高中数学 第三章 推理与证明 3.1 归纳与类比 3.1.2 类比推理教案 北师大选修12

合集下载

高中数学 第三章 推理与证明 3.1 归纳与类比 3.1.1 归

高中数学 第三章 推理与证明 3.1 归纳与类比 3.1.1 归

3.1.1归纳推理学习目标:1.通过对已学知识的回顾,进一步体会合情推理这种基本的分析问题法,认识归纳推理的基本方法与步骤,并把它们用于对问题的发现与解决中去。

2.归纳推理是从特殊到一般的推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。

教学重点:了解合情推理的含义,能利用归纳法进行简单的推理。

教学难点:用归纳进行推理,做出猜想。

学习过程:一、课堂引入:从一个或几个已知命题得出另一个新命题的思维过程称为推理。

见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理二、新课讲解:1、蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。

蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所有的爬行动物都是用肺呼吸的。

2、三角形的内角和是180︒,凸四边形的内角和是360︒,凸五边形的内角和是540︒由此我们猜想:凸边形的内角和是(2)180n-⨯︒3、221222221,,,331332333+++<<<+++L,由此我们猜想:a a mb b m+<+(,,a b m均为正实数)这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.(简称:归纳) 归纳推理的一般步骤:⑴ 对有限的资料进行观察、分析、归纳整理;⑵ 提出带有规律性的结论,即猜想;⑶ 检验猜想。

三、例题讲解:例1 通过观察下列等式,猜想一个一般性结论,并证明结论的真假。

23130sin 75sin 15sin 222=++οοο;23145sin 85sin 25sin 222=++οοο; 23150sin 90sin 30sin 222=++οοο;23180sin 120sin 60sin 222=++οοο。

普通高中数学第三章推理与证明归纳推理教案北师大版选修-

普通高中数学第三章推理与证明归纳推理教案北师大版选修-

3.1归纳与类比归纳推理教材依据“归纳推理”是北京师范大学出版社出版地普通中学课程标准实验教科书数学(选修1—2)第三章第一节地内容•教学目标:1. 知识与技能目标:理解归纳推理地原理,并能运用解决一些简单地问题2. 过程与方法目标:通过自主、合作与探究实现“一切以学生为中心”地理念3. 情感、态度与价值观:感受数学地人文价值,提高学生地学习兴趣,使其体会到数学学习地美感.教学重点:归纳推理地原理教学难点:归纳推理地具体应用.教法学法:自主、合作探究教学教学准备:多媒体电脑、课件、空间多面体模型等教学过程:1. 创设情景:1 •情景㈠:苹果落地地故事,正是基于这个发现,牛顿大胆地猜想,然后小心求证,终于发现了伟大地“万有引力定理”思考:整个过程对你有什么启发?教师:“科学离不开生活,离不开观察,也离不开猜想和证明”.2 •情景㈡:陈景润和他在“歌德巴赫猜想”证明中地伟大成就:任何一个大于4地偶数都可以写成两个奇素数之和.如:6= 3+3, 8= 3+5, 10= 5+5, 12 = 5+7, 14= 7+7, 16 = 5+11,…,1000 = 29+ 971, 1002 = 139+ 863,……2. 探求研究:探究1.学生根据自备地多面体进行观察,统计多面体地面数、顶点数和棱数;(学生实验与教师课件演示结合)探究2•观察、猜想它们之间是否有稳定地数量关系?探究3•整理所得结论,并尝试证明;若得证,则改写成定理,否则修改猜想,进一步尝3E 棱柱=E 棱台3E 棱锥,F 棱柱=F 棱台=F 棱锥+ 1 , F+V-E=2等等,其中“ F+V-E=2'为“欧拉2公式”.3. 概念讲解结合情景问题和探究过程所得,教师引导学生完成归纳推理地概念及分析 定义:根据一类事物地部分事物具有某种属性 ,推断该类事物地每一个都具有这种属性 地推理,或者由个别事实概括出一般结论地推理,称为归纳推理(简称归纳).说明:⑴归纳推理地作用:发现新事实,获得新结论;(2)归纳推理地一般步骤:试验、观察T 概括、推广T 猜测一般性结论T 证明;⑶归纳推理地结论不一定成立4. 例题解析至 n N * ,猜想这个数列地通项公式?In22 2 2,a 4 ,a 545 6时,往往统一分子(或分母),再寻找另一部分地变化规律 •例2、(拓展)问:如果面积是一定地,什么样地平面图形周长最小?试猜测结论 教师:设定任务一:常见多边形面积一定时,计算其周长;任务二:归纳、猜想一般性结论 .试证明•@令0 O教师指导,合作交流,归纳:V棱柱V棱台=2V棱锥—2 ,例1: 在数列 a n 中, a 1 1,a n1解析: 先由学生计算:a 22 2®归纳:2 ( a n (n n 1*N )说明(学生完成):⑴有整数和分数时,往往将整数化为分数;⑵当分子分母都在变化面积 一疋 时,---- > 圆地周长导电”,你能最小6.课时小结(师生共同) 1什么是归纳推理? 2归纳推理地一般步骤:试验、观察T 概括、推广T 猜测一般性结论T 证明 布置作业: (补充):已知a n 的前n 项和S n 与a n 满足:& 1 试归纳出其通项公式亦拓展延伸:1. 工匠鲁班类比带齿地草叶和蝗虫地牙齿,发明了锯;2. 科学家对火星进行研究,发现火星与地球有许多类似地特征:⑴火星也绕太阳运行,绕轴自转地行星;⑵有大气层,在一年中也有季节变更;⑶火星上大部分时间地温度适合地球上某些已知生物地生存等等;边形 3 46 8最小 周长4. 56 4 3. 72 3. 642 •观察下列式子,归纳结论:13 12 , 13 23 9 (1 2)2 ,13 233313 23 33 43 100 (12 34)2问:13 23 33 L n 33.右图中5个图形及相应点地个数地变化规律,试猜测第n 个图形中有 占; 八(1) (2) (3)4.已知数列 a n 中,a 1 1,且aa n(n N ),试归纳这个数列地通项公式 a n答案:1.金属导电;2 . 1323 33n 3 (1 2 3n)2 ;3. n 2 n 1; 4 • a n 1 (n nN ).纳出什么结论?科学家猜想;火星上也可能有生命存在•说明:以上两练习使用地是类比推理•目地是知识上承上启下,把本节知识延伸,既拓宽了学生视野,也为下一节“类比推理”地教学作了铺垫教后反思:⑴要实现数学新知识地建构学习,教师要创设适当地情境,情境应符合实际•包括生活场景地实际,数学教学内容地实际,学生知识状况地实际,学生思维发展地实际等等•⑵学生通过“经历”,“体会”,“感受”,最后形成概念地过程学习,充分体现了以学生为本地现代教育观;同时练习和作业地分层设计尽量满足多样化地学习需求做到因材施教,促进全体地参与.附:板书设计。

高中数学第三章推理与证明1.1.2类比推理教案含解析北师大版选修1_2

高中数学第三章推理与证明1.1.2类比推理教案含解析北师大版选修1_2

1.2 类比推理类比推理三角形有下面两个性质:(1)三角形的两边之和大于第三边; (2)三角形的面积等于高与底乘积的12.问题1:你能由三角形的这两个性质推测空间四面体的性质吗?试写出来. 提示:(1)四面体任意三个面的面积之和大于第四个面的面积; (2)四面体的体积等于底面积与高乘积的13.问题2:由三角形的性质推测四面体的性质体现了什么?提示:由一类事物的特征推断另一类事物的类似特征,即由特殊到特殊.定义特征由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,把这种推理过程称为类比推理. 类比推理是两类事物特征之间的推理.合情推理合情推理的含义(1)合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.(2)归纳推理和类比推理是最常见的合情推理.1.类比推理是从人们已经掌握了的事物特征,推测正在被研究中的事物的特征.所以类比推理的结果具有猜测性,不一定可靠;2.类比推理以旧的知识作为基础,推测新的结果,具有发现功能.平面图形与空间几何体的类比[例1] (1)圆心与弦(非直径)中点的连线垂直于弦; (2)与圆心距离相等的两弦长相等; (3)圆的周长C =πd (d 是直径); (4)圆的面积S =πr 2.[思路点拨] 先找出相似的性质再类比,一般是点类比线、线类比面、面积类比体积. [精解详析] 圆与球有下列相似的性质:(1)圆是平面上到一定点的距离等于定长的所有点构成的集合;球面是空间中到一定点的距离等于定长的所有点构成的集合.(2)圆是平面内封闭的曲线所围成的对称图形;球是空间中封闭的曲面所围成的对称图形.通过与圆的有关性质类比,可以推测球的有关性质.圆球圆心与弦(非直径)中点的连线垂直于弦 球心与截面(不经过球心的小圆面)圆心的连线垂直于截面与圆心距离相等的两条弦长相等与球心距离相等的两个截面的面积相等圆的周长C =πd 球的表面积S =πd 2圆的面积S =πr 2球的体积V =43πr 3[一点通] 解决此类问题,从几何元素的数目、位置关系、度量等方面入手,将平面几何的相关结论类比到立体几何中,相关类比点如下:平面图形 立体图形 点 点、线 直线 直线、平面 边长 棱长、面积面积 体积 三角形 四面体 线线角 面面角 平行四边形平行六面体圆球1.下面类比结论错误的是( )A .由“若△ABC 一边长为a ,此边上的高为h ,则此三角形的面积S =12ah ”类比得出“若一个扇形的弧长为l ,半径为R ,则此扇形的面积S =12lR ”B .由“平行于同一条直线的两条直线平行”类比得出“平行于同一个平面的两个平面平行”C .由“在同一平面内,垂直于同一条直线的两条直线平行”类比得出“在空间中,垂直于同一个平面的两个平面平行”D .由“三角形的两边之和大于第三边”类比得出“凸四边形的三边之和大于第四边” 解析:选C 只有C 中结论错误,因为两个平面还有可能相交.2.如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,类比上述定理,写出对空间四面体性质的猜想.解:如图所示,在四面体P ­ABC 中,S 1,S 2,S 3,S 分别表示△PAB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示平面PAB ,平面PBC ,平面PCA 与底面ABC 所成二面角的大小.我们猜想射影定理类比推理到三维空间,其表现形式应为S =S 1·cos α+S 2·cos β+S 3·cos γ.定义、定理与性质的类比[例2][精解详析] ①两实数相加后,结果是一个实数,两向量相加后,结果仍是向量; ②从运算律的角度考虑,它们都满足交换律和结合律, 即:a +b =b +a ,a +b =b +a ,(a +b )+c =a +(b +c ),(a +b )+c =a +(b +c ); ③从逆运算的角度考虑,二者都有逆运算,即减法运算, 即a +x =0与a +x =0都有唯一解,x =-a 与x =-a ;④在实数加法中,任意实数与0相加都不改变大小,即a +0=a .在向量加法中,任意向量与零向量相加,既不改变该向量的大小,也不改变该向量的方向,即a +0=a .[一点通] 运用类比推理常常先要寻找合适的类比对象,本例中实数加法的对象为实数,向量加法的对象为向量,且都满足交换律与结合律,都存在逆运算,而且实数0与零向量0分别在实数加法和向量加法中占有特殊的地位.因此我们可以从这四个方面进行类比.3.试根据等式的性质猜想不等式的性质并填写下表.等式不等式a =b ⇒a +c =b+c① a =b ⇒ac =bc ② a =b ⇒a 2=b 2③答案:①a >b ⇒a +c >③a >b >0⇒a 2>b 2(说明:“>”也可改为“<”)4.已知等差数列{a n }的公差为d ,a m ,a n 是{a n }的任意两项(n ≠m ),则d =a n -a mn -m,类比上述性质,已知等比数列{b n }的公比为q ,b n ,b m 是{b n }的任意两项(n ≠m ),则q =________.解析:∵a n =a m qn -m,∴q =⎝ ⎛⎭⎪⎫a n a m 1n -m.答案:⎝ ⎛⎭⎪⎫a n a m 1n -m1.类比推理先要寻找合适的类比对象,如果类比的两类对象的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的结论就越可靠.2.归纳推理与类比推理都是合情推理.归纳推理是从特殊过渡到一般的思想方法,类比推理是由此及彼和由彼及此的联想方法,归纳和类比离不开观察、分析、对比、联想,许多数学知识都是通过归纳与类比发现的.1.下列哪个平面图形与空间图形中的平行六面体作为类比对象较合适( ) A .三角形 B .梯形 C .平行四边形D .矩形解析:选C 从构成几何图形的几何元素的数目、位置关系、度量等方面考虑,用平行四边形作为平行六面体的类比对象较为合适.2.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c;类比这个结论可知:四面体P ­ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,四面体P ­ABC 的体积为V ,则r =( )A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4解析:选C 设内切球的球心为O ,所以可将四面体P ­ABC 分为四个小的三棱锥,即O ­ABC ,O ­PAB ,O ­PAC ,O ­PBC ,而四个小三棱锥的底面积分别是四面体P ­ABC 的四个面的面积,高是内切球的半径,所以V =13S 1r +13S 2r +13S 3r +13S 4r =13(S 1+S 2+S 3+S 4)r ,∴r =3VS 1+S 2+S 3+S 4.3.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9解析:选D 类比等比数列{b n }中b 1b 2b 3…b 9=b 95,可得在等差数列{a n }中a 1+a 2+…+a 9=9a 5=9×2.4.类比三角形中的性质: ①两边之和大于第三边; ②中位线长等于底边长的一半; ③三内角平分线交于一点. 可得四面体的对应性质:①任意三个面的面积之和大于第四个面的面积;②过四面体的交于同一顶点的三条棱的中点的平面面积等于该顶点所对的面面积的14;③四面体的六个二面角的平分面交于一点. 其中类比推理方法正确的有( ) A .① B .①② C .①②③D .都不对解析:选C 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.5.在△ABC 中,D 为BC 的中点,则AD ―→=12()AB ―→+AC ―→ ,将命题类比到四面体中去,得到一个命题为:______________________________________..解析:平面中线段的中点类比到空间为四面体中面的重心,顶点与中点的连线类比顶点和重心的连线.答案:在四面体A ­BCD 中,G 是△BCD 的重心,则AG ―→=13()AB ―→+AC ―→+AD ―→ 6.运用下面的原理解决一些相关图形的面积问题:如果与一条固定直线平行的直线被甲、乙两个封闭的图形所截得的线段的比都为k ,那么甲的面积是乙的面积的k 倍.你可以从给出的简单图形①②中体会这个原理.现在图③中的两个曲线方程分别是x 2a 2+y 2b2=1(a >b>0)与x 2+y 2=a 2,运用上面的原理,图③中椭圆的面积为__________.解析:由于椭圆与圆截y 轴所得线段之比为b a, 即k =b a,所以椭圆面积S =πa 2·b a=πab . 答案:πab7.在Rt △ABC 中,若∠C =90°,则cos 2A +cos 2B =1,在空间中,给出四面体性质的猜想.解:如图,在Rt △ABC 中,cos 2A +cos 2B =⎝ ⎛⎭⎪⎫b c 2+⎝ ⎛⎭⎪⎫a c 2=a 2+b2c 2=1.于是把结论类比到四面体P ­A ′B ′C ′中,我们猜想,三棱锥P ­A ′B ′C ′中,若三个侧面PA ′B ′,PB ′C ′,PC ′A ′两两互相垂直,且分别与底面所成的角为α,β,γ,则cos 2α+cos 2β+cos 2γ=1.8.在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100;类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.(1)写出相应的结论,判断该结论是否正确,并加以证明; (2)写出该结论一个更为一般的情形(不必证明).解:(1)在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和,则数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300.该结论是正确的.证明如下:∵等差数列{a n }的公差d =3, ∴(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20) =10d +10d +…+10d =100d =300,10个同理可得:(S 40-S 30)-(S 30-S 20)=300,所以数列S 20-S 10,S 30-S 20,S 40-S 30是等差数列,且公差为300. (2)在公差为d 的等差数列{a n }中, 若S n 是{a n }的前n 项和, 则对于任意k ∈N +, 数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 也成等差数列,且公差为k 2d .9.先阅读下列不等式的证法,再解决后面的问题:已知a 1,a 2∈R ,a 1+a 2=1,求证a 21+a 22≥12.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2, 则f (x )=2x 2-2(a 1+a 2)x +a 21+a 22=2x 2-2x +a 21+a 22. 因为对一切x ∈R ,恒有f (x )≥0,所以Δ=4-8(a 21+a 22)≤0,所以a 21+a 22≥12.(1)若a 1,a 2,…,a n ∈R ,a 1+a 2+…+a n =1,请写出上述结论的推广式; (2)类比上述证法,对你推广的结论加以证明. 解:(1)若a 1,a 2,…,a n ∈R ,a 1+a 2+…+a n =1, 求证:a 21+a 22+…+a 2n ≥1n.(2)证明:构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2,则f (x )=nx 2-2(a 1+a 2+…+a n )x +a 21+a 22+…+a 2n =nx 2-2x +a 21+a 22+…+a 2n . 因为对一切x ∈R ,恒有f (x )≥0, 所以Δ=4-4n (a 21+a 22+…+a 2n )≤0.。

高中数学选修1-2第三章 推理与证明1_归纳与类比1_2类比推理-精选学习文档

高中数学选修1-2第三章 推理与证明1_归纳与类比1_2类比推理-精选学习文档

1.2 类比推理一、教学目标1.知识与技能:(1)结合已学过的数学实例,了解类比推理的含义;(2)能利用类比进行简单的推理;(3)体会并认识类比推理在数学发现和生活中的作用。

2.方法与过程:递进的了解、体会类比推理的思维过程;体验类比法在探究活动中:类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。

3.情感态度与价值观:体会类比法在数学发现中的基本作用:即通过类比,发现新问题、新结论;通过类比,发现解决问题的新方法。

培养分析问题的能力、学会解决问题的方法;增强探索问题的信心、收获论证成功的喜悦;体验数学发现的乐趣、领略数学方法的魅力!同时培养学生学数学、用数学,完善数学的正确数学意识。

二、教学重点:了解类比推理的含义,能利用类比进行简单的推理。

教学难点:培养学生“发现—猜想—证明”的推理能力。

三、教学方法:探析归纳,讲练结合四、教学过程(一)复习:归纳推理的概念:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都具有这种属性。

我们将这种推理方式称为归纳推理。

注意:利用归纳推理得出的结论不一定是正确的。

1.归纳推理的要点:由部分到整体、由个别到一般;2.典型例子方法归纳。

(二)引入新课:据科学史上的记载,光波概念的提出者,荷兰物理学家、数学家赫尔斯坦•惠更斯曾将光和声这两类现象进行比较,发现它们具有一系列相同的性质:如直线传播、有反射和干扰等。

又已知声是由一种周期运动所引起的、呈波动的状态,由此,惠更斯作出推理,光也可能有呈波动状态的属性,从而提出了光波这一科学概念。

惠更斯在这里运用的推理就是类比推理。

(三)例题探析例1:已知:“正三角形内一点到三边的距离之和是一个定值”,将空间与平面进行类比,空间中什么样的图形可以对应三角形?在对应图形中有与上述定理相应的结论吗?解:将空间与平面类比,正三角形对应正四面体,三角形的边对应四面体的面。

得到猜测:正四面体内一点到四个面距离之和是一个定值。

高中数学 第三章 推理与证明 第1节 归纳与类比(第1课时)学案 北师大版选修1-21

高中数学 第三章 推理与证明 第1节 归纳与类比(第1课时)学案 北师大版选修1-21

1.1 归纳推理1.理解归纳推理的含义,能利用归纳推理进行简单的推理,体会并认识归纳推理在数学发展中的作用.2.了解欧拉公式的概念.1.根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,我们将这种推理方式称为________.归纳推理是由______到______,由______到______的推理.归纳推理是由部分到整体,由个别到一般的推理,得到的结论不一定正确,其正确性还有待于严格的证明或举例说明其结论的不正确性.2.欧拉公式:一个凸多面体中,多面体的面数(F)、棱数(E)、顶点数(V),它们之间的关系为________.【做一做1-1】由集合{a1},{a1,a2},{a1,a2,a3},…的子集个数归纳出集合{a1,a2,a3,…,a n}的子集个数为( ).A.n B.n+1 C.2n D.2n-1【做一做1-2】在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表.观察表中数据的特点,用适当的数填入表中“________”处.答案:1.归纳推理部分整体个别一般2.V-E+F=2【做一做1-1】C 由前三个集合子集的个数分别为21,22,23,可归纳得出{a1,a2,a3,…,a n}的子集个数为2n.【做一做1-2】140 851.如何判断由归纳推理得到的结论的正确与否?剖析:归纳推理是根据已经知道的一类事物中个别事物具有的属性推断出所有这类事物所具有的共性,有时结论正确,有时结论不正确.在归纳结论时,要对大量的个体进行观察,其正确性还需要通过严格的证明,不正确的结论只需举出一个特例说明即可.2.归纳推理的一般步骤是什么?剖析:(1)通过观察个别事物发现某些相同的性质;(2)从已知的相同性质中推出一个明确表达的一般性命题,并且在一般情况下,如果归纳的个别情况越多,越具有代表性,那么推广的一般性结论也就越可靠,学习中要通过实例去分析、归纳问题的一般性命题,加强应用.特别注意,由归纳推理所获得的结论,仅仅是一种猜测,并不一定可靠,其可靠性需要通过证明.(1)归纳推理是我们探求数学问题的一种重要方法和途径,通过归纳推理可以发现许多未知的内容.(2)对于数列的通项公式和前n项和的求法,常用归纳猜想,然后再用数学归纳法进行证明.(3)数论问题也常常是由个别事例的发现、归纳、猜想得出一般性的结论.例如,哥德巴赫猜想:一个偶数(大于4)可以写成两个素数的和.题型一观察找规律【例题1】将自然数0,1,2,…,按照如下形式进行摆放:根据以上规律判定,从2008到2010的箭头方向是( ).反思:注意寻找规律,找到图形随数字变化的规律,然后进行预测猜想.题型二根据数列的前几项归纳通项【例题2】如图是一个面积为1的三角形,现进行如下操作.第一次操作:分别连接这个三角形三边的中点,构成4个三角形,挖去中间一个三角形(如图①中阴影部分所示),并在挖去的三角形上贴上数字标签“1”;第二次操作:连接剩余的3个三角形三边的中点,再挖去各自中间的三角形(如图②中阴影部分所示),同时在挖去的3个三角形上都贴上数字标签“2”;第三次操作:连接剩余的各三角形三边的中点,再挖去各自中间的三角形,同时在挖去的三角形上都贴上数字标签“3”;……如此下去,记第n次操作后剩余图形的总面积为a n.…①②(1)求a1,a2;(2)求第n次操作后,挖去的所有三角形上所贴标签上的数字和S n.分析:写出前几项,归纳出第n项,从而发现规律,进行求和.反思:本题由图形发现规律,发现每次挖去的三角形个数构成等比数列,从而问题转化为求数列的前n项和,利用错位相减法求出.题型三探索不等式成立的条件【例题3】猜想不等式1+12+13+…+1n>n+1满足什么条件时成立?分析:不等式的左边不能合并,但当n取较小的自然数时,可以合并,n可从1开始取值进行探讨.反思:有些结论是在某些条件下成立,不一定恒成立,需探究其成立的条件.答案:【例题1】A 本题中的数字及箭头方向都有一定的规律.箭头每经过四个数就要重复出现,即以4为周期变化.2 008恰好是4的倍数,应该与0的起始位置相同.【例题2】 解:(1)a 1=34,a 2=916.(2)设第n 次操作挖去b n 个三角形,则{b n }是以1为首项,3为公比的等比数列,即b n =3n -1,所以挖去的所有三角形上所贴标签的数字的和S n =1×1+2×3+…+n ×3n -1,则3S n =1×3+2×32+…+(n -1)×3n -1+n ×3n .两式相减,得-2S n =(1+3+…+3n -1)-n ×3n =3n -12-n ×3n ,故S n =⎝ ⎛⎭⎪⎫n 2-14×3n +14. 【例题3】 解:当n =1时,左边=1,右边=1+1=2,不等式不成立.当n =2时,左边=1+12=2+22,右边=1+2=3=122.∵2+2<12,∴左边<右边,不等式不成立.当n =3时,左边=1+12+13=6+32+236,右边=3+1=2,左边>6+3×1.4+2×1.76=6.83>2=右边.∴不等式成立.猜想当n ∈N +且n ≥3时不等式成立.1数列1,5,10,16,23,31,x,50,…中的x 等于( ). A .38B .39C .40D .41答案:C 前6项从第2项起每一项与前一项的差分别为4,5,6,7,8,可得x =31+9=40.2已知数列{a n }满足a 0=1,a n =a 0+a 1+…+a n -1(n≥1),则当n≥1时,a n 等于( ). A .2nB.)1(21n n C .2n -1D .2n -1答案:C a 0=1,a 1=a 0=1,a 2=a 0+a 1=2a 1=2,a 3=a 0+a 1+a 2=2a 2=4,a 4=a 0+a 1+a 2+a 3=2a 3=8,……猜想当n ≥1时,a n =2n -1.3如下图所示的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n ,其余的数都等于它肩上的两个数相加.则第n(n≥2)行中第2个数是__________.(用n 表示)1 2 2 3 4 34 7 7 45 11 14 11 56 16 25 25 16 6 … … … … … …答案:222+-n n 如题图,2=1+1,4=(1+2)+1,7=(1+2+3)+1,11=(1+2+3+4)+1.归纳猜想,第n 行第2个数为[1+2+3+…+(n -1)]+1=222+-n n .4在如下数表中,已知每行、每列中的数都成等差数列,第1列 第2列 第3列… 第1行 123 … 第2行 24 6 … 第3行 3 69……………那么位于表中的第n 行第n +1列的数是________.答案:n 2+n 观察数表可知,第n 行的第1个数为n ,且第n 行的数列的公差为n ,所以位于第n 行第n +1列的数为n +n 2.5已知数列{a n }满足a 1=1,a n +1=22+n na a (n ∈N +). (1)求a 2,a 3,a 4;(2)猜测a 5及数列{a n }的通项公式.答案:分析:先通过题目中给出的递推关系式,求出a 2,a 3,a 4并猜想a 5,发现它们之间的共同性质,再猜想出一个明确的通项公式.解:(1)3222112=+=a a a ,42212323223==+⨯=a ,522212124=+⨯=a . (2)由(1)猜测,31625==a ,a n 的通项公式为12+=n a n .。

高中数学第三章推理与证明1归纳与类比1.2类比推理课件

高中数学第三章推理与证明1归纳与类比1.2类比推理课件

第三章 推理与证明
课前预习学案
课堂互动讲义
课后演练提升
1.下面几种推理是类比推理的是( ) A.因为三角形的内角和是180°×(3-2),四边形的内角 和是180°×(4-2),…,所以n边形的内角和是180°×(n-2) B.由平面三角形的性质,推测空间四边形的性质 C.某校高二年级有20个班,1班有51位团员,2班有53位 团员,3班有52位团员,由此可以推测各班都超过50位团员 D.4能被2整除,6能被2整除,8能被2整除,所以偶数能 被2整除 答案: B
数学D 选修1-2
第三章 推理与证明
课前预习学案
课堂互动讲义
课后演练提升
解析: 如图①所示,在平面△DEF 中,正弦定理为sDinEF =siEnFD=sDinFE.如图②,已知平面 SAB,SAC,SBC 与底面 ABC 所成的角分别为 α1,α2,α3.
类比可得,在四面体 S-ABC 中,有sSi△nSAαB1=sSi△nSAαC2=sSi△nSBαC3. 即sinS1α1=sinS2α2=sinS3α3.
数学D 选修1-2
第三章 推理与证明
三角形的面积 S=12(a+b+c)r(r 为三角形内 切圆的半径)
四面体
数学D 选修1-2
第三章 推理与证明
课前预习学案
课堂互动讲义
课后演练提升
[思路导引] 已知三角形和四面体的“外在”性质,合理寻找
类比对象对二者“内在”性质进行探究.
[边听边记] 三角形和四面体分别是平面图形和空间图形
,三角形的边对应四面体的面,即平面的线类比空间的面;三
答案: 正四面体的内切球半径是高的14
数学D 选修1-2
第三章 推理与证明
课前预习学案

人教版高中选修1-2《推理与证明》教学设计

人教版高中选修1-2《推理与证明》教学设计《人教版高中选修1-2《推理与证明》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!推理与证明章节教学设计地位与作用“推理与证明”是数学的思维过程,也是人们学习和生活中经常使用的思维方式。

推理一般包括合情推理与演绎推理。

在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养。

证明通常包括逻辑证明和实践、实践证明,演绎推理和逻辑证明能力的培养是高中数学课程的重要目标。

本章学习,有利于发展学生思维能力,提高学生数学素养,让学生感受逻辑证明在数学及日常生活中的作用,从而架起数学与生活的桥梁,形成严禁的理性思维和科学精神。

内容说明“推理与证明”是新课标新增内容,主要包括合情推理与演绎推理、直接证明与间接证明、数学归纳法三部分(其中数学归纳法文科数学不做要求)。

“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。

本章内容是各只是模块中常用推理方法和论证方法的总结,推理方法与证明方法是从思维过程中抽象出来的,是由数学思维过程凝缩而成的,是高中数学的重要基础,在高中数学中占有极其重要的地位和作用。

课程要求合情推理和演绎推理结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比进行简单的推理,体会并认识合情推理在数学发现中的作用。

结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

通过具体实例,了解合情推理和演绎推理之间的联系和差异。

直接证明与间接证明结合已经学过的数学实例,了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点。

结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点。

本章重点与难点重点:(1)合情推理、演绎推理;(2)直接证明与间接证明。

高中数学推理与归纳教案

高中数学推理与归纳教案教学内容:数学推理与归纳教学目标:1. 学生能够理解数学推理与归纳的基本概念和方法;2. 学生能够运用推理与归纳方法解决实际问题;3. 学生能够培养逻辑思维和判断能力。

教学重点:推理与归纳的基本概念和方法教学难点:运用推理与归纳方法解决实际问题教学准备:1. 教材:高中数学教材2. 教学工具:黑板、彩色粉笔、教学PPT等3. 教学资源:相关数学推理与归纳的练习题教学步骤:一、导入(5分钟)教师通过提问或引入实际问题引发学生对数学推理与归纳的兴趣,引导学生主动思考。

二、概念讲解(15分钟)1. 教师介绍数学推理与归纳的基本概念和区别;2. 教师通过例题讲解推理与归纳的方法和思路;3. 学生跟随教师一起完成例题,加深理解。

三、练习与讨论(20分钟)1. 学生独立完成数学推理与归纳的练习题,教师巡视指导;2. 学生就解题方法与答案展开讨论,学生之间相互交流思路。

四、拓展应用(10分钟)1. 教师提供一些实际问题,让学生运用数学推理与归纳的方法进行解答;2. 学生展示解题过程,教师点评指导。

五、总结反思(5分钟)教师对本节课的内容进行总结,强调数学推理与归纳在数学学习中的重要性,鼓励学生勤思考、多实践。

六、作业布置(5分钟)布置相关练习题作业,鼓励学生在课外多加练习,巩固所学知识。

教学心得:数学推理与归纳是数学学习的重要内容,通过本节课的教学,学生对推理与归纳的概念有了更深入的理解,能够熟练运用所学方法解决实际问题。

同时,通过练习和讨论,学生的逻辑思维能力也得到了一定的提升。

希望学生在以后的学习中能够继续努力,善于思考,勇于探索,提高数学学习的水平。

高中数学第三章推理与证明3.1归纳与类比3.1.2类比推理课件北师大版选修1_2

3.1.2 类比推理








1.通过具体实例理解类比推理的意义. 2.会用类比推理对具体问题作出推断.
一、类比推理 1.类比推理的含义 由于两类不同对象具有某些类似的特征,在此基础上,根据一类 对象的其他特征,推断另一类对象也具有类似的其他特征,我们把 这种推理过程称为类比推理. 类比推理是两类事物特征之间的推理. 2.类比推理的特征 类比推理是从特殊到特殊的推理,简称类比. 3.结论真假:利用类比推理得出的结论不一定是正确的. 4.思维过程流程图 观察、比较→联想、类推→猜想新的结论
【做一做 1】 (1)已知扇形的弧长为 l,半径为 r,类比三角形的面
底× 高 积公式 S= ,可推知扇形面积等于( 2 ������2 ������2 A. B. 2 2 ������������ ������+������ C. D. 2 2
)
(2)在医药研究中,研制新药初期,常用一些动物做药性、药理试 验,最后才做临床试验与应用,通过对动物的观察,得出对人应用的 一些结论,所用推理为 . 解析:(1)三角形的高对应扇形的半径,三角形的底对应扇形的弧 1 ������������ 长,所以可猜测为 2rl= 2 . (2)符合类比推理的方法,故应为类比推理. 答案:(1)C (2)类比推理
【做一做2】 (1)鲁班发明锯子的思维过程为:带齿的草叶能割破 行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们 在形状上也应该类似,“锯子”应该是齿形的.该过程体现了( ) A.归纳推理 B.类比推理 C.没有推理 D.以上说法都不对 (2)等差数列{an}中有2an=an-1+an+1(n≥2,且n∈N+),类比以上结 论,在等比数列{bn}中类似的结论是 . 2 =b · 答案:(1)B (2) ������������ n-1 bn+1(n≥2,且n∈N+)

高中数学类比推理教案

高中数学类比推理教案
教学目标:通过本课程学习,学生能够掌握类比推理的基本概念和方法,能够熟练运用类比推理解决实际问题。

教学重点:类比推理的基本概念和方法。

教学难点:灵活运用类比推理解决实际问题。

教学准备:
1. 教材:高中数学教材。

2. 教具:黑板、彩色粉笔、教案、习题册。

3. 教学内容:类比推理的概念和方法。

教学过程:
一、导入(5分钟)
教师通过举一个生活中的例子,引入类比推理的概念,让学生了解类比推理在日常生活中的重要性。

二、讲解(15分钟)
1. 教师向学生介绍类比推理的定义和基本概念。

2. 教师讲解类比推理的方法和步骤。

3. 教师通过实例详细讲解类比推理的过程和技巧。

三、练习(20分钟)
1. 学生通过课堂练习,独立完成类比推理的练习题。

2. 学生通过小组合作,讨论解答类比推理的难题。

四、总结(5分钟)
1. 教师对本节课的内容进行总结,并强调类比推理的重要性。

2. 学生积极参与讨论,对类比推理的方法和技巧进行总结。

五、作业布置(5分钟)
1. 布置课后作业,要求学生完成相关的习题。

2. 提醒学生认真复习类比推理的方法和技巧。

教学反思:
通过本节课的教学,学生能够掌握类比推理的基本概念和方法,能够灵活运用类比推理解决实际问题。

同时,学生能够培养逻辑思维能力,提高数学分析和推理能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.2类比推理学习目标1.理解类比推理的意义;了解类比推理的特点;2.掌握运用类比推理的一般步骤。

会进行简单的类比推理。

3.了解归纳推理与类比推理的异同;4.理解合情推理的含义,了解所得结果不一定正确;5.了解合情推理在科学实验和创造中的价值,增强在数学学习中自觉运用合情推理的意识。

提高归纳、类比联想的能力。

重难点剖析重点:掌握类比推理的特点与步骤;难点:在类比推理的运用中发现两类对象间相似性质潜在的关联性;学习过程一.问题情境从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子.他的思路是这样的:茅草是齿形的;茅草能割破手. 我需要一种能割断木头的工具;它也可以是齿形的.这个推理过程是归纳推理吗?二.数学活动我们再看几个类似的推理实例。

例1、试根据等式的性质猜想不等式的性质。

等式的性质:猜想不等式的性质:(1) a=b⇒a+c=b+c; (1) a>b⇒a+c>b+c;(2) a=b⇒ ac=bc; (2) a>b⇒ ac>bc;(3) a=b⇒a2=b2;等等。

(3) a>b⇒a2>b2;等等。

问:这样猜想出的结论是否一定正确?例2、试将平面上的圆与空间的球进行类比.圆的定义:平面内到一个定点的距离等于定长的点的集合.球的定义:到一个定点的距离等于定长的点的集合.圆 球 弦←→截面圆 直径←→大圆 周长←→表面积 面积←→体积☆上述两个例子均是这种由两个(两类)对象之间在某些方面的相似或相同,推演出他们在其他方面也相似或相同;或其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理. 类比推理的一般步骤:⑴ 找出两类对象之间可以确切表述的相似特征;⑵ 用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想; ⑶ 检验猜想,即例3如图,已知点O 是ABC ∆内任意一点,连结,,,CO BO AO 并延长交对边于111,,C B A ,则1111111=++CC OC BB OB AA OA (Ⅰ)类比猜想,对于空间四面体BCD V -,存在什么类似的结论 (Ⅱ)?并用证明(Ⅰ)时类似的方法给出证明。

分析:平面中的三角形可与空间的四面体进行类比,三角形内一点对应于四面体内一点,三角形的三个顶点类比四面体的四个顶点,三角形的三边类比四面体的四个面,于是可类比得到相应的结论(Ⅱ);而证明,(Ⅰ)可用面积法,那么证明(Ⅱ)可类比使用体积法。

注意:本题不仅用类比得到一个新的性质,而且证明方法上也运用了类比的方法。

变式练习1若三角形内切圆半径为r ,三边长为c b a ,,,则三角形的面积)(21c b a r S ++=;根据类比思想,若四面体内切球半径为R ,四个面的面积为4321,,,S S S S ,则四面体的体积=V (试证明这两个结论)。

例4在等差数列{}n a 中,若010=a ,则有等式:=+++n a a a 21n a a a -+++1921 ),19(*∈<N n n 。

类比上述性质,相应地,在等比数列{}n b 中,若19=b ,则有等式 成立。

分析:等差数列中“与首末两项等距的两项和相等”,等比数列中“与首末两项等距的两项积相等”,由此联想到等差数列的两项和可与等比数列的两项积类比。

变式练习2由三角形的边的不等关系容易得到不等式:||||||||||b a b a b a-≥±≥+类比上述不等式,对于数b a ,有类似的不等式吗?若有写出来并对真假作出判断。

例5 我们知道,“过圆心为O 的圆外一点P 作它的两条切线PA 、PB ,其中A 、B 为切点,则∠POA=∠POB。

”这个性质可以推广到所有圆锥曲线,请写出其中一个: 。

点评:本题是平面几何中圆的性质与圆锥曲线性质的类比猜想,直觉思维与合情推理是科学结论获得的有效手段。

解题的突破点在于弄清:过圆心为O 的圆外一点P 作它的两条切线PA 、PB ,其中A 、B 为切点,则∠POA=∠POB 的含义。

学后反思1.类比推理的特点① 类比是从特殊到特殊的推理,是根据两类不同对象已具有的某些相似性质,而联想到它们在其他方面可能也有相似的性质,从而由一类对象的已知的某项性质,猜测出另一类对象也可能有此项相应的性质而得到一个明确的结论,类比结论有明显的猜想和创新的特性。

所得的结论超越了前提所包容的范围;② 类比所得的结论超越了前提所包容的范围,结论不一定真。

③ 类比的前提是两类对象之间有可比性,所谓可比性是指:它们之间有可以清楚定义的某些共同特征。

而且两类对象之间的相似性质越多,类比所得的性质的可靠性越大;2.类比推理的一般步骤① 找出与自己所研究的对象具有可比性的一类对象(它们的相似性质越多越好); ② 根据比较类对象的某项已知性质,猜测你所研究的对象也可能有类似的性质,从而得出一个相应的明确的结论(命题);③ 对所提出的命题进行检验。

3.类比推理的结论未必真,欲知真假需证明。

例 在平面上*∈∀N n ()3≥n 都有正n 边形,而在空间对*∈∀N n ()4≥n 不是都有正n 面体。

我们知道正多面体只有五种。

4.类比推理是我们探求数学问题的一种重要方法和途径:如:平面上的直线可以和空间的平面进行类比;向量与数可以类比;平面图形的面积与空间几何体的体积可以类比;等差数列与等比数列可以类比等等;课堂练习1.平面内平行于同一条直线的两条直线平行,类比可得,在空间有( ) A .平行于同一直线的两直线平行;B .平行于同一直线的两平面平行; C .平行于同一平面的两直线平行;D .平行于同一平面的两平面平行。

2.将一张坐标纸折叠一次,使点)3,2(与点)2,3(重合,且点)2006,2005(与点),(n m 重合,则n m ,分别为( )A .2005,2005;B .2006,2006;C .2005,2006;D .2006,2005。

3.在项数为n 2(*∈N n ),公差为d 的等差数列中,偶数项和与奇数项和的差等于nd 。

类比可得:在项数为n 2(*∈N n ),公比为q 的等比数列中, 。

4.在正三角形中,三角形内的任意一点到三边的距离和为定值,类比这个性质,在空间相应的结论是 ,此命题是 (填:真或假)。

5.由图(1)有面积关系:PA B PAB S PA PB S PA PB''∆∆''⋅=⋅,则由图(2)有体积关系:P A B C P ABC V V '''--= 。

6.设221)(+=xx f ,类比课本中推导等差数列前n 项和公式的方法,求:)6()5()4()5(f f f f +++-+- 的值。

参考答案:例3:结论(Ⅱ):点O 是空间四面体BCD V -内的任意一点,连结DO CO BO VO ,,,并延长分别交面VBC VBD VCD BCD ,,,于点1111D C B V ,,,,则有:111111111=+++DD OD CC OC BB OB VV OV证明:设点O V ,到平面BCD 的距离分别为1h h ,,则111VV OV h h V V BCDVBCD O ==, 同理:11BB OB V V BCD VVCDO=;11CC OC V V BCD V VBD O =;11DD OD V V BCD V VBC O =四式相加得:111111111=+++DD OD CC OC BB OB VV OV变式练习1:)(432131S S S S R V +++=例4:结论:),(+∈<=N n n b b b b b b n n 17172121 变式练习2:有!真。

例5解析:①过抛物线x 2=2py (p >0)外一点P 作抛物线的两条切线PA 、PB (A 、B 为切点),若F 为抛物线的焦点,则∠PFA=∠PFB。

②过椭圆22ax +22b y =1(a >b >0)外一点P 作椭圆的两条切线PA 、PB (A 、B 为切点)若F 为椭圆的一个焦点,则∠PFA=∠PFB。

③过双曲线22ax -22b y =1(a >0,b >0)外(两支之间)一点P (P 不在渐近线上)作双曲线的两条切线PA 、PB (A 、B 为切点),若F 为双曲线的一个焦点。

⑴若A 、B 在同一支,则∠PFA=∠PFB。

⑵若A 、B 在不同一支,则PF 平分∠AFP 的邻补角。

课堂练习 1、D ; 2、D ;3、偶数项与奇数项的商为nq ;4、空间四面体内任意一点到四个面的距离之和为定值,真;5、PCPB PA PC PB PA V V ABCPC B A P ••••=1211216、因为=+=+=+=+)()()()()()()()(32435465f f f f f f f f 221021=+=+)()()()(f f f f ,所以运用倒序相加法可求得和为:23。

相关文档
最新文档