三角函数知识点总结与同步练习题
最新初三锐角三角函数知识点总结、典型例题、练习(精选)

三角函数专项复习锐角三角函数知识点总结1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
222c b a =+2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):定 义表达式取值范围关 系正弦 斜边的对边A A ∠=sin c aA =sin 1sin 0<<A (∠A 为锐角)B A cos sin =B A sin cos =1cos sin 22=+A A余弦 斜边的邻边A A ∠=cos c bA =cos 1cos 0<<A (∠A 为锐角) 正切 的邻边的对边A tan ∠∠=A A b aA =tan 0tan >A (∠A 为锐角)3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 三角函数 0° 30°45°60°90° αsin 0 21 22 23 1 αcos1 23 2221 0 αtan33 1 3-5、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
6、正切的增减性:当0°<α<90°时,tan α随α的增大而增大,7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法) )90cos(sin A A -︒=)90sin(cos A A -︒=BA cos sin =BA sin cos =A90B 90∠-︒=∠︒=∠+∠得由B A对边邻边斜边 ACBba c8、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
三角函数知识点及典型例题

三角函数知识点及典型例题三角函数知识点及典型例题§1.1.1、任意角1、正角、负角、零角、象限角的概念.2、与角α终边相同的角的集合:{}|360,S k k Z ββα==+?∈.§1.1.2、弧度制1、把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 rl =α.3、弧长公式: R4、扇形面积公式: S=21 lr=21αr 2.§1.2.1、任意角的三角函数1、设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin . 2、设点()00,y x A 为角α终边上任意一点,那么:(设2020y x r +=)_______sin r y =α,________cos rx=α,_____tan x y =α.3、αsin ,αcos ,αtan 在四个象限的符号一正二正弦三切四余和三角函数线的画法. 4、诱导公式一:()()()_tan _2tan _cos _2cos _sin _2sin απααπααπα=+=+=+kk k (Z k ∈)5、特殊角0°,30°,45°,60°,90°,180°,270°的三角函数值. §1.2.2、同角三角函数的基本关系式1、平方关系:22sin cos 1αα+=.2、商数关系:sin tan cos ααα=. §1.3、三角函数的诱导公式1、诱导公式二:()()()._tan _tan _,cos _cos _,sin _sin ααπααπααπ=+-=+-=+2、诱导公式三:()()()._tan _tan _____,cos _cos _,sin _sin αααααα-=-=--=-3、诱导公式四:()()()._tan _tan _,cos _cos _,sin _sin ααπααπααπ-=--=-=-4、诱导公式五:._sin _2cos _,cos _2sin ααπααπ=??-=-5、诱导公式六:._sin _2cos _,cos _2sin ααπααπ-=??+=+ §1.4.1、正弦、余弦函数的图象1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图.§1.4.2、正弦、余弦函数的性质1、周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()x f T x f =+,那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.§1.4.3、正切函数的图象与性质 1、记住正切函数的图象:2、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性. §1.5、函数()?ω+=x A y sin 的图象1、能够讲出函数x y sin =的图象和函数()b x A y ++=?ωsin 的图象之间的平移伸缩变换关系.2、对于函数:()()0,0sin >>++=ω?ωA b x A y 有:振幅A ,周期ωπ2=T ,初相?,相位?ω+x ,频率πω21==f .第三章、三角恒等变换两角和与差的正弦、余弦、正切公式cos()cos cos sin sin αβαβαβ-=+cos()cos cos sin sin αβαβαβ+=-sin()αβ+=sin cos cos sin αβαβ+sin()sin cos cos sin αβαβαβ-=-tan()αβ-tan tan 1tan tan αβαβ-=+ . tan()αβ+tan tan 1tan tan αβαβ+=-二倍角的正弦、余弦、正切公式1、_cos sin 2_2sin ααα=,变形:cos α=ααsin 22sin .2、22cos2cossin ααα=-22cos 1α=-212sin α=-变形1:21cos 2cos 2αα+=,变形2:21cos 2sin 2αα-=. 3、22tan tan 21tan ααα=- 1、注意正切化弦、平方降次. 解三角形 1、正弦定理R CcB b A a 2sin sin sin === 2、余弦定理a A bc c b cos 222-+=变形 cosA=bca cb 2222-+b B ac c a cos 2222-+=变形 cosB=acb c a 2222-+c C ab b a cos 2222-+=变形cosC=abc b a 2222-+3、三角形面积公式: S =21absinC=21bcsinA=21acsinB 课本题(必修4)1.(P 11 习题13)若扇形的周长为定值l ,则该扇形的圆心角为多大时,扇形的面积最大?22.(P 23 练习4)已知sin (4π-x )=-51,且0<x<="">623.( P 24 习题9(2))设tan α=-21,计算αααα22cos 2cos sin sin 1--。
初中三角函数知识点总结及典型习题共5页

初三下学期锐角三角函数知识点总结及典型习题1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
235、30°、45°、 6 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、的增减性:当0°<α<90°时,tan α随α的增大而增大,正弦定理、余弦定理【基础知识点】1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==21ca sin B ; 2.三角形中的边角不等关系: A>B ⇔a>b,a+b>c,a-b<c ;; 3.【正弦定理】:A a sin =B b sin =Ccsin =2R (外接圆直径); A 90B 90∠-︒=∠︒=∠+∠得由B A对边邻边正弦定理的变式:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2;a ∶b ∶c =sin A ∶sin B ∶sin C .4.正弦定理应用范围:①已知两角和任一边,求其他两边及一角. ②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数. 已知两边和其中一边的对角解三角形,有如下的情况: (1)A 为锐角babaabaB1BACACA BCB2a=bsin A bsin A<a<b a b ≥ 一解 两解 一解(2)A 为锐角或钝角 当a>b 时有一解. 5.【余弦定理】a 2=b 2+c 2-2bccosA .c 2=a 2+b 2-2abcosC .b 2=a 2+c 2-2accosB .若用三边表示角,余弦定理可以写为、6.余弦定理应用范围:(1)已知三角形的三条边长,可求出三个内角; (2)已知三角形的两边及夹角,可求出第三边.1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
三角函数定义知识点及例题[练习与答案]超强推荐
![三角函数定义知识点及例题[练习与答案]超强推荐](https://img.taocdn.com/s3/m/9744b63fb90d6c85ec3ac661.png)
三角函数的定义专题关键词: 三角函数的定义 终边 弧长公式 扇形面积 同角的基本关系 学习目标: 理解角的概念,掌握同角三角函数基本关系☆ 对角的概念的理解:(1)无界性 R ∈α 或 ),(+∞-∞ (2)周期性(3)终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。
(答:25-;536π-)(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ⇔()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称⇔2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称⇔2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称⇔2()k k απθπ=++∈Z .(6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Zπαπ=+∈;α终边在坐标轴上的角可表示为:,2k k Zπα=∈.如α的终边与6π的终边关于直线x y =对称,则α=____________。
(答:Zk k ∈+,32ππ)☆ 角与角的位置关系的判断 (1) 终边相同的角 (2) 对称关系的角(3) 满足一些常见关系式的两角例如:若α是第二象限角,则2α是第_____象限角 :一、三)☆ 弧长公式:||l R α=,扇形面积公式:211||22S lR R α==,1弧度(1rad)57.3≈.例如:已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。
(答:22cm )☆ 三角函数的定义:高中阶段对三角函数的定义与初中的定义从本质上讲不同。
但既有联系,又有区别。
定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y =+>,那么sin ,cos y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。
三角函数知识点总结及练习题

三角函数知识点总结及练习题高中数学必修4三角函数知识点总结一、角的概念和弧度制1.在直角坐标系内讨论角:当角的终边在坐标轴上时,这个角不属于任何象限,称为象限界角。
2.与角α终边相同的角的集合:β|β=360k+α。
k∈Z}或{β|β=2kπ+α。
k∈Z}与角α终边在同一条直线上的角的集合、与角α终边关于x轴对称的角的集合、与角α终边关于y轴对称的角的集合、与角α终边关于y=x轴对称的角的集合。
3.区间角的表示:象限角:第一象限角、第四象限角、第一、三象限角。
写出图中所表示的区间角。
4.由α的终边所在的象限,来判断α所在的象限,来判断α所在的象限,其中l为以角α为圆心角时所对圆弧的长。
5.弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。
任一角α的弧度数的绝对值|α|=απ/180.6.弧长公式、半径公式、扇形面积公式。
练:已知扇形AOB的周长是6cm,该扇形的中心角是1弧度,求该扇形的面积(2cm)。
二、任意角的三角函数1.任意角的三角函数定义:以角α的顶点为坐标原点,始边为x轴正半轴建立直角坐标系。
I。
在角α的终边上任取一个异于原点的点P(x,y),点P到原点的距离记为r,则sinα=y/r,cosα=x/r,tanα=y/x(注意r>0)。
练:已知角α的终边经过点P(5,-12),则sinα+cosα的值为-7/13.角α的终边上一点(a,-3a),则cosα+2sinα=-3a/r。
II。
作单位元交角α的终边上点P(x,y),则sinα=y,cosα=x,tanα=y/x。
2.在图中画出角α的正弦线、余弦线、正切线。
练:1)若α为锐角,则α,sinα,tanα的大小关系为sinα<α<tanα。
2)函数y=1+2cosx+lg(2sinx+3)的定义域是{x|x≤π/2 或x>π}。
3)特殊角的三角函数值:sin0=0,sinπ/6=1/2,sinπ/4=√2/2,sinπ/3=√3/2,sinπ/2=1cos0=1,cosπ/6=√3/2,cosπ/4=√2/2,cosπ/3=1/2,cosπ/2=0tan0=0,tanπ/6=1/√3,tanπ/4=1,tanπ/3=√3,tanπ/2=无穷大。
高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。
三角函数基础知识点和练习题

三角函数基础知识点和练习题三角函数一、角的定义:正角、负角、零角的概念。
二、在各象限角的集合以及在坐标轴上角的集合第一象限:000{036090360},x k x k k Z +?<<+?∈ 第二象限:0000{90360180360},x k x k k Z +?<<+?∈ 第三象限:0000{180360270360},x k x k k Z +?<<+?∈ 第四象限:0000{270360360360},x k x k k Z +?<<+?∈ X 轴:0{0180},x x k k Z =+?∈ Y 轴:00{90180},x x k k Z =+?∈三、与角α的终边相同的角的集合。
0{360},x x k k Z α=+?∈ 练习题:1、下列命题中正确的是()A 、第一象限的角一定不是负角B 、小于090的角一定是锐角C 、钝角一定是第二象限的角D 、第一象限的角一定是锐角2、找出下列各角的终边,并指出他们是第几象限的角:(1)0330 (2)0200- (3)0945 3、若α是第四象限的角,试分别确定00,180,180ααα-+-是第几象限的角。
4、已知α与0240的终边相同,判断2α是在第几象限的角? 5、已知α是第一象限的角,则判断2α是在第几象限的角答案:1、C 解析:A 、第一象限为{022},2x k x k k Z πππ+<<+∈,有正角有负角。
B 、负角也是小于090,但负角不是锐角。
C 、正确 D 、同A 2、(1)第四象限(2)第二象限(3)第三象限3、00,180,180ααα-+-分别是第一、第二、第三4、已知α与0240的终边相同,所以02402k απ=+,01202k απ=+四、弧度制和角度制(1)弧度制的概念:长度等于半径的弧长所对的圆心角叫做1弧度,记作1rad 。
(2)弧度制和角度制的互化。
三角函数第一二节知识点及练习题含答案

三角函数知识点1.①与α ( 0o < a < 360° )终边一样的角的集合(角 {夕 ∣∕ = Aχ360°+αM ∈z}②终边在X 轴上的角的集合:M∕ = -180°M∈Z } ③终边在y 轴上的角的集合:{夕∕ = "180°+90F ∈z} ④终边在坐标轴上的角的集合:∖β∖β = k×90∖kez} ⑤终边在尸轴上的角的集合:物IP = ZXI800+45°∕ ∈z} ⑥终边在y = -x 轴上的角的集合:MIP = AXI800-45Fez}⑦假设角α与角夕的终边关于X 轴对称,那么角α与角耳的关系:α = 360*-夕 ⑧假设角α与角夕的终边关于y 轴对称,那么角α与角力的关系:α = 3602 + 180°-夕 ⑨假设角α与角夕的终边在一条直线上,那么角α与角夕的关系:α = 180Z +/⑩角。
与角夕的终边互相垂直,那么角α与角〃的关系:α = 360Z +尸土90° 2.角度与弧度的互换关系:360O=2Λ- 180O=Λ- 1O=0.01745 1=57.30O=57O18,注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.弧度与角度互换公式:Irad=竺2°=57° 18' I 0 =,_»0.01745 (rad)π1803、弧长公式:/=|a1r. 扇形面积公式:S 扇形=g∕r = ;IaI •产4、三角函数:设a 是一个任意角,在α的终边上任取(异于原点的)一点P (x, y ) P 与原点的距离为r,那么sina= ~ » CoSa = Mtana =2; cota=-irrXyr ∙ r SeCa =―,・ csca = •X y5、三角函数在各象限的符号:(一全二正弦,三切四余弦)6、三角函数线正弦线:MP;余弦线:OM; 正切线:AT.7.三角函数的定义域:a 与角力的终边重合): SMCoS1.角函数俵大小关系图1、2、3、4表示第一、二、三、四象限•半所在区域8、同角三角函数的根本关系式:包3 = tanα* CoSa SinaIana COta = I CSCa sina = I seca∙cosa = Isin2 a+ cos2a = 1 sec2 a-tan2a -1 csc2 a-cot2a = I任意角1.以下命题中正确的选项是()A.终边在y轴非负半轴上的角是直角B.第二象限角一定是钝角C.第四象限角一定是负角S=a +左∙360° ( λr∈Z),那么a与f终边一样2.终边落在X轴上的角的集合是( )A. { a I a =k ∙ 360° ,K∈Z }B. { a ∣ a=(2k+l)・ 180° ,K∈Z )C. { a I a =k ∙ 180° , K∈Z }D. { a ∣a =k ∙ 180o +90o , K∈Z }3.角a =45°+ k∙ 180o , A ∈ Z 的终边落在( )A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限4.设A = {小于90"的角}, 5 = {锐角},C={第一象限的角},。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修四第一章三角函数1.1任意角与弧度制一、任意角和弧度制 1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。
注意:(1)“旋转”形成角,突出“旋转”(2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。
2、角的分类: 由于用“旋转”定义角之后,角的范围大大地扩大了。
可以将角分为正角、零角和负角。
正角:按照逆时针方向转定的角。
零角:没有发生任何旋转的角。
负角:按照顺时针方向旋转的角。
3、“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。
角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。
4、常用的角的集合表示方法 <1>、终边相同的角:(1)终边相同的角都可以表示成一个0︒到360︒的角与)(Z k k ∈个周角的和。
(2)所有与α终边相同的角连同α在内可以构成一个集合{}Z k k S ∈⋅+==,360|οαββ即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和 注意:1、Z ∈k2、α是任意角3、终边相同的角不一定相等,但相等的角的终边一定相同。
终边相同的角有无数个,它们相差360°的整数倍。
4、一般的,终边相同的角的表达形式不唯一。
<2>、终边在坐标轴上的点:终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|οββ 终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|οοββ 终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90|οββ <3>、终边共线且反向的角:终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180|οοββ 终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180|οοββ <4>、终边互相对称的角:若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k 若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk 二、弧度与弧度制 <1>、弧度与弧度制:弧度制—另一种度量角的单位制, 它的单位是rad 读作弧度定义:长度等于 的弧所对的圆心角称为1弧度的角。
如图:∠AOB=1rad ,∠AOC=2rad , 周角=2πrad 注意:1、正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是02、角α的弧度数的绝对值 rl=α(l 为弧长,r 为半径) or C 2rad1rad rl=2r oB3、用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同。
4、在同一个式子中角度、弧度不可以混用。
<2>、角度制与弧度制的换算弧度定义:对应弧长等于半径所对应的圆心角大小叫一弧度 角度与弧度的互换关系:∵ 360︒= rad 180︒= rad∴ 1︒=rad rad 01745.0180≈π'185730.571801οοο=≈⎪⎭⎫ ⎝⎛=πrad注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 三、弧长公式和扇形面积公式r l α= ; 22121r lR S α==1.2 任意角的三角函数一、三角函数定义如图,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点),(b a P ,它与原点的距离2222(y x yx r r +=+=)。
(1)比值r y 叫做α的正弦,记作αsin ,即r y=αsin ; (2)比值r x 叫做α的余弦,记作αcos ,即rx=αcos ;(3)比值y 叫做α的正切,记作αtan ,即x y=αtan ;(4)比值y x 叫做α的余切,记作αcot ,即yx =αcot ; (5)比值x r 叫做α的正割,记作αsec ,即xr=αsec ;(6)比值y r 叫做α的余割,记作αcsc ,即yr =αcsc . 二、三角函数的定义域、值域①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,六个比值不以点(,)P x y在α的终边上的位置的改变而改变大小;③当()2k k Zπαπ=+∈时,α的终边在y轴上,终边上任意一点的横坐标x都等于0,所以tanyxα=与secrxα=无意义;同理,当()k k Zαπ=∈时,xcoyyα=与cscryα=无意义;④除以上两种情况外,对于确定的值α,比值yr、xr、yx、xy、rx、ry分别是一个确定的实数,所以正弦、余弦、正切、余切、正割、余割是以角为自变量,一比值为函数值的函数,以上六种函数统称为三角函数。
三角函数的定义域、值域三.三角函数的符号由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:①正弦值yr对于第一、二象限为正(0,0y r>>),对于第三、四象限为负(0,0y r<>);②余弦值xr对于第一、四象限为正(0,0x r>>),对于第二、三象限为负(0,0x r<>);③正切值yx对于第一、三象限为正(,x y同号),对于第二、四象限为负(,x y异号).说明:若终边落在轴线上,则可用定义求出三角函数值。
ααcscsin为正全正ααcottan为正ααseccos为正四、诱导公式1、由三角函数的定义,就可知道:终边相同的角三角函数值相同。
即有:sin(2)sinkαπα+=,cos(2)coskαπα+=,其中k Z∈.tan(2)tankαπα+=,这组公式的作用是可把任意角的三角函数值问题转化为0~2π间角的三角函数值问题.2、三角函数诱导公式(2kπα+)的本质是:奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角).诱导公式的应用是求任意角的三角函数值,其一般步骤:(1)负角变正角,再写成2kπ+α,02απ≤<;(2)转化为锐角三角函数五、三角函数线的定义:设任意角α的顶点在原点O,始边与x轴非负半轴重合,终边与单位圆相交与点P(,)x y,过P作x(1,0)Aα的终边或其反向延长线交与点T.正切、余切余弦、正割正弦、余割(Ⅱ)(Ⅰ)由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====, cos 1x x x OM r α====, tan y MP AT AT x OM OA α====.我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
①三条有向线段的位置:正弦线为α的终边与单位圆的交点到x 轴的垂直线段;余弦线在x 轴上;正切线在过单位圆与x 轴正方向的交点的切线上,三条有向线段中两条在单位圆内,一条在单位圆外。
②三条有向线段的方向:正弦线由垂足指向α的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向与α的终边的交点。
③三条有向线段的正负:三条有向线段凡与x 轴或y 轴同向的为正值,与x 轴或y 轴反向的为负值。
④三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。
注:(1)三角函数线的特征是:正弦线MP “站在x 轴上(起点在x 轴上)”、余弦线OM “躺在x 轴上(起点是原点)”、正切线AT “站在点(1,0)A 处(起点是A )”.(2)三角函数线的重要应用是比较三角函数值的大小和解三角不等式。
六、同角三角函数的基本关系式:(1)平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= (2)倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, (3)商数关系:sin cos tan ,cot cos sin αααααα== 同角三角函数的基本关系式的主要应用是,已知一个角的三角函数值,求此角的其它三角函数值。
在运用平方关系解题时,要根据已知角的范围和三角函数的取值,尽可能地压缩角的范围,以便进行定号;在具体求三角函数值时,一般不需用同角三角函数的基本关系式,而是先根据角的范围确定三角函数值的符号,再利用解直角三角形求出此三角函数值的绝对值。
1.3三角函数的诱导公式知识点1:诱导公式(二)(2)结构特征:①函数名不变,符号看象限(把看作锐角时) ②把求(180°+α)的三角函数值转化为求α的三角函数值。
知识点2:诱导公式(三)结构特征:①函数名不变,符号看象限(把看作锐角) ②把求(-α)的三角函数值转化为求α的三角函数值 知识点3:诱导公式(四) Sin(π-α)=Sin α Cos(π-α)=-cos α Ten(π-α)=-tan α 知识点4:诱导公式(五) sin()cos ;cos()sin 22ππαααα-=-=知识点5:诱导公式(六)sin()cos ;cos()sin 22ππαααα+=+=1.4三角函数的图像与性质 一、正弦函数余弦函数的图象 (1)函数y=sinx 的图象第一步:在直角坐标系的x 轴上任取一点1O ,以1O 为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成n(这里n=12)等份.把x 轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x 值—弧度制下角与实数的对应). 第二步:在单位圆中画出对应于角6,0π,3π,2π,…,2π的正弦线正弦线(等价于“列表” ).把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ).第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象.根据终边相同的同名三角函数值相等,把上述图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 的图象.把角x ()x R ∈的正弦线平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点的轨迹就是正弦函数y=sinx 的图象.(2)余弦函数y=cosx 的图象用几何法作余弦函数的图象,可以用“反射法”将角x 的余弦线“竖立”[把坐标轴向下平移,过1O 作与x 轴的正半轴成4π角的直线,又过余弦线1O A 的终点A 作x 轴的垂线,它与前面所作的直线交于A ′,那么1O A 与AA ′长度相等且方向同时为正,我们就把余弦线1O A “竖立”起来成为AA ′,用同样的方法,将其它的余弦线也都“竖立”起来.再将它们平移,使起点与x 轴上相应的点x 重合,则终点就是余弦函数图象上的点.]也可以用“旋转法”把角 的余弦线“竖立”(把角x 的余弦线O 1M 按逆时针方向旋转2π到O 1M 1位置,则O 1M 1与O 1M 长度相等,方向相同.)根据诱导公式cos sin()2x x π=+,还可以把正弦函数x=sinx 的图象向左平移2π单位即得余弦函数y=cosx 的图象.(1) 正切函数y=tanx 的图像:二、五点法作图用五点法作正弦函数和余弦函数的简图(描点法): 正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的五个点关键是(0,1) (2π,0) (π,-1) (23π,0) (2π,1)只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握. 三、奇偶性请同学们观察正、余弦函数的图形,说出函数图象有怎样的对称性?其特点是什么? (1)余弦函数当自变量取一对相反数时,函数y 取同一值。