三角函数第一章第一节练习题

合集下载

高中数学必修第1章典型例题三角函数

高中数学必修第1章典型例题三角函数

第一章 三角函数1.1 任意角和弧度制例1:已知是锐角,那么2是( )(A)第一象限角(B)第二象限角 (C)小于180 的正角(D )第一或第二象限角例2:已知扇形的周长是6cm ,面积是22cm ,则扇形的圆心角的弧度数是( ) A.1 B.1或4 C.4 D.2或4例3:已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?1.2任意角的三角函数例1:设α角属于第二象限,且2cos 2cos αα-=,则2α角属于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限例2:若tan θ=13 ,则cos 2θ+sin θcos θ的值是A.-65B.-45C. 45D. 65例3:已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos +的值.例4:已知)1,2(,cos sin ≠≤=+m m m x x 且,求(1)x x 33cos sin +;(2)x x 44cos sin +的值.例5:1.3三角函数的诱导公式 例1:若,3cos )(cos x x f =那么)30(sin ︒f 的值为( )A .0B .1C .-1D .23例2:已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为( )A .5B .-5C .6D .-6例3:在△ABC 中,若 ,则△ABC 必是( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形例4:已知,1)sin(=+y x 求证:.0tan )2tan(=++y y x例5:若k ∈Z ,求证:])1cos[(])1sin[()cos()sin(απαπαπαπ-++++-k k k k =-11.4三角函数的图像与性质 1.5函数y=sin (ωx+ψ)的图像例1:已知函数f(x)=12log (sinx cosx)-⑴ 求它的定义域和值域;⑵ 求它的单调区间;⑶ 判断它的奇偶性; ⑷ 判定它的周期性,如果是周期函数,求出它的最小正周期.例2:函数y=sinx •|cotx |(0<x <π)的大致图象是( )例3:如果函数y=sin2x+acos2x 图象关于直线x=-8π对称,则a 值为________。

必修4第一章三角函数同步练习及答案

必修4第一章三角函数同步练习及答案

第一章 三角函数§1.1 任意角和弧度制一、选择题1.若α是第一象限角,则下列各角中一定为第四象限角的是 ( ) (A) 90°-α (B) 90°+α (C)360°-α (D)180°+α2.终边与坐标轴重合的角α的集合是 ( ) (A){α|α=k ·360°,k ∈Z} (B){α|α=k ·180°+90°,k ∈Z} (C){α|α=k ·180°,k ∈Z} (D){α|α=k ·90°,k ∈Z}3.若角α、β的终边关于y 轴对称,则α、β的关系一定是(其中k ∈Z ) ( ) (A) α+β=π (B) α-β=2π(C) α-β=(2k +1)π (D) α+β=(2k +1)π 4.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为 ( )(A)3π (B)32π (C)3 (D)25.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π(B)-3π (C)6π (D)-6π *6.已知集合A ={第一象限角},B ={锐角},C ={小于90°的角},下列四个命题:①A =B =C ②A ⊂C ③C ⊂A ④A ∩C =B ,其中正确的命题个数为 ( ) (A)0个 (B)2个 (C)3个 (D)4个 二.填空题7.终边落在x 轴负半轴的角α的集合为 ,终边在一、三象限的角平分线上的角β的集合是 . 8. -1223πrad 化为角度应为 . 9.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的 倍. *10.若角α是第三象限角,则2α角的终边在 ,2α角的终边在 . 三.解答题11.试写出所有终边在直线x y 3-=上的角的集合,并指出上述集合中介于-1800和1800之间的角.12.已知0°<θ<360°,且θ角的7倍角的终边和θ角终边重合,求θ.13.已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少? *14.如下图,圆周上点A 依逆时针方向做匀速圆周运动.已知A 点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.§1.2.1.任意角的三角函数一.选择题1.函数y =|sin |sin x x +cos |cos |x x +|tan |tan x x的值域是 ( )(A){-1,1} (B){-1,1,3} (C) {-1,3} (D){1,3} 2.已知角θ的终边上有一点P (-4a ,3a )(a ≠0),则2sin θ+cos θ的值是 ( )(A) 25 (B) -25 (C) 25或 -25(D) 不确定3.设A 是第三象限角,且|sin 2A |= -sin 2A ,则2A是 ( )(A) 第一象限角 (B) 第二象限角 (C) 第三象限角 (D) 第四象限角4. sin2cos3tan4的值 ( ) (A)大于0 (B)小于0 (C)等于0 (D)不确定5.在△ABC 中,若cos A cos B cos C <0,则△ABC 是 ( )(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)锐角或钝角三角形 *6.已知|cos θ|=cos θ, |tan θ|= -tan θ,则2θ的终边在 ( )(A)第二、四象限 (B)第一、三象限 (C)第一、三象限或x 轴上 (D)第二、四象限或x 轴上 二.填空题 7.若sin θ·cos θ>0, 则θ是第 象限的角;8.求值:sin(-236π)+cos 137π·tan4π -cos 133π= ;9.角θ(0<θ<2π)的正弦线与余弦线的长度相等且符号相同,则θ的值为 ; *10.设M =sin θ+cos θ, -1<M <1,则角θ是第 象限角. 三.解答题11.求函数y =lg(2cos x12.求:13sin 330tan()319cos()cos6906ππ︒⋅--⋅︒的值.13.已知:P (-2,y )是角θ终边上一点,且sin θ= -55,求cos θ的值. *14.如果角α∈(0,2π),利用三角函数线,求证:sin α<α<tan α.数学必修(4)第一章、三角函数超辉数学- 3 - 同步练习§1.2.2 同角三角函数的基本关系式一、选择题1.已知sin α=45,且α为第二象限角,那么tan α的值等于( )(A)34(B)43- (C)43(D)43-2.已知sin αcos α=81,且4π<α<2π,则cos α-sin α的值为( )(A)23 (B)43(C) (D)±23 3.设是第二象限角,则sin cos αα ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1-4.若tan θ=31,π<θ<32π,则sin θ·cos θ的值为( )(A)±310 (B)3105.已知sin cos 2sin 3cos αααα-+=51,则tan α的值是( )(A)±83 (B)83(C)83- (D)无法确定*6.若α是三角形的一个内角,且sin α+cos α=32,则三角形为( ) (A)钝角三角形 (B)锐角三角形 (C)直角三角形(D)等腰三角形二.填空题7.已知sin θ-cos θ=12,则sin 3θ-cos 3θ= ;8.已知tan α=2,则2sin 2α-3sin αcos α-2cos 2α= ;9.(α为第四象限角)= ;*10.已知cos (α+4π)=13,0<α<2π,则sin(α+4π)= .三.解答题11.若sin x = 35m m -+,cos x =425mm -+,x ∈(2π,π),求tan x 。

必修四第一章 三角函数 精选练习题(有答案和解析)

必修四第一章 三角函数 精选练习题(有答案和解析)

必修四第一章 三角函数精选练习题一、选择题1.在0°~360°的范围内,与-510°终边相同的角是( ) A .330° B .210° C .150° D .30°B [因为-510°=-360°×2+210°,因此与-510°终边相同的角是210°.] 2.cos 420°的值为( ) A .12 B .-12C .32D .-32A [cos 420°=cos(360°+60°)=cos 60°=12,故选A.]3.已知角θ的终边上一点P (a ,-1)(a ≠0),且tan θ=-a ,则sin θ的值是( ) A .±22 B .-22 C .22 D .-12B [由题意得tan θ=-1a =-a , 所以a 2=1, 所以sin θ=-1a 2+(-1)2=-22.] 4.一个扇形的弧长与面积的数值都是6,这个扇形中心角的弧度数是( ) A .1 B .2 C .3 D .4C [设扇形的半径为r ,中心角为α,根据扇形面积公式S =12lr 得6=12×6×r ,所以r =2, 所以α=l r =62=3.]5.已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,则sin θ-cos θ的值为( ) A .23 B .13 C .-23 D .-13 C [∵已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,∴1+2sin θcos θ=169,∴2sin θcos θ=79,故sin θ-cos θ=-(sin θ-cos θ)2 =-1-2sin θ·cos θ =-23,故选C.]6.函数y =tan(sin x )的值域是( ) A .⎣⎢⎡⎦⎥⎤-π4,π4B .⎣⎢⎡⎦⎥⎤-22,22C .[]-tan 1,tan 1D .[]-1,1C [sin x ∈[-1,1],又-π2<-1<1<π2,且y =tan x 在⎝ ⎛⎭⎪⎫-π2,π2上是增函数,所以y min =tan(-1)=-tan 1,y max =tan 1.]7.将函数y =sin ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式为( )A .y =sin 12xB .y =sin ⎝ ⎛⎭⎪⎫12x -π2C .y =sin ⎝ ⎛⎭⎪⎫12x -π6D .y =sin ⎝ ⎛⎭⎪⎫2x -π6 C [函数y =sin ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标伸长到原来的2倍可得y =sin ⎝ ⎛⎭⎪⎫12x -π3,再将所得的图象向左平移π3个单位,得到函数y =sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x +π3-π3=sin ⎝ ⎛⎭⎪⎫12x -π6.] 8.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间是( ) A .⎣⎢⎡⎦⎥⎤0,π8B .⎣⎢⎡⎦⎥⎤π8,π2C .⎣⎢⎡⎦⎥⎤0,3π8D .⎣⎢⎡⎦⎥⎤3π8,π2C [令2k π-π2≤2x -π4≤2k π+π2(k ∈Z )得k π-π8≤x ≤k π+3π8(k ∈Z ),k =0时,x∈⎣⎢⎡⎦⎥⎤-π8,3π8,又x ∈⎣⎢⎡⎦⎥⎤0,π2, ∴x ∈⎣⎢⎡⎦⎥⎤0,3π8,故选C.]9.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π4B .y =2sin ⎝ ⎛⎭⎪⎫2x -π4或y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 C .y =2sin ⎝ ⎛⎭⎪⎫2x +3π4D .y =2sin ⎝ ⎛⎭⎪⎫2x -3π4C [由图可知A =2,4⎝ ⎛⎭⎪⎫π8+π8=2πω得ω=2,且2×⎝ ⎛⎭⎪⎫-π8+φ=π2+2k π(k ∈Z )∴φ=2k π+3π4(k ∈Z ), 又∵|φ|<π, ∴φ=3π4,故选C.]10.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )C [∵P 0(2,-2),∴∠P 0Ox =π4.按逆时针转时间t 后得 ∠POP 0=t ,∠POx =t -π4. 此时P 点纵坐标为2sin ⎝ ⎛⎭⎪⎫t -π4,∴d =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫t -π4.当t =0时,d =2,排除A ,D ; 当t =π4时,d =0,排除B.]11.设α是第三象限的角,且⎪⎪⎪⎪⎪⎪cos α2=-cos α2,则α2的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 B [∵α是第三象限的角, ∴π+2k π<α<3π2+2k π,k ∈Z . ∴π2+k π<α2<3π4+k π,k ∈Z . ∴α2在第二或第四象限. 又∵⎪⎪⎪⎪⎪⎪cos α2=-cos α2,∴cos α2<0.∴α2是第二象限的角.]12.化简1+2sin (π-2)·cos (π-2)得( )A .sin 2+cos 2B .cos 2-sin 2C .sin 2-cos 2D .±cos 2-sin 2 C [1+2sin (π-2)·cos (π-2) =1+2sin 2·(-cos 2) =(sin 2-cos 2)2, ∵π2<2<π,∴sin 2-cos 2>0. ∴原式=sin 2-cos 2.]13.同时具有下列性质的函数可以是( ) ①对任意x ∈R ,f (x +π)=f (x )恒成立; ②图象关于直线x =π3对称; ③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.A .f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6C .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3D .f (x )=cos ⎝ ⎛⎭⎪⎫2x -π6B [依题意知,满足条件的函数的周期是π,图象以直线x =π3为对称轴,且在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.对于A 选项,函数周期为4π,因此A 选项不符合;对于C 选项,f ⎝ ⎛⎭⎪⎫π3=-1,但该函数在⎣⎢⎡⎦⎥⎤-π6,π3上不是增函数,因此C 选项不符合;对于D 选项,f ⎝ ⎛⎭⎪⎫π3≠±1,即函数图象不以直线x =π3为对称轴,因此D 选项不符合.综上可知,应选B.]14.已知函数f (x )=-2tan(2x +φ)(|φ|<π),若f ⎝ ⎛⎭⎪⎫π16=-2,则f (x )的一个单调递减区间是( )A .⎝ ⎛⎭⎪⎫3π16,11π16B .⎝ ⎛⎭⎪⎫π16,9π16C .⎝ ⎛⎭⎪⎫-3π16,5π16D .⎝ ⎛⎭⎪⎫π16,5π16 A [由f ⎝ ⎛⎭⎪⎫π16=-2得-2tan ⎝ ⎛⎭⎪⎫π8+φ=-2,所以tan ⎝ ⎛⎭⎪⎫π8+φ=1,又|φ|<π,所以φ=π8,f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π8, 令k π-π2<2x +π8<k π+π2,k ∈Z 得 k π2-5π16<x <k π2+3π16,k ∈Z .可得f (x )的单调递减区间是⎝ ⎛⎭⎪⎫k π2-5π16,k π2+3π16,k ∈Z ,令k =1,可得f (x )的一个单调递减区间是⎝ ⎛⎭⎪⎫3π16,11π16.]二、填空题15.对于锐角α,若tan α=34,则cos 2α+2sin 2α=________. 6425 [由题意可得:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=6425.]16.已知sin α=13,且α是第二象限角,那么cos(3π-α)的值为________. 223[cos(3π-α)=-cos α=-(-1-sin 2α)=1-⎝ ⎛⎭⎪⎫132=223.] 17.函数y =3-tan x 的定义域是________.⎝ ⎛⎦⎥⎤k π-π2,k π+π3(k ∈Z ) [作出三角数线如图,由函数可知3-tan x ≥0中tan x ≤3,而3对应角为π3,由图中阴影部分可得定义域为⎝ ⎛⎦⎥⎤k π-π2,k π+π3(k ∈Z ).]18.函数y =tan ⎝ ⎛⎭⎪⎫2x -π4的定义域为________.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π8+k π2,k ∈Z[2x -π4≠π2+k π,即x ≠3π8+k π2,k ∈Z .]19.若函数y =sin(ωx +φ)(ω>0)的部分图象如图所示,则ω=________.4 [观察图象可知函数y =sin(ωx +φ)的半个周期为π4, 所以2πω=π2,ω=4.]20.已知函数f (x )=sin(ωx +φ)(ω>0),若将f (x )的图象向左平移π3个单位长度所得的图象与将f (x )的图象向右平移π6个单位长度所得的图象重合,则ω的最小值为________.4 [由条件可知,图象变换后的解析式分别为y =sin ⎝ ⎛⎭⎪⎫ωx +ωπ3+φ和y =sin ⎝ ⎛⎭⎪⎫ωx -ωπ6+φ,由于两图象重合,所以ωπ3+φ=-ωπ6+φ+2k π(k ∈Z ). 即ω=4k (k ∈Z ),由ω>0,∴ωmin =4.]21.一扇形的圆心角为2弧度,记此扇形的周长为C ,面积为S ,则C -1S 的最大值为________.4 [由已知可得弧长l =2r ,周长C =4r ,面积S =12×lr =r 2,∴C -1S =4r -1r 2=-1r 2+4r =-⎝ ⎛⎭⎪⎫1r -22+4,故C -1S 的最大值为4.] 22.已知角α终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角α的最小正值是________.5π3 [角α终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,即⎝ ⎛⎭⎪⎫12,-32, tan α=-3212=-3,且α为第四象限角,所以角α的最小正值是5π3.]23.函数y =2+cos x2-cos x(x ∈R )的最大值为________.3 [由题意有y =42-cos x-1,因为-1≤cos x ≤1,所以1≤2-cos x ≤3,则43≤42-cos x ≤4,由此可得13≤y ≤3,于是函数y =2+cos x 2-cos x (x ∈R )的最大值为3.]24.对于函数f (x )=⎩⎨⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+k π(k ∈Z )时,该函数取得最小值-1; ③该函数的图象关于x =5π4+2k π(k ∈Z )对称; ④当且仅当2k π<x <π2+2k π(k ∈Z )时,0<f (x )≤22. 其中正确命题的序号是________. ③④ [作出函数f (x )的图象如图所示:由图象可知f (x )为周期函数,T =2π,①错误;当x =2k π+π或x =2k π+3π2时,取最小值-1,故②错误;x =π4+2k π(k ∈Z )和x =5π4+2k π(k ∈Z )都是该图象的对称轴,故③正确; 当2k π<x <π2+2k π(k ∈Z )时,f (x )图象在x 轴上方且f (x )max =22. 故0<f (x )≤22.故④正确.]三、解答题25.已知sin(π-α)·cos(-8π-α)=60169,且α∈⎝ ⎛⎭⎪⎫π4,π2,求sin α与cos α的值.[解] 由已知条件可得sin αcos α=60169,∴(sin α+cos α)2=1+2sin αcos α=1+120169=289169, (sin α-cos α)2=1-2sin αcos α=1-120169=49169. ∵x ∈⎝ ⎛⎭⎪⎫π4,π2,∴sin α>cos α, ∴⎩⎪⎨⎪⎧sin α+cos α=1713,sin α-cos α=713,解方程组得sin α=1213,cos α=513.26.(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值; (2)已知角α的终边经过点P (4a ,-3a )(a ≠0),求2sin α+cos α的值; (3)已知角α终边上一点P 到x 轴的距离与到y 轴的距离之比为3∶4,求2sin α+cos α的值.[解] (1)∵α终边过点P (4,-3),∴r =|OP |=5,x =4,y =-3, ∴sin α=y r =-35,cos α=x r =45, ∴2sin α+cos α=2×⎝ ⎛⎭⎪⎫-35+45=-25.(2)∵α终边过点P (4a ,-3a )(a ≠0), ∴r =|OP |=5|a |,x =4a ,y =-3a . 当a >0时,r =5a ,sin α=y r =-35, cos α=x r =45, ∴2sin α+cos α=-25;当a <0时,r =-5a ,∴sin α=y r =35, cos α=x r =-45, ∴2sin α+cos α=25.综上,2sin α+cos α=-25或25. (3)当点P 在第一象限时,sin α=35, cos α=45,2sin α+cos α=2; 当点P 在第二象限时,sin α=35, cos α=-45,2sin α+cos α=25;当点P 在第三象限时,sin α=-35, cos α=-45,2sin α+cos α=-2; 当点P 在第四象限时,sin α=-35, cos α=45,2sin α+cos α=-25.27.是否存在角α,β,α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.[解] 假设存在角α,β满足条件,则{sin α=2sin β, ①3cos α=2cos β, ② 由①2+②2得sin 2α+3cos 2α=2. ∴cos 2α=12, ∴cos α=22.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4.当α=π4时,代入②得:cos β=32, ∵0<β<π,∴β=π6,代入①可知成立; 当α=-π4时,代入②得cos β=32,∵0<β<π,∴β=π6,此时代入①式不成立,故舍去. ∴存在α=π4,β=π6满足条件.28.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1. (1)求函数f (x )的最大值,并求取得最大值时x 的值; (2)求函数f (x )的单调递增区间.[解] (1)当2x +π3=2k π+π2,则x =k π+π12(k ∈Z )时,f (x )max =3. (2)当2k π-π2≤2x +π3≤2k π+π2,即k π-5π12≤x ≤k π+π12时,函数f (x )为增函数.故函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ). 29.如图是函数y =A sin(ωx +φ)+k (A >0,ω>0,|φ|<π2)的一段图象.(1)求此函数解析式;(2)分析一下该函数是如何通过y =sin x 变换得来的? [解] (1)由图象知A =-12-⎝ ⎛⎭⎪⎫-322=12,k =-12+⎝ ⎛⎭⎪⎫-322=-1,T =2×⎝ ⎛⎭⎪⎫2π3-π6=π,∴ω=2πT =2.∴y =12sin(2x +φ)-1. 当x =π6,2×π6+φ=π2,∴φ=π6. ∴所求函数解析式为y =12sin ⎝ ⎛⎭⎪⎫2x +π6-1.(2)把y =sin x 向左平移π6个单位得到y =sin ⎝ ⎛⎭⎪⎫x +π6,然后纵坐标保持不变、横坐标缩短为原来的12倍,得到y =sin ⎝ ⎛⎭⎪⎫2x +π6,再横坐标保持不变,纵坐标变为原来的12倍,得到y =12sin ⎝ ⎛⎭⎪⎫2x +π6,最后把函数y =12sin ⎝ ⎛⎭⎪⎫2x +π6的图象向下平移1个单位,得到y=12sin ⎝ ⎛⎭⎪⎫2x +π6-1的图象.30.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象在y 轴上的截距为1,它在y 轴右侧的第一个最大值点和最小值点分别为(x 0,2)和(x 0+3π,-2).(1)求f (x )的解析式;(2)将f (x )的图象上的所有点的横坐标缩短到原来的13倍(纵坐标不变),然后再将所得的图象向右平移π3个单位,得到函数g (x )的图象,写出函数g (x )的解析式,并用五点作图的方法画出g (x )在长度为一个周期的闭区间上的图象.[解] (1)由f (x )=A sin(ωx +φ)在y 轴上的截距为1,最大值为2,得1=2sin φ,所以sin φ=12.又|φ|<π2,所以φ=π6.由题意易知T =2[(x 0+3π)-x 0]=6π, 所以ω=2πT =13, 所以f (x )=2sin ⎝ ⎛⎭⎪⎫x 3+π6.(2)将f (x )的图象上的所有点的横坐标缩短到原来的13倍(纵坐标不变),得到y =2sin ⎝ ⎛⎭⎪⎫x +π6的图象;再把所得图象向右平移π3个单位,得到g (x )=2sin ⎝ ⎛⎭⎪⎫x -π3+π6=2sin ⎝ ⎛⎭⎪⎫x -π6的图象.列表:。

第一章三角函数测试题(含参考答案)

第一章三角函数测试题(含参考答案)

第一章三角函数测试题第一章三角函数测试题一、选择题(本题共12小题,每小题5分,共60分) 1.sin 330°等于(等于( ))A .32- B .12- C .12D .322.已知点(tan ,cos )P a a 在第三象限,则角a 的终边在(的终边在( ))A.A.第一象限第一象限第一象限B. B.第二象限第二象限第二象限C. C. C.第三象限第三象限第三象限D. D.第四象限第四象限第四象限3.若1cos()2p a +=-,322p a p <<,则sin(2)p a -等于(等于( ))A.32- B.32C. 12D. 32±4.已知函数)2tan(j +=x y 的图象过点)0,12(p ,则j 可以是(可以是( ))A .6p-B .6pC .12p-D .12p5.把函数sin ()y x x =ÎR 的图象上所有的点向左平行移动3p 个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数(,得到的图象所表示的函数( ))A .sin 23y x x p æö=-Îç÷èøR ,B B..sin 26x y x p æö=+Îç÷èøR , C .sin 23y x x p æö=+Îç÷èøR ,D .sin 23y x x 2p æö=+Îç÷èøR , 6.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是(,则这个圆心角所对的弧长是( ))A .2B .1sin 2 C .1sin 2 D .2sin7.设0a <,角a 的终边经过点(3,4)P a a -,那么sin 2cos a a +的值等于(的值等于( ))A.25B. 25-C.15D. 15-8.下列不等式中,正确的是(.下列不等式中,正确的是( ))A .tan513tan413p p < B B..sin)7cos(5pp->C .sin(π-1)<sin1oD D..cos )52cos(57pp -<9. 9. 函数函数)62sin(p+-=x y 的单调递减区间是(的单调递减区间是( ))A .)](23,26[Z k k k Î++-p pp pB .)](265,26[Z k k k Î++p p p pC .)](3,6[Z k k k Î++-p p p p D D..)](65,6[Z k k k Î++p p p pp p)22_ .p3÷öπ)18. (18. (本小题本小题12分)已知1tan 3a =-求下列各式的值求下列各式的值. .(1)3cos 5sin sin cos a a a a +-(2)22sin 2sin cos 3cos a a a a +-19. (19. (本小题本小题12分)化简化简(1))-()+(-)++()+()-(-)++(-a a a a a a °°°°180cos cos 180tan 360tan sin 180sin(2)111(sin )(cos )(tan )sin cos tan a a a aaa--+2020..(本小题12分) 已知1sin cos 5a a +=(0a p <<)求:(1)sin cos a a(2)sin cos a a -p 2p p ùú2,33-úp p参考答案参考答案一、选择题(本题共12小题,每小题5分,共60分) BBBAC BADCD BA二、填空题(本题共4小题,每小题5分,共20分)1313..52- 14 14..}2422,33a p p a p p ì+<<+Îíî 15 15..3216 16.①③..①③.三、解答题(本大题共6小题,共70分,解答题应写出文字说明、证明过程或演算步骤分,解答题应写出文字说明、证明过程或演算步骤..)1717.. (1) (1)图略图略图略 (( 2 2))max2=,},8pp ì=+Îíî18. 18. ((1)1- ((2)165-19. 19. ((1) -1 1 ((2)1 2020.. (1) 1225- (2)7521. 21. ((1)()2sin(2)6p =+ ((2)1,3éùëû22. 22. 解:解:22()sin (cos 1)coscos1=+-=-++-,((1) 令令cos =,2,33p p éùÎ-êúëû,1[,1]2\Î- 则则2()1=-++-,对称轴为2=,当当124£,即12£时,在1=时,()有最小值为0,此时0=当当124³,即12³时,在12=-时,()有最小值为3342-,此时23p =.(2)当1=时,2()coscos =-+令cos=,2()=-+,对称轴为12=,当当12£时,5[2,2]3p p p p Î++(Î),此时cos=单调递增,所以单调递增,所以()单调递增;单调递增;当当12³时,[2,2]3p p p Î+(Î),此时cos=单调递减,所以单调递减,所以()单调递增单调递增. .。

高中数学 第一章 三角函数练习(无答案)新人教A版必修4(2021年整理)

高中数学 第一章 三角函数练习(无答案)新人教A版必修4(2021年整理)

【课堂练习】
1.比较4o与4rad角的大小
2.若两个角的差为1弧度,它们的和为1°,则这两个角的大小分别为___________.
003§1。2.1 任意角的三角函数(一)
【典型例题】
例1.已知角α的终边过点(2a,-3a)(a≠0),求sina、cosa、tana的值.
变式:已知角 终边上一点 ,且 ,求cosa的值.
第一章 三角函数
§1。1.1任意角
【典型例题】
例1.写出与下列各角终边相同的角的集合S,并把S中适合不等式—3600≤β<7200的元素β写出来:
(1)60°;(2)—21°;(3)-843o10′
变式:在0°到360°范围内, 找出与-2046°24′角终边相同的角, 并判断它是第几象限的角?
例2.若 是第二象限角,则 , 分别是第几象限的角?
【课堂练习】
1.证明:函数 的一个周期为 .
2.已知函数f(x+2)=f(x),且xÎ[0,1]时,f(x)=2x, 求f(log26)的值.
§1.4.2 正、余弦函数的性质(二)(总第10课时)
【 典型例题】
例1.判断下列函数的奇偶性。
(1)y=sin( ); (2) .
例2.求下列函数的单调增区间
(1) ;(2)y= sin( ).
变式:求 的单调减区间.
例3.求下列函数的最值
(1)y=2sin(2x+ )(xÎ[0, ];(2)y=cos2x-4sinx+5.
【课堂练习】
1.已知函数y=sin(x+j)(0<j〈p)的图象关于y轴对称,求j的值。
2.比较sin1与sin2的大小.【提示:放在同 一个单调区间上】

三角函数专题之网格中的三角函数

三角函数专题之网格中的三角函数

三角函数专题训练--网格中的三角函数第一节:网格中的正弦和余弦1.在边长为1的正方形网格中,点A 、B 、C 、D 都在格点上,AB 与CD 相交于点O ,则∠AOD 的正弦值为()A .12B .2C D 2.如图,在2×2正方形网格中,以格点为顶点的△ABC 的面积等于32,则sin ∠CAB =()A .2B .35C .5D .3103.如图,在边长为1的小正方形网格中,点A 、B 、C 、C 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则cos AOD ∠=()A .2B .2C .3D 4.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC 等于()A B C .5D .105.如图,在边长1正网格中,A 、B 、C 都在网格线上,AB 与CD 相交于点D ,则sin ADC ∠是()A B C D 6.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC=()A .6B .26C .13D .137.如图,在45⨯的正方形网格中,每个小正方形的边长都是1,ABC 的顶点都在这些小正方形的顶点上,那么sin ACB ∠的值为().A B C .35D .458.如图,在正方形网格中,△ABC 的位置如图,其中点A 、B 、C 分别在格点上,则sinA 的值是()A B .13C D9.如图,在5×4的正方形网格中,每个小正方形的边长都是l ,△ABC 的顶点都在这些小正方形的顶点上,则cos ∠BAC 的值为()A .43B .34C .35D .4510.在正方形网格中,△ABC 的位置如图所示,则cos ∠B 的值为()A .12B .2C D .311.三角形在方格纸中的位置如图所示,则cos 的值是()A .35B C .45D 12.如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ABC 等于()AB C D .2313.如图是一个3×2的长方形网格,组成网格的小长方形长为宽的2倍,△ABC 的顶点都是网格中的格点,则cos ∠ABC 的值是()A .23B .25C .35D .4514.如图,△ABC 的顶点都在正方形网格的格点上,则cos ∠BAC 的值为()A .34B .25C .35D .4515.如图,在下列网格中,小正方形的边长均为1,点A 、B 、O 都在格点上,则AOB ∠的正弦值是()A .10B .12C .13D .1016.如图,在正方形网格中,小正方形的边长为1,点A 、B 、C 、D 都在格点上,AB 与CD 相交于点O ,则∠AOC 的正弦值是__.17.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为_______.18.如图所示,AOB ∠是放置在正方形网格中的一个角,则sin AOB ∠的值是________.19.如图所示方格纸中每个小正方形的边长为1,其中有三个格点A 、B 、C ,则sin ∠ABC=_____.20.如图是4×4的正方形网格,点C在∠BAD的一边AD上,且A、B、C为格点,sin∠BAD的值是___________.∠=______.21.如图在边长相同的小正方形组成的网格中,点A、B、O在小正方形的顶点上,则cos OAB22.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC 的余弦值是____.23.如图,在6x6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则cos∠BAC的值是_____.24.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则cos∠AOD=___.25.如图,在4×4的正方形网格图中有△ABC,则∠ABC的余弦值为_____.26.如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是_____.27.如图,在5×5的正方形网格中,每个小正方形的边长均为1,点A、B、C都在格点上,则cos∠BAC 的值为_____.的顶点都在小正方形的格点上,28.如图,在44⨯的正方形网格(每个小正方形的边长都是1)中,ABC∠=_______.则sin ACB29.如图,每个小正方形的边长都是1,点A,B,C都在小正方形的顶点上,则∠ABC的正弦值为____.第二节:网格中的正切1.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为()A .2BC .3D2.如图,将△ABC 放在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上,则tan C 的值是()A .2B .43C .1D .343.如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,则tan ∠BAC 的值为()A .12B .1C .3D 4.如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是()A .12B .1CD .25.如图,ABC 的顶点在正方形网格的格点处,则tan C 的值为()A .12B .13C .2D .16.如图,将 ABC 放在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上,则∠A 的正切值是()A B C .2D .127.如图,在54⨯的正方形网格中,每个小正方形的边长都是1,ABC 的顶点都在这些小正方形的顶点上,则tan BAC ∠的值为()A .43B .34C .35D .458.如图,A ,B ,C ,三点在正方形网格线的交点处,若将ABC 绕着点A 逆时针旋转得到AC B ''△,则tan B '的值为()A .12B .13C .14D .49.如图所示,ABC ∆的顶点在正方形网格的格点上,则tan A 的值为()A .12B .2C .2D .10.在图网格中,小正方形的边长为1,点A 、B 、C 、D 都在格点上,AB 与CD 相交于点O ,则∠AOC 的正切值是()A .23B .32C .35D .5311.如图,在方格纸中,点A ,B ,C 都在格点上,则tan ∠ABC 的值是()A .2B .12C D 12.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan ∠ABC 的值为()A .35B .34C .5D .113.如图,∠AOB 是放置在正方形网格中的一个角,则tan ∠AOB ()A .3B C .1D .2514.∠BAC 放在正方形网格纸的位置如图,则tan ∠BAC 的值为()A .16B .15C .13D .1215.如图,在55 的正方形网格中,每个小正方形的边长均为1,ABC 的顶点均在格点(网格线的交点)上,则tan B 的值为______.16.如图,点A ,B ,C ,D 在正方形网格的格点上,连接AB 、CD 交于点P ,则tan ∠APC =________________.17.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为_____.18.如图,在5×4的正方形网格中,每个小正方形的边长都是1,ABC 的顶点都在这些小正方形的顶点上,则tan ABC ∠的值为_______.19.如图,在边长为1的正方形网格中,连接格点A ,B 和C ,D ,AB 与CD 相交于点E ,则tan AEC ∠=___.20.如图,在4×5的正方形网格中点A ,B ,C 都在格点上,则tan ∠ABC =_____.21.如图,把n 个边长为1的正方形拼接成一排,求得tan 1BA C ∠=1,tan 2BA C ∠=13,31tan 7BA C ∠=,计算4tan BA C ∠=_________________.22.如图,将BAC ∠放置在55⨯的正方形网格中,如果顶点A 、B 、C 均在格点上,那么BAC ∠的正切值为______.23.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 都在这些小正方形的顶点上,则tan ∠ABC 的值为_____.24.如图,在Rt △ABC 纸片上可按如图所示方式剪出一正方体表面展开图,直角三角形的两直角边与正方体展开图左下角正方形的边共线,斜边恰好经过两个正方形的顶点,已知BC =24cm ,则这个展开图可折成的正方体的体积为_____cm 3.25.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan C =__.26.如图,在正方形网格中,三角形ABC 的三个顶点都在网格中的格点上,则tan ∠B 的值为_____.27.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,线段AB 、CD ,相交于点P ,则tan APD ∠的值是__________.28.如图,在边长都为1的小正方形组成的网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点P ,则tan ∠APD 的值是____________.29.如图,把n 个边长为1的正方形拼接成一排,求得1tan 1BA C ∠=,21tan 3BA C ∠=,31tan 7BA C ∠=,计算4tan BA C ∠=__________,……按此规律,写出tan n BA C ∠=__________(用含n 的代数式表示).。

高中数学 第一章 三角函数测试题(含解析)新人教A版必修4(2021年整理)

高中数学第一章三角函数测试题(含解析)新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数测试题(含解析)新人教A版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数测试题(含解析)新人教A版必修4的全部内容。

第一章三角函数 测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的。

)1.若cos θ>0,且tan θ<0,则角θ的终边所在象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限2.如果α的终边过点P(2sin 6π,—2cos 6π),则sin α的值等于( ) A .12B .12-C .3-D .3-3。

已知角3π的终边上有一点P (1,a ),则a 的值是 ( ) A .3- B .3± C .33D .34. 已知1sin 1cos 2αα+=-,则cos sin 1αα-的值是 ( )A .12B .12- C .2 D .-25。

函数y=sin (2x +π)是 ( ) A .周期为π的奇函数B .周期为π的偶函数C .周期为2π的奇函数D .周期为2π的偶函数6.由函数y=sin2x 的图象得到函数y=sin (2x +3π)的图象,所经过的变换是( ) A .向左平移3π个单位 B .向右平移3π个单位C .向左平移6π个单位D .向右平移6π个单位7。

给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角; ③不论用角度制还是用弧度制度量一个角,它们与扇形所在圆的半径的大小无关; ④若sin sin αβ=,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角.其中正确..命题的个数是 ( )A .1B .2C .3D .48.如图1所示,为研究钟表与三角函数的关系,建立如图1所示的坐标系,设秒针针尖位置P (x ,y )。

第一章三角函数测试题 (含详细答案)

必修四第一章三角函数单元测试 一、选择题1.设A ={小于90°的角},B ={第一象限的角},则A ∩B 等于( ). A .{锐角}B .{小于90° 的角}C .{第一象限的角}D .{α|k ·360°<α<k ·360°+90°(k ∈Z ,k ≤0)} 2.终边在直线y =-x 上的角的集合是( ). A .{α|α=45°+k ·180°(k ∈Z )} B .{α|α=135°+k ·180°(k ∈Z )} C .{α|α=45°+k ·360°(k ∈Z )}D .{α|α=-45°+k ·360°(k ∈Z )}3. 已知sin α=54,α∈(0,π),则tan α等于( ). A .34B .43 C .34±D .43±4.已知角 α 的终边经过点P (4,-3),则2sin α+cos α的值等于( ). A .-53 B .54 C .52 D .-52 5.已知sin α=-22,2π<α<23π,则角 α 等于( ). A .3πB .32πC .34πD .45π6.已知tan 14°≈41,则tan 7°约等于( ). A .17+4B .17-4C .17+2D .17-27.α是三角形的内角,则函数y =cos 2α-3cos α+6的最值情况是( ). A .既有最大值,又有最小值 B .既有最大值10,又有最小值831 C .只有最大值10 D .只有最小值831 8.若f (x )sin x 是周期为π的奇函数,则f (x )可以是( ). A .sin xB .cos xC .sin 2xD .cos 2x9.设4π<α<2π,sin α=a ,cos α=b ,tan α=c 则a ,b ,c 的大小关系为( ). A .a <b <cB .a >b >cC .b >a >cD .b <a <c10.已知sin α>sin β,那么下列命题成立的是( ). A .若α,β是第一象限角,则cos α>cos β B .若α,β是第二象限角,则tan α>tan β C .若α,β是第三象限角,则cos α>cos β D .若α,β是第四象限角,则tan α>tan β 二、填空题11.已知扇形的半径是1,周长为π,则扇形的面积是 . 12.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4}, 求A ∩B = .13.已知点P (tan α,cos α)在第三象限,则角 α 的终边在第 象限. 14.已知cos (π+α)=-53,sin αcos α<0,则sin (α-7π)的值为 . 15.函数y =x sin log 21的定义域是 .16.函数y =a +b sin x 的最大值是23,最小值是-21,则a = ,b = . 三、解答题17.设 α 是第二象限的角,sin α=53,求sin (637π-2α)的值.18.求下列函数的周期: (1)y =cos 2(πx +2),x ∈R ; (2)y =cos 4x -sin 4x ,x ∈R ; (3)y =sin x ·cos x +3cos 2x -23,x ∈R .19.已知x ∈[-3π,4π],f (x )=tan 2x +2tan x +2,求f (x )的最大值和最小值,并求出相应的x 值.20.求函数y =1tan tan 1tan tan 22+++-x x x x 的值域.第一章 三角函数参考答案一、选择题 1.D解析:A 集合中包含小于90°的正角,还有零角和负角,而B 集合表示终边落在第一象限的角.二者的交集不是A ,B ,C 三个选项.2.B解析:先在0°~360°内找终边在直线y =-x 上的角分别为135°或315°,所以终边在直线y =-x 上的所有角为k ·360°+135°,或k ·360°+315°,k ∈Z .k ·360°+135°=2k ·180°+135°,k ·360°+315°=(2k +1)180°+135°,由此得答案为B . 3.C解析:∵sin α=54,α∈(0,π),∴cos α=±53,∴tan α=±34. 4.D解析:∵r =22)3(4-+=5,∴sin α=ry =-53,cos α=r x =54.∴2sin α+cos α=2×(-53)+54=-52. 5.D 解析:∵sin 45π=sin (π+4π)=-sin 4π=-22,且2π<45π<23π,∴α=45π. 6.B解析:设tan 7°=x ,则tan 14°=2-12xx ≈41. 解得x ≈-4±17(负值舍去), ∴x ≈17-4. 7.D解析:∵y =cos 2α-3cos α+6=2cos 2α-3cos α+5=2(cos α-43)2+831,又 α 是三角形的内角,∴-1<cos α<1. 当cos α=43时,y 有最小值831.8.B解析:取f (x )=cos x ,则f (x )·sin x =21sin 2x 为奇函数,且T =π. 9.D解析:在单位圆中做出角 α 的正弦线、余弦线、正切线得b <a <c . 10.D解析:若α,β是第四象限角,且sin α>sin β,如图,利用单位圆中的三角函数线确定α,β的终边,故选D .二、填空题 11.答案:12-π. 12.答案:A ∩B ={α|-4≤α≤-π 或0≤α≤π }.解析:在集合A 中取k =…,-1,0,1,…得到无穷个区间…,[-2π,-π],[0,π],[2π,3π],…将这些区间和集合B 所表示的区间在数轴上表示如图:由图可知A ∩B ={α|-4≤α≤-π 或0≤α≤π }. 13.答案:二.解析:因为点P (tan α,cos α)在第三象限,因此有⎩⎨⎧ ,tan α<0⇒α在二、四象限,cos α<0⇒α在二、三象限(包括x 轴负半轴),所以 α 为第二象限角.即角 α 的终边在第二象限.14.答案:54. 解析:∵cos (π+α)=-cos α=-53,∴cos α=53. 又∵sin αcos α<0,∴sin α<0,α为第四象限角,∴sin α=-54=-cos 12α-,∴sin (α-7π)=sin (α+π-8π)=sin (π+α)=-sin α=54. 15.答案:(2k π,2k π+π)(k ∈Z ).解析:由x sin log 21≥0,得0<sin x ≤1,∴2k π<x <2k π+π(k ∈Z ).tan α<0cos α<0(第12题)(第10题`)16.答案:21,±1. 解析:当b >0时,得方程组⎪⎩⎪⎨⎧21=--23=+b a b a 解得⎪⎩⎪⎨⎧1=21=b a 当b <0时,得方程组⎪⎩⎪⎨⎧21=-+23=-b a b a 解得⎪⎩⎪⎨⎧1=-21=b a 三、解答题 17.答案:32512+507. 解:∵sin α=53,α是第二象限角, ∴cos α=-54,sin 2α=2sin αcos α=-2524, ∴cos 2α=1-2sin 2α=257, 故sin (637π-2α)=sin (6π-2 α)=21×257-23(-2524)=32512507+.18.答案:(1)1;(2)π;(3)π. 解:(1)y =cos 2(πx +2)=21[1+cos (2πx +4)] =21cos (2πx +4)+21. ∴T =ππ22=1. (2)y =cos 4x -sin 4x=(cos 2x +sin 2x )(cos 2x -sin 2x ) =cos 2x -sin 2x =cos 2x . ∴T =22π=π. (3)y =sin x ·cos x +3cos 2x -23 =21sin 2x +3·22cos +1x-23=21sin 2x +23cos 2x=sin (2x +3π).∴T =22π=π. 19.答案:x =-4π时y min =1,x =4π时y max =5.解析:f (x )=tan 2x +2tan x +2=(tan x +1)2+1.∵x ∈[-3π,4π],∴tan x ∈[-3,1]. ∴当tan x =-1,即x =-4π时,y 有最小值,y min =1;当tan x =1,即x =4π时,y 有最大值,y max =5.20.答案: [31,3].解析:将原函数去分母并整理得(y -1)tan 2x +(y +1)tan x +y -1=0. 当y ≠1时,∵tan x ∈R ,∴方程是关于tan x 的一元二次方程,有实根. ∴判别式△=(y +1)2-4(y -1)2≥0, 即3y 2-10y +3≤0.解之31≤y ≤3.而tan x =0时,y =1,故函数的值域为[31,3].。

三角函数第一章第一节练习题

解答题(共16小题)1.(1)设90°<α<180°,角α的终边上一点为P(x ,),且cosα=x,求sinα与tanα的值;(2)已知角θ的终边上有一点P(x,﹣1)(x≠0),且tanθ=﹣x,求sinθ,cosθ.2.已知角α=45°;(1)在区间[﹣720°,0°]内找出所有与角α有相同终边的角β;(2)集合,,那么两集合的关系是什3.填写下表4.已知α=.(1)写出所有与α终边相同的角;(2)写出在(﹣4π,2π)内与α终边相同的角;(3)若角β与α终边相同,则是第几象限的角?5.(2006•上海)已知α是第一象限的角,且,求的值.6.(2005•黑龙江)已知α为第二象限的角,,β为第一象限的角,.求tan(2α﹣β)的值.7.(难)已知sin=,cos=﹣,试确定θ的象限.8.把下列各角的弧度化为角度或把角度化为弧度:(1)﹣135°(2).9.已知AB=2a,在以AB为直径的半圆上有一点C,设AB中点为O,∠AOC=60°.(1)在上取一点P,若∠BOP=2θ,把PA+PB+PC表示成θ的函数;(2)设f(θ)=PA+PB+PC,当θ为何值时f(θ)有最大值,最大值是多少?10.(2008•上海)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,小区的两个出入口设置在点A及点C 处,且小区里有一条平行于BO的小路CD,已知某人从C沿CD走到D用了10分钟,从D沿DA走到A用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径OA的长(精确到1米)11.如图所示动点P、Q从点A(4,0)出发沿圆周运动,点P按逆时针方向每秒钟转弧度,点Q按顺时针方向每秒钟转弧度,求P、Q第一次相遇时所用的时间、相遇点的坐标P、Q点各自走过的弧长.12.如果把地球看成一个球体,求地球上北纬60°纬线长和赤道线长的比值.13.一个水平放着的圆柱形水管,内半径是12cm,排水管的圆截面上被水淹没部分的弧含150°(如图),求这个截面上有水部分的面积(取π=3.14).14.已知一扇形的中心角是α,所在圆的半径是R.(1)若α=60°,R=10 cm,求扇形的弧所在的弓形面积;(2)若扇形的周长是一定值c(c>0),当α为多少弧度时,该扇形有最大面积?15.已知扇形的周长是8,(1)若圆心角α=2,求弧长l(注)(2)若弧长为6,求扇形的面积S.16.(2011•福建)设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(I)若点P的坐标为,求f(θ)的值;(II)若点P(x,y)为平面区域Ω:,上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.参考答案与试题解析一.解答题(共16小题)1.(1)设90°<α<180°,角α的终边上一点为P(x,),且cosα=x,求sinα与tanα的值;(2)已知角θ的终边上有一点P(x,﹣1)(x≠0),且tanθ=﹣x,求sinθ,cosθ.r=x=±﹣r=2==﹣,﹣﹣2.已知角α=45°;(1)在区间[﹣720°,0°]内找出所有与角α有相同终边的角β;(2)集合,,那么两集合的关系是什么?3.填写下表4.已知α=.(1)写出所有与α终边相同的角;(2)写出在(﹣4π,2π)内与α终边相同的角;(3)若角β与α终边相同,则是第几象限的角?<((,即可判断,<﹣终边相同的角是﹣、﹣、,则=k(为偶数时,在第三象限.5.(2006•上海)已知α是第一象限的角,且,求的值.=,.6.(2005•黑龙江)已知α为第二象限的角,,β为第一象限的角,.求tan(2α﹣β)的值.,∴﹣﹣﹣,∴,7.(难)已知sin=,cos=﹣,试确定θ的象限.sin=cos﹣sin=cos﹣=2sin•cos=<2﹣2=8.把下列各角的弧度化为角度或把角度化为弧度:(1)﹣135°(2).×=×;9.已知AB=2a,在以AB为直径的半圆上有一点C,设AB中点为O,∠AOC=60°.(1)在上取一点P,若∠BOP=2θ,把PA+PB+PC表示成θ的函数;(2)设f(θ)=PA+PB+PC,当θ为何值时f(θ)有最大值,最大值是多少?=2acosPB=PC=cos﹣2+)sin cos,=arcsin arcsin2a10.(2008•上海)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,小区的两个出入口设置在点A及点C 处,且小区里有一条平行于BO的小路CD,已知某人从C沿CD走到D用了10分钟,从D沿DA走到A用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径OA的长(精确到1米).分).,11.如图所示动点P、Q从点A(4,0)出发沿圆周运动,点P按逆时针方向每秒钟转弧度,点Q按顺时针方向每秒钟转弧度,求P、Q第一次相遇时所用的时间、相遇点的坐标P、Q点各自走过的弧长.•|=2点已运动到终边在•的位置,cos•sin.点走过的弧长为π点走过的弧长为π•π12.如果把地球看成一个球体,求地球上北纬60°纬线长和赤道线长的比值.R,那么它们对应的长度之比为R=13.一个水平放着的圆柱形水管,内半径是12cm,排水管的圆截面上被水淹没部分的弧含150°(如图),求这个截面上有水部分的面积(取π=3.14).=14.已知一扇形的中心角是α,所在圆的半径是R.(1)若α=60°,R=10 cm,求扇形的弧所在的弓形面积;(2)若扇形的周长是一定值c(c>0),当α为多少弧度时,该扇形有最大面积?,l=π××﹣)R=α•=(α•≤.,即舍去)时,扇形面积有最大值R=Rl=••l=(﹣l===2弧度时,扇形面积有最大值15.已知扇形的周长是8,(1)若圆心角α=2,求弧长l(注)(2)若弧长为6,求扇形的面积S.,求出扇形的弧长.S=16.(2011•福建)设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(I)若点P的坐标为,求f(θ)的值;(II)若点P(x,y)为平面区域Ω:,上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.,我们将点的坐标)画出满足约束条件=2≤θ≤,即。

三角函数第一二节知识点及练习题含答案

三角函数知识点1.①与α ( 0o < a < 360° )终边一样的角的集合(角 {夕 ∣∕ = Aχ360°+αM ∈z}②终边在X 轴上的角的集合:M∕ = -180°M∈Z } ③终边在y 轴上的角的集合:{夕∕ = "180°+90F ∈z} ④终边在坐标轴上的角的集合:∖β∖β = k×90∖kez} ⑤终边在尸轴上的角的集合:物IP = ZXI800+45°∕ ∈z} ⑥终边在y = -x 轴上的角的集合:MIP = AXI800-45Fez}⑦假设角α与角夕的终边关于X 轴对称,那么角α与角耳的关系:α = 360*-夕 ⑧假设角α与角夕的终边关于y 轴对称,那么角α与角力的关系:α = 3602 + 180°-夕 ⑨假设角α与角夕的终边在一条直线上,那么角α与角夕的关系:α = 180Z +/⑩角。

与角夕的终边互相垂直,那么角α与角〃的关系:α = 360Z +尸土90° 2.角度与弧度的互换关系:360O=2Λ- 180O=Λ- 1O=0.01745 1=57.30O=57O18,注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.弧度与角度互换公式:Irad=竺2°=57° 18' I 0 =,_»0.01745 (rad)π1803、弧长公式:/=|a1r. 扇形面积公式:S 扇形=g∕r = ;IaI •产4、三角函数:设a 是一个任意角,在α的终边上任取(异于原点的)一点P (x, y ) P 与原点的距离为r,那么sina= ~ » CoSa = Mtana =2; cota=-irrXyr ∙ r SeCa =―,・ csca = •X y5、三角函数在各象限的符号:(一全二正弦,三切四余弦)6、三角函数线正弦线:MP;余弦线:OM; 正切线:AT.7.三角函数的定义域:a 与角力的终边重合): SMCoS1.角函数俵大小关系图1、2、3、4表示第一、二、三、四象限•半所在区域8、同角三角函数的根本关系式:包3 = tanα* CoSa SinaIana COta = I CSCa sina = I seca∙cosa = Isin2 a+ cos2a = 1 sec2 a-tan2a -1 csc2 a-cot2a = I任意角1.以下命题中正确的选项是()A.终边在y轴非负半轴上的角是直角B.第二象限角一定是钝角C.第四象限角一定是负角S=a +左∙360° ( λr∈Z),那么a与f终边一样2.终边落在X轴上的角的集合是( )A. { a I a =k ∙ 360° ,K∈Z }B. { a ∣ a=(2k+l)・ 180° ,K∈Z )C. { a I a =k ∙ 180° , K∈Z }D. { a ∣a =k ∙ 180o +90o , K∈Z }3.角a =45°+ k∙ 180o , A ∈ Z 的终边落在( )A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限4.设A = {小于90"的角}, 5 = {锐角},C={第一象限的角},。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解答题(共16小题)
1.(1)设90°<α<180°,角α的终边上一点为P(x ,),且cosα=x,求sinα与tanα的值;
(2)已知角θ的终边上有一点P(x,﹣1)(x≠0),且tanθ=﹣x,求sinθ,cosθ.
2.已知角α=45°;
(1)在区间[﹣720°,0°]内找出所有与角α有相同终边的角β;
(2)集合,,那么两集合的关系是什
3.填写下表
4.已知α=.
(1)写出所有与α终边相同的角;
(2)写出在(﹣4π,2π)内与α终边相同的角;(3)若角β与α终边相同,则是第几象限的角?
5.(2006•上海)已知α是第一象限的角,且,求的值.
6.(2005•黑龙江)已知α为第二象限的角,,β为第一象限的角,.求tan(2α﹣β)的值.
7.(难)已知sin=,cos=﹣,试确定θ的象限.
8.把下列各角的弧度化为角度或把角度化为弧度:(1)﹣135°(2).
9.已知AB=2a,在以AB为直径的半圆上有一点C,设AB中点为O,∠AOC=60°.(1)在上取一点P,若∠BOP=2θ,把PA+PB+PC表示成θ的函数;
(2)设f(θ)=PA+PB+PC,当θ为何值时f(θ)有最大值,最大值是多少?
10.(2008•上海)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,小区的两个出入口设置在点A及点C 处,且小区里有一条平行于BO的小路CD,已知某人从C沿CD走到D用了10分钟,从D沿DA走到A用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径OA的长(精确到1米)
11.如图所示动点P、Q从点A(4,0)出发沿圆周运动,点P按逆时针方向每秒钟转弧度,点Q按顺时针方向
每秒钟转弧度,求P、Q第一次相遇时所用的时间、相遇点的坐标P、Q点各自走过的弧长.
12.如果把地球看成一个球体,求地球上北纬60°纬线长和赤道线长的比值.
13.一个水平放着的圆柱形水管,内半径是12cm,排水管的圆截面上被水淹没部分的弧含150°(如图),求这个截面上有水部分的面积(取π=3.14).
14.已知一扇形的中心角是α,所在圆的半径是R.
(1)若α=60°,R=10 cm,求扇形的弧所在的弓形面积;
(2)若扇形的周长是一定值c(c>0),当α为多少弧度时,该扇形有最大面积?
15.已知扇形的周长是8,
(1)若圆心角α=2,求弧长l(注)
(2)若弧长为6,求扇形的面积S.
16.(2011•福建)设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(I)若点P的坐标为,求f(θ)的值;
(II)若点P(x,y)为平面区域Ω:,上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.
参考答案与试题解析
一.解答题(共16小题)
1.(1)设90°<α<180°,角α的终边上一点为P(x,),且cosα=x,求sinα与tanα的值;
(2)已知角θ的终边上有一点P(x,﹣1)(x≠0),且tanθ=﹣x,求sinθ,cosθ.
r=
x=±

r=2=
=


﹣﹣
2.已知角α=45°;
(1)在区间[﹣720°,0°]内找出所有与角α有相同终边的角β;
(2)集合,,那么两集合的关系是什么?
3.填写下表
4.已知α=.
(1)写出所有与α终边相同的角;
(2)写出在(﹣4π,2π)内与α终边相同的角;
(3)若角β与α终边相同,则是第几象限的角?

((,即可判断

<﹣
终边相同的角是﹣、﹣、
,则=k(为偶数时,
在第三象限.
5.(2006•上海)已知α是第一象限的角,且,求的值.
=


6.(2005•黑龙江)已知α为第二象限的角,,β为第一象限的角,.求tan(2α﹣β)的值.
,∴﹣﹣﹣
,∴,
7.(难)已知sin=,cos=﹣,试确定θ的象限.
sin=cos﹣
sin=cos﹣
=2sin•cos=<
2﹣2=
8.把下列各角的弧度化为角度或把角度化为弧度:(1)﹣135°(2).
×=
×

9.已知AB=2a,在以AB为直径的半圆上有一点C,设AB中点为O,∠AOC=60°.
(1)在上取一点P,若∠BOP=2θ,把PA+PB+PC表示成θ的函数;
(2)设f(θ)=PA+PB+PC,当θ为何值时f(θ)有最大值,最大值是多少?
=2acos
PB=
PC=
cos﹣
2+
)sin cos

=arcsin arcsin
2a
10.(2008•上海)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,小区的两个出入口设置在点A及点C 处,且小区里有一条平行于BO的小路CD,已知某人从C沿CD走到D用了10分钟,从D沿DA走到A用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径OA的长(精确到1米)

分).

11.如图所示动点P、Q从点A(4,0)出发沿圆周运动,点P按逆时针方向每秒钟转弧度,点Q按顺时针方向每秒钟转弧度,求P、Q第一次相遇时所用的时间、相遇点的坐标P、Q点各自走过的弧长.
•|=2
点已运动到终边在•的位置,
cos•
sin.
点走过的弧长为π
点走过的弧长为π•π
12.如果把地球看成一个球体,求地球上北纬60°纬线长和赤道线长的比值.
R,那么它们对应的长度之比为R=
13.一个水平放着的圆柱形水管,内半径是12cm,排水管的圆截面上被水淹没部分的弧含150°(如图),求这个截面上有水部分的面积(取π=3.14).
=
14.已知一扇形的中心角是α,所在圆的半径是R.
(1)若α=60°,R=10 cm,求扇形的弧所在的弓形面积;
(2)若扇形的周长是一定值c(c>0),当α为多少弧度时,该扇形有最大面积?
,l=π
××
﹣)
R=
α•=(α•
≤.
,即舍去)时,扇形面积有最大值
R=
Rl=••l=
(﹣
l===2
弧度时,扇形面积有最大值
15.已知扇形的周长是8,
(1)若圆心角α=2,求弧长l(注)
(2)若弧长为6,求扇形的面积S.
,求出扇形的弧长.
S=
16.(2011•福建)设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(I)若点P的坐标为,求f(θ)的值;
(II)若点P(x,y)为平面区域Ω:,上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.
,我们将点的坐标
)画出满足约束条件
=2
≤θ≤
,即。

相关文档
最新文档