦进行仿真。
一节微带线巴伦:
仿真结果:
仿真结果可见相位在很大频宽内都保持180°正交,幅度在100MHz范围内基本两路平衡输出保持一致,插损在
0.5dB左右。
二节微带线巴伦:
仿真结果:
仿真结果可见相位在很大频宽内都保持180°正交,幅度在200MHz范围内基本两路平衡输
出保持一致,插损在0.5dB左右。
三节微带线巴伦:
仿真结果:
仿真结果可见相位在很大频宽内都保持180°正交,幅度在400MHz范围内基本两路平衡输
出保持一致,插损在0.5dB左右。
通过仿真发现巴伦节数越高,幅度平衡带宽越大,不过节数对插损基本影响不大。