高考数学经典常考题型第99专题 归纳推理与类比推理

合集下载

高考数学推理与证明题分析

高考数学推理与证明题分析

高考数学推理与证明题分析
高考数学推理与证明题分析
一、基础知识的总结归纳
1.推理一般包括合理推理和演绎推理。

2.合理推理:根据已有的事实和正确的结论(包括定义、公理、定理等)推断出一定结果的推理过程。

),实验和实践的结果,以及个人的经验和直觉。

归纳和类比是合理推理的常用思维方法。

3.归纳推理:根据一类事物的某些对象具有一定的性质这一事实,推导出这类事物的所有对象都具有这样的性质。

4.归纳推理的一般步骤:(1)通过观察个别情况找到一些相同的性质;Derive 从已知的同一性质中明确地表达了一般命题(猜想)。

5.类比推理:根据两种不同事物之间的一些相似性,推断出一种事物与另一种事物具有相似的性质。

6.类比推理的一般步骤:找出两种事物之间的相似性或一致性;Infer把一种事物的性质从另一种事物的性质中分离出来,并得到一个明确的命题(猜想)。

7.演绎推理:根据一般真命题将特殊命题演绎为真的推理。

8.从原因推导到结果的思维方法。

9.综合方法:从结果到结果原因的思维方法。

10.反证法:确定非Q为假,介绍Q为真的方法。

二、通过归谬法证明命题的一般步骤:
(1)区分命题的条件和结论;
与命题结论相矛盾的Make假设;
(3)从假设出发,运用正确的推理方法,推导出矛盾的结果;
间接证明命题为真。

1。

高考数学中的类比推理

高考数学中的类比推理

高考数学中的类比推理
高考数学中的类比推理
类比推理是指在一定的科学原理下形成的相关抽象与实际思维。

它是一种以旧熟来维护新变化的逻辑思维方式,通过熟悉的例子用新的情境想象而得出未知的结论。

在高考数学中,使用类比推理的一个常见的场景是就同一个问题,采取不同的方式来进行推理。

这种推理方式比较有效,可以帮助我们理解问题的知识点,做出正确的结果。

类比推理也被用来帮助我们解决问题,进行模型转换,优化问题求解等等。


考生在解答高考数学中的题目时,一定要结合已有的基础知识来对问题采取类比推理的思维方式,可以灵活运用自己熟悉的问题来推导出新的问题,做出准确的判断。

此外,高中数学课程中的类比推理也可以通过掌握各种技巧来提高效率,比如
说从实例入手推出一般情况,把实例问题转化为一般问题,这样就可以��助考生更好地理解题意,把握大量知识点。

类比推理在解题中,很多概念是互为联系的,考生也可以分析和理解不同的概念之间的关系,找出相互的联系,从而得出正确的结果。

总之,在高考数学中,考生需要善于使用类比推理来更好地理解题目,帮助他
们把握大量的知识,做出准确的结论并有效地解决问题。

高考数学复习点拨:例谈类比推理

高考数学复习点拨:例谈类比推理

例谈类比推理山东 许美文事物的各个性质之间并不是孤立存在的,而是相互联系和相互制约的.如果两个事物在某些性质上相同或类似,那么它们在另一些性质上也可能相同或类似.因此,我们可以根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另一类事物类似(或相同)的性质,这种推理叫做类比推理.类比的结论可能是真的,因此类比属于合情推理。

类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出(猜想出)一个明确的命题.例题:找出等差数列与等比数列的相似性质,并用等差数列的下列性质类比等比数列的有关性质:(1)等差数列中,如果,,,,m n l k N +∈且,m n k l +=+则mn k l aa a a +=+;(2)从等差数列中抽去项数成等差数列的项(顺序不变),仍构成等差数列。

(3)对于有穷等差数列,与首尾两项等距离的两项之和相等。

(4)等差数列中,232,,,nnn n n S SS S S --仍成等差数列。

(5)等差数列中,若项数为2n ()n N +∈,则()21nn n Sn a a +=+;若项数为()21n n N +-∈,则()2121n n S n a -=-。

解:等差数列与等比数列有下列相似的性质:(1)等差数列的定义:从第二项起每一项与它前一项的差等于同一个常数;等比数列的定义:从第二项起每一项与它前一项的比等于同一个常数。

(2)等差数列的通项公式是:()11;naa n d =+-前n 项和:()112nn n Sna d -=+; 等比数列的通项公式是:11.n naa q -=前n 项和:()111n na q Sq-=-。

(3)若a 、b 、c 成等差数列,则b 叫做a 、c 的等差中项,且2b a c =+; 若A 、G 、B 成等比数列,则G 叫做A 、B的等比中项,且(2G AB G ==。

高中数学讲义微专题99 归纳推理与类比推理

高中数学讲义微专题99  归纳推理与类比推理

微专题99 归纳推理与类比推理一、基础知识: (一)归纳推理:1、归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳),简言之,归纳推理是由部分到整体,由个别到一般的推理2、处理归纳推理的常见思路:(1)利用已知条件,多列出(或计算出)几个例子,以便于寻找规律(2)在寻找规律的过程中,要注意观察哪些地方是不变的(形成通式的结构),哪些地方是变化的(找到变量),如何变化(变量变化的规律)(3)由具体例子可将猜想的规律推广到一般情形,看是否符合题意 3、常见的归纳推理类型:(1)函数的迭代:设f是D D →的函数,对任意x D ∈,记()()()()()()()()()()()()0121,,,n n f x x f x f x f x f f x f x f f x +⎡⎤====⎡⎤⎣⎦⎣⎦,则称函数()()n f x 为()f x 的n 次迭代;对于一些特殊的函数解析式,其()()n f x 通常具备某些特征(特征与n )有关。

在处理此类问题时,要注意观察解析式中项的次数,式子结构以及系数的特点,以便于从具体例子中寻找到规律,得到()()n fx 的通式(2)周期性:若寻找的规律呈现周期性,则可利用函数周期性(或数列周期性)的特点求出某项或分组(按周期分组)进行求和。

(3)数列的通项公式(求和公式):从数列所给的条件中,很难利用所学知识进行变形推导,从而可以考虑利用条件先求出几项,然后找到规律,猜出数列的通项公式(求和公式) (4)数阵:由实数排成一定形状的阵型(如三角形,矩形等),来确定数阵的规律及求某项。

对于数阵首先要明确“行”与“列”的概念。

横向为“行”,纵向为“列”,在项的表示上通常用二维角标ij a 进行表示,其中i 代表行,j 代表列。

例如:34a 表示第3行第4列。

在题目中经常会出现关于某个数的位置问题,解决的方法通常为先抓住选取数的特点,确定所求数的序号,再根据每行元素个数的特点(数列的通项),求出前n 行共含有的项的个数,从而确定该数位于第几行,然后再根据数之间的规律确定是该行的第几个,即列。

演绎推理,归纳推理,类比推理的例子

演绎推理,归纳推理,类比推理的例子

演绎推理,归纳推理,类比推理的例子
以下是 7 条关于演绎推理、归纳推理、类比推理的例子:
1. 演绎推理呀,就好比说,所有人都会犯错,我是人,那我肯定也会犯错啦。

你看,这不就是从一般到特殊的过程嘛!就像警察根据线索一步步推断出犯罪嫌疑人一样!
2. 归纳推理呢,嘿,你想想,我观察了好多天,每天早上太阳都从东边升起,那我不就能归纳出太阳总是从东边升起这个结论嘛!这跟我们总结经验是不是很像呀!
3. 类比推理哦,哎呀,鸟有翅膀能飞,飞机也有类似翅膀的结构,所以飞机也能飞呀。

这就像我们把两个看似不同但有相似之处的东西放在一起比较呢!
4. 演绎推理就像走一条清晰的路,已知三角形内角和是 180 度,这一个三
角形是直角三角形,那不是一下就能推出另外两个角的度数啦!多直接呀!
5. 归纳推理呀,你看那些科学家研究了好多好多的案例,然后得出一个普遍的规律,不就像我们收集了好多糖果,然后总结出哪种糖果最好吃一样嘛!
6. 类比推理呢,就好比说船在水上航行,潜艇也在水里活动,那它们在某些方面是不是就有相似之处呀,多有意思呀!
7. 演绎推理就好像是按照菜谱做菜,菜谱说先放啥后放啥,你照做就能做出那道菜。

归纳推理是你吃了好多美食,然后总结出哪种口味你最喜欢。

类比
推理则像是把不同的东西联系起来,发现它们的奇妙之处!总之,这三种推理都超级重要的呢!。

类比推理在高中数学中的应用

类比推理在高中数学中的应用

类比推理在高中数学中的应用类比推理是一种推理方法,通过对已知事物与未知事物的相似之处进行比较,从而推断出未知事物的性质和特征。

在高中数学中,类比推理有着广泛的应用,可以帮助学生更好地理解和应用数学知识。

下面我将为大家介绍一些在高中数学中的类比推理应用。

一、类比推理在几何中的应用在几何学中,类比推理可以帮助我们推理和证明图形的性质和关系。

我们可以通过观察三角形、四边形等各种图形的特点和性质,找出它们之间的共性,并应用到解题中。

1. 类比推理做题示例:已知正方形ABCD的边长为a,点E是AC的中点,连接DE交BC于F,请推导出△DEF 和□BCFE的性质。

解析:根据正方形的性质,我们知道正方形的对角线相等,即AC=BD=√2a。

因为E是AC的中点,所以AE=EC=a/2。

根据类比推理,我们可以推知ED=AE=a/2。

又因为三角形DEF的两边DE和EF相等,所以DEF是一个等腰三角形。

根据类比推理,我们可以推知正方形BCFE也是一个等腰四边形。

二、类比推理在代数中的应用在代数中,类比推理可以帮助我们推断和解决各种代数问题。

我们可以通过观察一些已知的方程和等式的模式,推导出其他的方程和等式。

2. 类比推理做题示例:已知a^2 + b^2 = 25,c^2 + d^2 = 20,请推导出(a + b)^2和(c + d)^2的值。

解析:将(a + b)^2展开得到 a^2 + 2ab + b^2。

根据已知条件a^2 + b^2 = 25,我们可以将其代入到(a + b)^2中,得到:(a + b)^2 = 25 + 2ab。

3. 类比推理做题示例:已知某班级男生的身高服从正态分布,均值为170cm,标准差为5cm。

如果我们随机选择一个男生,他的身高超过175cm的概率是多少?解析:根据正态分布的性质,我们知道约68%的数据位于均值的一个标准差范围内。

所以,身高超过175cm的男生概率为:(100% - 68%)/2 = 16%。

高三数学证明题推理方法

高三数学证明题推理方法

高三数学证明题推理方法数学学科担负着造就运算实力、逻辑思维实力、空间想象实力,以及运用所学学问分析问题、解决问题的实力的重任。

下面就是我给大家带来的高三数学证明题推理方法,盼望大家宠爱!高三数学证明题推理方法一一、合情推理1.归纳推理是由局部到整体,由个别到一般的推理,在进展归纳时,要先依据确定的局部个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论;2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某特性质,那么另一个对象也具有类似的性质。

在进展类比时,要充分考虑确定对象性质的推理过程,然后类比推导类比对象的性质。

二、演绎推理演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进展的,只要接受的演绎推理的大前提、小前提和推理形式是正确的,其结论必需是正确,必需要留意推理过程的正确性与完备性。

三、干脆证明与间接证明干脆证明是相对于间接证明说的,综合法和分析法是两种常见的干脆证明。

综合法一般地,利用确定条件和某些数学定义、定理、公理等,经过一系列的推理论证,最终推导出所要证明的结论成立,这种证明方法叫做综合法(或顺推证法、由因导果法)。

分析法一般地,从要证明的结论启程,逐步寻求使它成立的充分条件,直至最终,把要证明的结论归结为判定一个明显成立的条件(确定条件、定理、定义、公理等)为止,这种证明方法叫做分析法。

间接证明是相对于干脆证明说的,反证法是间接证明常用的方法。

假设原命题不成立,经过正确的推理,最终得出冲突,因此说明假设错误,从而证明原命题成立,这种证明方法叫做反证法。

四、数学归纳法数学上证明与自然数N有关的命题的一种特殊方法,它主要用来探究与正整数有关的数学问题,在中学数学中常用来证明等式成立和数列通项公式成立。

高三数学的复习的记忆法二一、分类记忆法遇到数学公式较多,一时难于记忆时,可以将这些公式适当分组。

例如求导公式有18个,就可以分成四组来记:(1)常数与幂函数的导数(2个);(2)指数与对数函数的导数(4个);(3)三角函数的导数(6个);(4)反三角函数的导数(6个)。

归纳推理与类比推理的PPT

归纳推理与类比推理的PPT
类比推理易受主观因素影响
类比推理过程中涉及的主观判断和经验等因素较 多,容易影响推理的客观性和准确性。
05
归纳推理与类比推理的 未来发展
归纳推理的未来发展
人工智能应用
随着人工智能技术的不断发展,归纳推理在自然语言处理、机器学习等领域的应用将更加广泛,有望实现更高效、准 确的推理过程。
跨领域应用
归纳推理不仅在逻辑学和哲学领域有应用,未来还可能拓展到其他领域,如医学、生物学等,为解决复杂问题提供新 的思路和方法。
区别
01
归纳推理是从个别到一般的推理,即从具体事例出发,概括出一般性结论;而 类比推理则是从一般到一般的属性也可能相同。
02
归纳推理的结论范围比前提更广泛,即结论是前提的一个超集;而类比推理的 结论并不一定包含前提的范围,即前提和结论之间不一定有包含关系。
教育与培训应用
类比推理在教育和培训领域具有重要价值,未来将进一步 探索其在培养创新思维、解决问题能力等方面的应用,为 教育和培训提供新的方法和工具。
THANKS FOR WATCHING
感谢您的观看
根据某一类事物的部分成员的特 征,推出该类事物的一般性结论。
基于对事物内在机制的认识,通 过因果关系推导出一般性结论的 推理方法。
归纳推理的应用
科学研究
在科学研究中,归纳推理是常用 的推理方法之一,通过对大量实 验和观察数据的分析,得出科学 规律和理论。
法律审判
在法律审判中,法官根据证据和 事实进行归纳推理,推断出被告 人的罪行和责任。
归纳推理的逻辑不严密
归纳推理的逻辑基础是假设总体具有与样本 相似的特征,但这一假设并不总是成立,因 此归纳推理的逻辑并不严密。
类比推理的局限性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第99专题训练 归纳推理与类比推理一、基础知识: (一)归纳推理:1、归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳),简言之,归纳推理是由部分到整体,由个别到一般的推理2、处理归纳推理的常见思路:(1)利用已知条件,多列出(或计算出)几个例子,以便于寻找规律(2)在寻找规律的过程中,要注意观察哪些地方是不变的(形成通式的结构),哪些地方是变化的(找到变量),如何变化(变量变化的规律)(3)由具体例子可将猜想的规律推广到一般情形,看是否符合题意 3、常见的归纳推理类型: (1)函数的迭代:设f是D D→的函数,对任意x D ∈,记()()()()()()()()()()()()0121,,,n n f x x f x f x f x f f x f x f f x +⎡⎤====⎡⎤⎣⎦⎣⎦,则称函数()()n f x 为()f x 的n 次迭代;对于一些特殊的函数解析式,其()()n f x 通常具备某些特征(特征与n )有关。

在处理此类问题时,要注意观察解析式中项的次数,式子结构以及系数的特点,以便于从具体例子中寻找到规律,得到()()n fx 的通式(2)周期性:若寻找的规律呈现周期性,则可利用函数周期性(或数列周期性)的特点求出某项或分组(按周期分组)进行求和。

(3)数列的通项公式(求和公式):从数列所给的条件中,很难利用所学知识进行变形推导,从而可以考虑利用条件先求出几项,然后找到规律,猜出数列的通项公式(求和公式)(4)数阵:由实数排成一定形状的阵型(如三角形,矩形等),来确定数阵的规律及求某项。

对于数阵首先要明确“行”与“列”的概念。

横向为“行”,纵向为“列”,在项的表示上通常用二维角标ij a 进行表示,其中i 代表行,j 代表列。

例如:34a 表示第3行第4列。

在题目中经常会出现关于某个数的位置问题,解决的方法通常为先抓住选取数的特点,确定所求数的序号,再根据每行元素个数的特点(数列的通项),求出前n 行共含有的项的个数,从而确定该数位于第几行,然后再根据数之间的规律确定是该行的第几个,即列。

(二)类比推理:1、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理(简称类比)2、常见的类比类型及处理方法: (1)运算的类比:通常是运算级数相对应: ① 加法↔乘法,② 数乘(系数与项的乘法)↔指数幂 ③ 减法↔除法(2)运算律的类比:在数学中的其它领域,如果满足加法,乘法的交换律,以及乘法的分配律,则代数表达式部分运算公式可推广到该领域中。

例如 ①在向量数量积的运算中,满足交换律与分配律,则:代数中的平方差公式:()()22a b a b a b -=+-,和差完全平方公式:()2222a b a ab b ±=±+均可推广到向量数量积中:()()22a b a b a b -=+-,()2222a ba ab b ±=±⋅+②在复数的运算中,满足交换律与分配律,则实数中的运算公式可推广到复数中(甚至是二项式定理)(3)等差数列与等比数列的类比:等差数列的性质通常伴随着一,二级运算(加减,数乘),等比数列的性质通常伴随着二,三级运算(乘除,乘方)。

所以在某些性质中体现出运算上的类比。

例如:设{}n a 为等差数列,公差为d ;{}n b 为等比数列,公比为q ,则① 递推公式:11n n n nb a a d q b ++-=↔= ② 通项公式:()1111n n n a a n d b b q-=+-↔=⋅③ 双项性质:m n p q m n p q m n p q a a a a m n p q b b b b +=+⇔+=+↔+=+⇔= ④ 等间隔取项,在数列{}n a ,{}n b 中等间隔的取项: 则12,,,m k k k a a a 成等差数列12,,,m k k k b b b ↔ 成等比数列(4)维度的类比:平面几何(二维)的结论与立体几何(三维)的结论进行类比,当维度升高时,涉及的要素也将维度升高,例如:①位置关系:平面中的线的关系↔空间中的面的关系,线所成的角↔线面角或二面角, ②度量:线段长度↔图形的面积,图形面积↔几何体体积,点到线的距离↔点到平面距离③衍生图形:内切圆↔内切球,外接圆↔外接球,面对角线↔体对角线(5)平面坐标与空间坐标的类比:平面直角坐标系坐标(),x y ↔空间直角坐标系坐标(),,x y z ,在有些坐标运算的问题中,只需加上竖坐标的运算即可完成推广,例如: ① 线段中点坐标公式:平面:设()()1122,,,A x y B x y ,则AB 中点1212,22x x y y M ++⎛⎫⎪⎝⎭空间:设()()111222,,,,,A x y z B x y z ,则AB 中点121212,,222x x y y z z M +++⎛⎫ ⎪⎝⎭② 两点间距离公式:平面:设()()1122,,,A x y B x y ,则AB =空间:设()()111222,,,,,A x y z B x y z ,则AB =3、同一个命题,不同的角度类比得到的结论可能不同,通常类比只是提供一个思路与方向,猜想出一个命题后通过证明才能保证其正确。

在有关类比的题目中通常选择正确的命题作为类比的结论 二、典型例题:例1:已知()x x f x e=,定义()()()()()()'''1211,,,n n f x f x f x f x f x f x +===⎡⎤⎡⎤⎣⎦⎣⎦ ,经计算()()()123123,,,,x x x x x xf x f x f x e e e---=== 照此规律,则()20151f =( )A. 2015-B. 2015C. 2014eD.2014e-思路:由定义可知:()n f x 即为()1n f x -的导函数,通过所给例子的结果可以推断出()()1nn x x n f x e -=-,从而()20152015x x f x e -=,所以()201520141f e= 答案:C例2:蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似的看作是一个正六边形,如图为一组蜂巢的截面图,其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,第六幅图的蜂巢总数为( ) A.61 B.90 C.91 D.127思路:从所给图中可发现第n 个图可以视为在前一个图的基础上,外面围上一个正六边形,且这个正六边形的每条边有n 个小正方形,设第n 个图的蜂巢总数为()f n ,则可知()f n 比()1f n -多的蜂巢数即为外围的蜂巢数。

即66n - (每条边n 个,其中顶点被计算了两次,所以要减6),所以有()()()161f n f n n --=-,联想到数列中用到的累加法,从而由()()()()21612133f n f n n n n -=⨯-+-++=-⎡⎤⎣⎦,且()11f = 则()2331f n n n =-+。

代入6n =可得()263636191f =⋅-⨯+=答案:C例3:将正整数排成数阵(如图所示),则数表中的数字2014出现在( )A.第44行第78列B.第45行第78列C.第44行第77列D.第45行第77列思路:从数阵中可发现每一行的末尾均为一个完全平方数,即第k 行最后一个数为2k ,所以考虑离2014较近的完全平方数:22441936,452025==,所以2014位于第45行,因为1936是第44行的最后一个数,所以2014为第45行中第()2014193678-=个数,即位于第45行第78列 答案:B例4:已知结论:“在ABC 中,各边和它所对角的正弦比相等,即sin sin sin a b cA B C==”,若把该结论推广到空间,则结论为:“在三棱锥A BCD -中,侧棱AB 与平面ACD ,平面BCD 所成的角为,αβ,则有( )A.sin sin BC AD αβ= B.sin sin AD BCαβ=C.sin sin BCD ACD S S αβ=D.sin sin ACD BCD S Sαβ= 思路:本题为维度推广题,平面中的线段所成的夹角推广为线面角,所以可将正弦定理的边长(一维度量)类比推广为面积(二维度量),正弦定理中为角所对的边长,则在三棱锥中推广为线面角所对的侧面面积,即α所对的侧面为平面BCD ,β所对的侧面为平面ACD ,所以猜测sin sin BCD ACDS S αβ=,再考虑证明其正确性。

证明过程如下: 证明:分别过,B A 作平面ACD ,平面BCD 的垂线,垂足分别为,E F由线面角的定义可知:,BAE ABF αβ∠=∠=11sin 33B ACD ACDACD V SBE S AB α-∴=⋅⋅=⋅⋅⋅ 同理:11sin 33A BCD BCD BCD V S AE S AB β-∴=⋅⋅=⋅⋅⋅11sin sin sin sin 33ACD BCD ACD BCDS AB S AB S S αβαβ∴⋅⋅⋅=⋅⋅⋅⇒⋅=⋅sin sin BCD ACDS S αβ∴=得证 答案:C例5:三角形的面积()12S a b c r =++⋅,其中,,a b c 为其边长,r 为内切圆半径,利用类比法可以得出四面体的体积为( ) A.()123412V S S S S r =+++⋅(其中1234S S S S +++分别为四个面的面积,r 为内切球的半径)B. 13V S h =⋅(S 为底面面积,h 为四面体的高) C. ()123413V S S S S r =+++⋅(其中1234S S S S +++分别为四个面的面积,r 为内切球的半径) D. ()13V ab bc ac h =++⋅(,,a b c 为底面边长,h 为四面体的高) 思路:本题为维度题,在三角形中,面积依靠内切圆半径与边长求解。

则在四面体中,内切圆类比成内切球,边长类比为面积。

所以四面体的体积与内切球半径与各面面积相关,即在A,C 中挑选。

考虑在三角形中,可通过连接内心与各顶点,将三角形分割为三个小三角形,底边为各边边长,高均为半径r ,所以面积()12S a b c r =++⋅,其中系数12来源于三角形面积公式。

进而类比到四面体中,可通过连接内切球的球心与各顶点,将四面体分割为4个小四面体,以各面为底面,内切球半径为高。

从而()123413V S S S S r =+++⋅。

相关文档
最新文档