将军饮马问题讲

合集下载

将军饮马问题的11个模型及例题

将军饮马问题的11个模型及例题

将军饮马问题的11个模型及例题将军饮马问题是一个经典的逻辑问题,涉及到将军如何用有限数量的马和酒到达目的地。

本文将介绍将军饮马问题的11个模型及相应的例题。

1. 直线模型将军与目的地之间没有障碍物,可以直线前进。

此时,将军只需将马拉到目的地即可。

例题1:将军与目的地之间距离为10公里,马的速度为每小时5公里,将军能否在2小时内到达目的地?2. 单个障碍物模型在将军与目的地之间存在一个障碍物,将军可以绕过该障碍物。

例题2:将军与目的地之间距离为15公里,马的速度为每小时4公里,障碍物位于距离将军起点5公里处,将军能否在3小时内到达目的地?3. 多个障碍物模型在将军与目的地之间存在多个障碍物,将军需要逐一绕过这些障碍物。

例题3:将军与目的地之间距离为20公里,马的速度为每小时6公里,障碍物位于距离将军起点分别为5公里、10公里和15公里的位置,将军能否在4小时内到达目的地?4. 跳跃模型将军可以让马跳过障碍物,从而直接到达目的地。

例题4:将军与目的地之间距离为12公里,马的速度为每小时8公里,将军在距离起点6公里处设置一个障碍物,将军能否在2小时内到达目的地?5. 限时模型将军需要在规定的时间内到达目的地。

例题5:将军与目的地之间距离为30公里,马的速度为每小时10公里,将军需要在3小时内到达目的地,是否可能?6. 守备模型目标地点有守备军,将军需要巧妙规避守备军。

例题6:将军与目的地之间距离为25公里,马的速度为每小时7公里,目的地有一支守备军位于距离目标地点10公里处,将军能否在4小时内到达目的地?7. 短平快模型将军不借助马匹,直接徒步走到目的地。

例题7:将军与目的地之间距离为8公里,将军的步行速度为每小时2公里,将军能否在4小时内到达目的地?8. 时间窗模型将军只能在规定时间范围内到达目的地。

例题8:将军与目的地之间距离为18公里,马的速度为每小时6公里,将军需要在3小时到4小时之间到达目的地,是否可能?9. 兵变模型将军需要利用敌军马匹达到目的地。

八年级将军饮马问题例题讲解

八年级将军饮马问题例题讲解

八年级将军饮马问题例题讲解哎呀,今天咱们聊聊八年级的将军饮马问题,听名字就觉得特别有意思,对吧?咱们先来个开门见山,将军带着他的军队,经过一条河,得给马喝水。

这问题看似简单,但其实里面藏着不少小玄机,真的是个大考验,脑袋瓜得动一动。

想象一下,这将军带着一帮士兵,行军走到河边,嗨,口渴得不行,马儿们更是想喝水。

可是,问题来了,河边的水不深,能让马儿们喝到,但不让它们掉进水里。

将军一边心急如焚,一边得想办法。

怎么让这些马儿在喝水的时候不掉进河里呢?这时候就得用到一些小技巧了。

咱们可以想象一下,马儿们得排队,得一个一个地喝水。

将军心里想着,得控制好马儿的喝水速度,别让它们都挤在一起,这样容易出事。

也许能用一些方法,比如说把马儿们牵得远一些,慢慢地让它们喝,像是在参加比赛一样,嘿嘿,真是有意思的场景。

想想马儿们排成一队,乖乖的,一个个慢慢走过来喝水,真是可爱。

这时候就得算一算了,马儿们得喝多少水,每匹马喝水的速度又有多快。

嘿,可能是三两口就满足了,也可能是急着想喝个痛快,一口气喝个干净。

将军得根据情况来调整策略,真是够麻烦的。

不过,思来想去,最好的办法还是得让马儿们分批来,排着队,井然有序。

然后,咱们再来想象一下,如果马儿们不听话,乱跑,那可就麻烦了。

想象一下将军那个急得直挠头的样子,心里想着:这马儿也太不听话了!要不就得用点小办法,比如说放一块香饽饽在河边,吸引它们过来,嘿嘿,果然,马儿们就乖乖走过来喝水了。

就像小朋友看到喜欢的玩具一样,立马就冲过去了,真是太可爱了。

接着咱们来讨论一下,假设这条河不宽,马儿们很快就能喝到水,那将军得加快速度,不能让马儿们等太久。

想想那画面,马儿们都急得不行,口水都快流下来了,哈哈,真是个搞笑的场景。

将军这时候就得使出浑身解数,调整路线,确保马儿们能尽快喝水。

但是,事情总是没那么简单。

马儿喝水喝得急,可能还会打架,踩到脚,这可就不好了。

所以,将军得一边指挥,一边安抚,真是一场心力交瘁的战斗。

将军饮马(最完整讲义)

将军饮马(最完整讲义)

第1讲将军饮马模型➢知识点睛“将军饮马”问题主要利用构造对称图形解决两条线段和差、三角形周长、四边形周长等一类问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。

一、定直线与两定点模型作法结论A、在直线l异侧当两定点B时,在直线l上找上点P,使PA+最小.PBA、在直线l同侧当两定点B时,在直线l上找上点P,使PA+最小.PBA、在直线l同侧当两定点B时,在直线l上找上点P,使PA-最大.PBA、在直线l异侧当两定点B时,在直线l上找上点P,使PA-最大.PBA、在直线l同侧当两定点B时,在直线l上找上点P,使PA-最小.PB二、角到定点模型作法结论点P 在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得PCD ∆周长最小.点P 在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得MN PN +最小.点Q P 、在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得四边形PMNQ 周长最小.点M 在AOB ∠的外部,在射线OA 上找一点P ,使PM 与点P 到射线OB 的距离和最小.点M 在AOB ∠的内部,在射线OA 上找一点P ,使PM 与点P 到射线OB 的距离和最小.点Q P 、分别在AOB ∠的边OB OA 、是,在OA 上找一点M ,在OB 上找一点N ,使得MQ MN PN ++最小.二、两定点一定长模型作法结论如图在直线l 上找上两点N M 、(M 在左),使NB MN AM ++最小,且d MN =.如图,21//l l ,21l l 、之间的距离为d ,在21l l 、上分别找N M 、两点,使1l MN ⊥,且NB MN AM ++最小.如图,21//l l ,43//l l ,21l l 、之间的距离为1d ,43//l l 之间的距离为2d ,在21l l 、上分别找N M 、两点,使1l MN ⊥,在43l l 、上分别找Q P 、两点,使3l PQ ⊥且QB PQ NP MN AM ++++最小.如图,在⊙O 上找一点N ,在直线l 找一点M ,使得MN AM +最小.➢ 精讲精练例1:如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值.P OBAMN例2:如图,正方形ABCD 的边长是4,M 在DC 上,且DM =1, N 是AC 边上的一动点,则△DMN 周长的最小值.例3:如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC :CB =1:3,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .(2,2)B .5(2,5)2C .8(3,8)3D .(3,3)第3题图 第4题图 第5题图例4:如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,则PC +PD 的最小值为( ) A .4B .5C .6D .7例5:如图,在等边△ABC 中,AB =6, N 为AB 上一点且BN =2AN , BC 的高线AD 交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值是___________. PDCBAA BCDMNNMDCBA例6:如图,在Rt △ABD 中,AB =6,∠BAD =30°,∠D =90°,N 为AB 上一点且BN =2AN , M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值.例7:如图,在Rt △ABC 中,∠ACB =90°,AC =6.AB =12,AD 平分∠CAB ,点F 是AC 的中点,点E 是AD 上的动点,则CE +EF 的最小值为( ) A .3 B .4 C . D .第7题图 第8题图 第9题图例8:如图,在锐角三角形ABC 中,BC =4,∠ABC =60°, BD 平分∠ABC ,交AC 于点D ,M 、N 分别是BD ,BC 上的动点,则CM +MN 的最小值是( ) A B .2 C .D .4例9:如图,在菱形ABCD 中,AC =BD =6,E 是BC 的中点,P 、M 分别是AC 、AB 上的动点,连接PE 、PM ,则PE +PM 的最小值是( ) A .6B .C .D .4.5NMDBA E AFCDBNM DCBAEPDCBAM例10:如图,矩形ABOC 的顶点A 的坐标为(-4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( ) A .4(0,)3B .5(0,)3C .(0,2)D .10(0,)3第10题图 第11题图 第12题图例11:如图,在矩形ABCD 中,AB =6,AD =3,动点P 满足13PAB ABCD S S ∆=矩形,则点P 到A 、B 两点距离之和PA +PB 的最小值为( ) A .B .C .D 例12:如图,矩形ABCD 中,AB =10,BC =5,点E 、F 、G 、H 分别在矩形ABCD 各边上,且AE =CG ,BF =DH ,则四边形EFGH 周长的最小值为( )A .B .C .D .例13:如图,∠AOB =60°,点P 是∠AOB 内的定点且OP M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A B C .6D .3第13题图 第14题图 CBH FGEDCB AA BMOPN例14:如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N (3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,则点P 的坐标为 .例15:如图,已知正比例函数y =kx (k >0)的图像与x 轴相交所成的锐角为70°,定点A 的坐标为(0,4),P 为y 轴上的一个动点,M 、N 为函数y =kx (k >0)的图像上的两个动点,则AM +MP +PN 的最小值为___________.第15题图例16:如图,在平面直角坐标系中,矩形ABCD 的顶点B 在原点,点A 、C 在坐标轴上,点D 的坐标为(6,4),E 为CD 的中点,点P 、Q 为BC 边上两个动点,且PQ =2,要使四边形APQE 的周长最小,则点P 的坐示应为______________.例17:如图,矩形ABCD 中,AD =2,AB =4,AC 为对角线,E 、F 分别为边AB 、CD 上的动点,且EF ⊥AC 于点M ,连接AF 、CE ,求AF +CE 的最小值.AB CD EFMx例18:如图,正方形ABCD 的面积是12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,求PD+PE 的最小值。

将军饮马(最完整讲义)

将军饮马(最完整讲义)

第1讲将军饮马模型➢知识点睛一、“将军饮马”问题主要利用构造对称图形解决两条线段和差、三角形周长、四边形周长等一类问题, 会与直线、角、三角形、四边形、圆、抛物线等图形结合, 在近年的中考和竞赛中经常出现, 而且大多以压轴题的形式出现。

二、定直线与两定点模型作法结论当两定点在直线异侧时, 在直线上找上点, 使最小.当两定点在直线同侧时, 在直线上找上点, 使最小.当两定点在直线同侧时, 在直线上找上点, 使最大.当两定点在直线异侧时, 在直线上找上点, 使最大.当两定点在直线同侧时, 在直线上找上点, 使最小.二、角到定点模型作法结论点在的内部, 在上找一点, 在上找一点,使得周长最小.点在的内部, 在上找一点, 在上找一点,使得最小.点在的内部, 在上找一点, 在上找一点,使得四边形周长最小.点在的外部, 在射线上找一点, 使与点到射线的距离和最小.点在的内部, 在射线上找一点, 使与点到射线的距离和最小.点分别在的边是, 在上找一点, 在上找一点,使得最小.三、两定点一定长模型作法结论如图在直线上找上两点(在左), 使最小,且.如图, , 之间的距离为, 在上分别找两点, 使, 且最小.如图, , ,之间的距离为, 之间的距离为, 在上分别找两点, 使, 在上分别找两点, 使且最小.如图, 在⊙上找一点, 在直线找一点,使得最小.➢精讲精练例1: 如图, 点P是∠AOB内任意一点, ∠AOB=30°, OP=8, 点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值.例2: 如图, 正方形ABCD 的边长是4, M 在DC 上, 且DM=1, N 是AC 边上的一动点, 则△DMN 周长的最小值.A .例3: 如图, 在Rt △ABO 中, ∠OBA=90°, A (4,4), 点C 在边AB 上, 且AC:CB=1:3, 点D 为OB 的中点, 点P 为边OA 上的动点, 当点P 在OA 上移动时, 使四边形PDBC 周长最小的点P 的坐标为 B. ,C .,D .第3题图 第4题图 第5题图例4: 如图, 在△ABC 中, AC=BC, ∠ACB=90°, 点D 在BC 上, BD=3, DC=1, 点P 是AB 上的动点, 则PC+PD 的最小值为 A. 4 B. 5 C. 6 D. 7例5:如图, 在等边△ABC 中, AB=6, N 为AB 上一点且BN=2AN, BC 的高线AD 交BC 于点D, M 是AD 上的动点, 连结BM, MN, 则BM+MN 的最小值是___________.A BCDMN例6: 如图, 在Rt △ABD 中, AB=6, ∠BAD=30°, ∠D=90°, N 为AB 上一点且BN=2AN, M 是AD 上的动点, 连结BM, MN, 则BM+MN 的最小值.例7: 如图, 在Rt △ABC 中, ∠ACB=90°, AC=6. AB=12, AD 平分∠CAB, 点F 是AC 的中点, 点E 是AD 上的动点, 则CE+EF 的最小值为 A. 3 B. 4 C.D.第7题图 第8题图 第9题图A .例8: 如图, 在锐角三角形ABC 中, BC=4, ∠ABC=60°, BD 平分∠ABC, 交AC 于点D, M 、N 分别是BD, BC 上的动点, 则CM+MN 的最小值是B. 2C.D. 4例9: 如图, 在菱形ABCD 中, AC=, BD=6, E 是BC 的中点, P 、M 分别是AC.AB 上的动点, 连接PE 、PM, 则PE+PM 的最小值是A. 6B.C.D. 4.5E AFCDBNM DCBAEPDCBAMA .例10: 如图, 矩形ABOC 的顶点A 的坐标为(-4,5), D 是OB 的中点, E 是OC 上的一点, 当△ADE 的周长最小时, 点E 的坐标是B. C. D.第10题图 第11题图 第12题图例11: 如图, 在矩形ABCD 中, AB=6, AD=3, 动点P 满足, 则点P 到A.B 两点距离之和PA+PB 的最小值为A. B. C. D.例12: 如图, 矩形ABCD 中, AB=10, BC=5, 点E 、F 、G 、H 分别在矩形ABCD 各边上, 且AE=CG, BF=DH, 则四边形EFGH 周长的最小值为A. B. C. D.例13: 如图, ∠AOB=60°, 点P 是∠AOB 内的定点且OP=, 若点M 、N 分别是射线OA.OB 上异于点O 的动点, 则△PMN 周长的最小值是A. B. C. 6 D. 3第13题图 第14题图CBH FGEDCB AABMOPN例14: 如图, ∠AOB 的边OB 与x 轴正半轴重合, 点P 是OA 上的一动点, 点N (3,0)是OB 上的一定点, 点M 是ON 的中点, ∠AOB=30°, 要使PM+PN 最小, 则点P 的坐标为 .例15:如图, 已知正比例函数y=kx (k>0)的图像与x 轴相交所成的锐角为70°, 定点A 的坐标为(0, 4), P 为y 轴上的一个动点, M 、N 为函数y=kx (k>0)的图像上的两个动点, 则AM+MP+PN 的最小值为___________.第15题图例16: 如图, 在平面直角坐标系中, 矩形ABCD 的顶点B 在原点, 点A.C 在坐标轴上, 点D 的坐标为(6, 4), E 为CD 的中点, 点P 、Q 为BC 边上两个动点, 且PQ=2, 要使四边形APQE 的周长最小, 则点P 的坐示应为______________.例17:如图, 矩形ABCD 中, AD=2, AB=4, AC 为对角线, E 、F 分别为边AB 、CD 上的动点, 且EF ⊥AC 于点M,连接AF 、CE, 求AF+CE 的最小值.x例18: 如图, 正方形ABCD的面积是12, △ABE是等边三角形, 点E在正方形ABCD内, 在对角线AC上有一点P, 求PD+PE的最小值。

第11讲 “将军饮马”问题探究(学生版)

第11讲 “将军饮马”问题探究(学生版)

知识导航
①作定点关于动点所在直线的对称点,构造轴对称图形
②等腰三角形、角分线模型是天然的轴对称模型
经典例题
1
三角板、刻度尺作图,保留作图痕迹,不写作法.
2
如图,正方形3
如图,正方形4

1
三角板、刻度尺作图,保留作图痕迹,不写作法:2
如图,在
3
如图,在
知识导航
经典例题1
如图,直线2
如图,
知识导航
经典例题
1
如图,在一组平行线2
如图,直线
3
如图,在正方形
设汽车行驶到公路上点的位置时,距离村庄最近,行驶到点的位置时,距离村庄上分别画出、的位置;
行驶时,在公路的哪一段上距离、两村都越来越近?在哪一段
巩固2
如图,、为的边、上的两个定点,在上求一点,使的周长最短.
巩固3
如图,,角内有点,在角的两边有两点、(均不同于点),求作、,使得的周长的最小.
巩固4
如图,在中,若在,上各取一点,,使的值最小,试在图中画出,的位置.
巩固5
如图(1),、两单位分别位于一条封闭街道两旁(直线、是街道两边沿),现准备合作修建一座过街人行天桥.天桥应建在何处才能使由经过天桥走到的路程最短?在图(2)中作
如图,四边形中,,,在、上分别找一点、,使周长最小,求此时的度数以及的度数.。

将军饮马课件ppt

将军饮马课件ppt

05
将军饮马问题的扩展和挑 战
变种问题
01
02
03
04
障碍物问题
在路径上设置障碍物,求最短 路径时需要避开障碍物。
多点折返问题
在路径上设置多个折返点,求 最短路径时需要多次折返。
限制条件问题
在求最短路径时加入限制条件 ,如步数限制、时间限制等。
动态变化问题
路径长度会随时间或其他因素 变化,需要求最短路径时考虑
这些变化。
计算复杂度
最坏情况下的时间复杂度
在最坏情况下,算法的时间复杂度可 能较高,需要优化算法以降低时间复 杂度。
空间复杂度
并行计算
为了提高算法的效率,可以考虑使用 并行计算来加速计算过程。
算法的空间复杂度也需要考虑,以评 估算法的内存消耗。
实际应用中的限制和优化
数据精度
在实际应用中,需要考虑 数据精度对算法的影响, 以避免误差累积导致结果 不准确。
在车辆调度方面,将军饮马问题同样 适用。通过优化车辆的出发时间和行 驶路线,物流公司可以最大化利用车 辆资源,提高运输效率。
计算机算法
图论算法
将军饮马问题作为图论中的经典问题,可以应用于计算机算法领域。通过解决将军饮马问题,可以开 发出更高效的图论算法,用于解决其他相关问题。
最短路径算法
最短路径算法是计算机算法中的重要组成部分。将军饮马问题可以作为最短路径算法的参考模型,帮 助开发人员找到图中两点之间的最短路径。
03
04
几何法是利用几何知识解决将 军饮马问题的方法。
它通过将问题转化为几何图形 ,利用几何定理和性质来找到
最短路径。
几何法适பைடு நூலகம்于具有明显几何特 征的问题,如两点之间的最短 距离、三角形中的最短路径等

将军饮马最短距离原理

将军饮马最短距离原理

将军饮马最短距离原理1.引言1.1 概述将军饮马最短距离原理是一种常见的数学问题,根据传说中的典故“将军饮马”,通过解决这个问题我们可以得到最短距离的最优解。

这个问题在数学领域中被广泛研究和应用,尤其在图论、最优路径规划、网络优化等领域中具有重要的意义。

将军饮马最短距离问题可以简单描述为:一个将军要从指定位置A饮马到指定位置B,同时他必须经过多个中间位置,并且需要选择经过这些中间位置的最短路径。

这个问题可以用图论中的有权有向图来模拟和解决。

每个位置可以看作图中的一个节点,将军的移动可以看作是节点之间的有向边,每条边的权值表示将军从一个位置到另一个位置的移动距离。

通过这个问题的求解,我们可以找到从起点到终点的最短路径,即将军饮马的最短距离。

将军饮马最短距离原理的研究不仅可以用于解决实际问题,还可以用来优化和改进一些相关算法和模型。

例如,在网络优化中,我们可以利用这个原理来找到网络中数据传输的最短路径,从而提高网络的传输效率。

此外,通过将军饮马问题的研究,还可以挖掘和发现一些潜在的规律和规划策略,进一步推动相关领域的发展。

本文将从将军饮马最短距离原理的背景和原理解析两个方面进行详细探讨,通过对相关理论和算法的介绍和分析,旨在增加对这一原理的理解和认识。

同时,本文还将探讨将军饮马最短距离原理的应用价值和未来发展方向,以期为相关领域的研究和实践提供一定的参考和指导。

1.2文章结构1.2 文章结构本文将按照以下结构进行叙述和分析将军饮马最短距离原理:1. 引言:为了引出将军饮马最短距离原理的背景和意义,概述本文将要介绍的内容。

2. 正文:2.1 将军饮马最短距离原理的背景:详细介绍将军饮马最短距离原理的起源和历史背景,包括相关的故事或传说,以便读者能够更好地理解该原理。

2.2 将军饮马最短距离原理的原理解析:深入分析将军饮马最短距离原理的具体原理,包括数学模型和算法等相关内容。

通过展示相关的数学推导或图表,让读者理解这一原理的运作机制。

将军饮马二次函数问题

将军饮马二次函数问题

将军饮马二次函数问题将军饮马是一道经典的二次函数问题,它涉及到求解一个关于时间和距离的函数关系。

这个问题在中国数学史上有着重要的地位,不仅因为它是求解一元二次方程的基础问题,还因为它体现了中国古代数学家高超的几何创造力和智慧。

将军饮马的问题可以概括为:一位将军从一座城市出发,骑着马奔向另一座城市。

在途中,将军发现一个河流横亘在他的路径上,他必须走一个弯曲的道路来绕过河流。

在整个过程中,将军骑马的速度是恒定的。

问题要求我们用数学方法来求解将军饮马的最短时间。

为了更好地理解问题,我们可以把这个问题绘制成图形。

假设河流是一条笔直的线段,将军出发点到河流的距离为a,河流的宽度为b,将军需要绕过河流走一段曲线,曲线的起点和终点都是河流的两端。

设曲线的长度为L,曲线与河流垂直相交。

将军的速度为v,问题要求我们求解将军饮马的最短时间。

为了解决这个问题,我们可以先考虑将军直接穿过河流的情况。

如果将军选择穿过河流,他需要经过一段距离为b的直行道路。

由于将军的速度是恒定的,所以他穿过河流的时间为t1=b/v。

接下来,我们可以考虑将军绕过河流走曲线的情况。

由于曲线是垂直相交于河流的,所以曲线与每个平行于河流的切线都有一个交点。

假设将军从某个切点出发,经过曲线走到另一个切点,然后再重新回到河流的对岸。

将军沿曲线行进的时间与他直行到达对岸的时间是相等的,因为他的速度是恒定的。

现在,我们需要找到一个与直行距离b相对应的最小曲线长度L。

假设将军在上游走曲线,然后沿着河流下游走直线到达对岸。

我们可以计算出将军顺时针绕过河流的距离,设为L1,将军逆时针绕过河流的距离,设为L2。

由于将军的速度是恒定的,所以他绕过河流的时间为t2=(L1+L2)/v。

接下来的问题是,如何确定使得t2最小的曲线长度L。

我们可以使用勾股定理来解决这个问题。

根据勾股定理,河流的宽度b和曲线长度L之间存在如下关系:L^2 = b^2 + a^2。

将这个关系带入到t2的公式中,我们可以得到t2 = (2L/v)v^2 / (v^2 + g)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4. 如图,点 边的距离之和最小类型一、基本模式类型二、轴对称变换的应用(将军饮马问题)2、如图所示,如果将军从马棚 M 出发,先赶到河 OA 上的某一位置 P ,再马上赶到河 OB 上的某一位置 Q ,然后立即返回校场 N .请为将军重新设计一条路线 (即选择点 P 和 Q ), 使得总路程 MP + PQ +QN 最短.3、将军要检阅一队士兵,要求 (如图所示 ) :队伍长为 a ,沿河 OB 排开(从点 P 到点 Q );将 军从马棚 M 出发到达队头 P ,从 P 至 Q 检阅队伍后再赶到校场 N .请问:在什么位置列队 (即 选择点 P 和 Q ),可以使得将军走的总路程 MP +PQ + QN 最短?将军饮马问题变式】如图所示,将军希望从马棚 OB 上的某一位置 Q .请为将军设计一条路线 MP +PQ 最短.,再马上赶到河P 到5 已知∠ MON内有一点 P,P 关于 OM,ON的对称点分别是和,分别交 OM, ON于点A、B,已知= 15,则△ PAB 的周长为( )A. 15 B 7.5 C. 10 D. 246. 已知∠ AOB,试在∠ AOB内确定一点 P,如图,使 P 到 OA、OB的距离相等,并且到 M、N两点的距离也相等 .7、已知∠ MON= 40, P为∠ MON内一定点, OM上有一点 A,ON上有一点 B,当△PAB的周边上一动点,则 DP长的最小值为练习1、已知点A在直线l 外,点P为直线l 上的一个动点,探究是否存在一个定点B,当点P在直线l 上运动时,点P 与A 、B 两点的距离总相等,如果存在,长取最小值时,求∠APB的度数 .8. 如图,在四边形ABCD中,∠ A=90°,ADB=∠ C.若 P 是请作出定点 B ;若不存在,请说明理由.2、 如图,在公路 a 的同旁有两个仓库 A 、 B ,现需要建一货物中转站,要求到 A 、B 两仓 库的距离和最短,这个中转站 M 应建在公路旁的哪个位置比较合理?ABa3、 已知: A 、B 两点在直线 l 的同侧, 在l 上求作一点 M ,使得 |AM BM |最小.4、如图,正方形 ABCD 中, AB 8, M 是DC 上的一点,且 DM 2, N 是 AC 上的一动 点,求 DN MN 的最小值与最大值.5、如图,已知∠ AOB 内有一点 最小。

试画出图形,并说明理由。

A 、B, 在坐标轴上找两点 C 、D,使得四边形 ABCD 的周长最小。

.A6、如图,直角坐标系中有两点 MP ,试分别在边7、如图,村庄 A 、B 位于一条小河的两侧,若河岸 a 、b 彼此平行,现在要建设一座与河岸 垂直的桥 CD ,问桥址应如何选择,才能使 A 村到 B 村的路程最近?最小时,求 a 的值 .10、如图,在等腰梯形 ABCD 中, AB=CD=AD=,2∠ D=120°,点 E 、F 是底边 AD 与 BC 的中点, 连接 EF ,在线段 EF 上找一点 P ,使 BP+AP 最短.练习1、观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( )A .1 个B .2个C .3个D .4 个2、以下图形中,既是轴对称图形,又是中心对称图形的是( )3、在下列四个图案中既是轴对称图形,又是中心对称图形的是4 ,当 x 为何值时, y 的值最小, 并求出这个最小值9、在平面直角坐标系中, A(1,-3) 、B(4 ,-1) P(a,0) 、 N(a+2,0), 当四边形 PABN 的周长A .等边三角形B .矩形C .等腰梯形D .平行四边形8、y x 21(9 x)24、在等边三角形、 正方形、菱形和等腰梯形这四个图形中, 是中心对称图形的个数为 ( ) A .1个 B .2个 C .3个 D .4 个5、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们 把这样的图形变换叫做滑动.对.称.变.换.. .在自然界和日常生活中, 大量地存在这种图形变 换(如图甲).结合轴对称变换和平移变换的有关性质, 你认为在滑.动.对.称.变.换. 过程中,两个对应三角形(如图乙)的对应点所具有的性质是 ( ) (A ) 对应点连线与对称轴垂直 (B ) (C ) 对应点连线被对称轴垂直平分 (D )6、对右图的对称性表述,正确的是( ).D .既不是轴对称图形又不是中心对称图形对应点连线被对称轴平分A .轴对称图形B .中心对称图形C .既是轴对称图形又是中心对称图形7、如图,△ A ′ B ′ C′是由△ ABC 经过变换得到的,则这个变换过程是 A )平移B )轴对称 (C )旋转D )平移后再轴对称A ′BB ′BC ′AC8、如图所示,四边形OABC是矩形,点A、C 的坐标分别为( 3,0),(0,1),点D 是线段1BC上的动点(与端点B、C不重合),过点D作直线y =-x+b 交折线OAB 于点E.2(1)记△ ODE的面积为S,求S关于b 的函数关系式;(2)当点E 在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,9、探究OA1B1C1 与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由 .【答案】(1)由题意得 B( 3,1).3若直线经过点A(3, 0)时,则b=25若直线经过点B(3, 1)时,则b=2若直线经过点C(0, 1)时,则b=13 ①若直线与折线OAB的交点在OA上时,即 1<b≤ ,如图 25-a,2此时E( 2b,0)11∴S=OE·CO=×2b×1=b22 35 ②若直线与折线OAB的交点在BA上时,即3<b< 5,如图 23此时E(3,b ),D(2b-2,1)25∴S 四边形 DNEM = NE · DH =4∴矩形 OA 1B 1C 1 与矩形 OABC 的重叠部分的面积不发生变化,面积始终为10.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为 A (0,1),B (-1,1 ),C(-1,3 )。

(1)画出△ ABC 关于 x 轴对称的△ A 1B 1C 1,并写出点 C 1 的坐标;(2)画出△ ABC 绕原点 O 顺时针方向旋转 90°后得到的△ A 2B 2C 2,并写出点 C 2 的坐标;,(3)将△ A 2B 2C 2 平移得到△ A 3B 3C 3,使点 A 2 的对应点是 A 3,点 B 2 的对应点是 B 3 ,点 C 2的对应点是 C 3( 4, -1 ),在坐标系中画出△ A 3B 3C 3,并写出点 A 3, B 3的坐标。

∴S =S 矩- ( S △OCD + S △OAE +S △DBE )1 = 3 - [ (2b 2-1)×1+1 5 1 3 5 ×(5-2b )·( b )+ ×3( b )] = b b2b∴S5b2b23 2 5 2M ,OA 与 C 1B 1相交于点 N ,则矩形 OA 1B 1C 1 与矩形 DNEM 的面积。

本题答案由无锡市天一实验学校金杨建老师草制!2)如图 3,设 O 1A 1 与 CB 相交于点 的重叠部分的面积即为四边形OABC由题意知, DM ∥ NE ,DN ∥ ME ,∴四边形 DNEM 为平行四边形 根据轴对称知,∠ MED =∠ NED又∠ MDE =∠ NED ,∴∠ MED =∠ MDE ,∴ MD =ME ,∴平行四边形 过点 D 作 DH ⊥ OA ,垂足为 H ,1由题易知, tan ∠DEN = , DH = 1,∴ HE =2,2DNEM 为菱形. 则在 Rt △DHM 中,由勾股定理知:2 2 2a2(2 a)2 12,∴ a答案】1) C1(-1,-3) (2)C2(3,1) (3)A3(2,-2),B3(2,-1) 11、分别按下列要求解答:(1)在图 1中,将△ ABC先向左平移 5个单位,再作关于直线AB的轴对称图形 ,经两次变换后得到△ A1B1 C1.画出△ A1B1C1;(2)在图 2 中, △ ABC经变换得到△ A2B2C2. 描述变换过程 .0 1 2 3 4 5 6 7 8 9 10 11 12答案】(1) 如图.(2) 将△ ABC 先关于点 A 作中心对称图形 , 再向左平移2 个单位 , 得到△ A 2B 2C 2.(变换过程不唯一)12、 (1) 观察发现如题 26(a) 图,若点 A ,B 在直线 l 同侧,在直线 l 上找一点 P ,使 AP+BP 的值最小. 做法如下:作点 B 关于直线 l 的对称点 B ,连接 AB ,与直线 l 的交点就是所求的点 P 再如题 26(b) 图,在等边三角形 ABC 中,AB=2,点 E 是 AB 的中点, AD 是高,在 AD 上找 一点 P ,使 BP+PE 的值最小.做法如下:作点 B 关于 AD 的对称点,恰好与点 C 重合,连接 CE 交 AD 于一点,则这 点就是所求的点 P ,故 BP+PE 的最小值为 .题 18(a) 图(2) 实践运用 如题 26(c) 图,已知⊙ O 的直径 CD 为 4,AD 的度数为 60°,点 B 是 ?AD的题 18(b) 图中点,在直径 CD 上找一点 P,使 BP+AP的值最小,并求 BP+AP的最小值.(3) 拓展延伸 如题 26(d ) 图,在四边形 ABCD 的对角线 AC 上找一点 P ,使∠ APB=∠ APD .保留 作图痕迹,不必写出作法.作点 B 关于 CD 的对称点 E ,则点 E 正好在圆周上,连接 一点 P , AP+BP 最短,因为 AD 的度数为 60°,点 B 是 ?AD 的中点, 所以∠AEB=15°,因为 B 关于 CD 的对称点 E ,所以∠ BOE=60°,所以△ OBE 为等边三角形,所以∠ OEB=60°,所以∠ OEA=45°,又因为 OA=OE ,所以△ OAE 为等腰直角三角形,所以 AE=2 2 .(3)找 B 关于 AC 对称点 E ,连 DE 延长交 AC 于 P 即可,OA 、 OB 、 OE ,连接 AE 交 CD 与答案】2)如图:13、如图所示, A、B 两村之间有一条河,河宽为 a,现要在河上修一座垂直于河岸的桥,(Ⅰ)要使 AB两村路程最近,请确定修桥的地点。

(Ⅱ)桥建在何处才能使 AB 两村到桥的距离相等?。

相关文档
最新文档