人教版九年级上册《21.3 实际问题与一元二次方程(4)》教案
21.3 实际问题与一元二次方程 教案 【新人教版九年级上册数学】

21.3 实际问题与一元二次方程教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1. 掌握用“倍数关系”、“面积法”等建立数学模型,并利用它解决实际问题.2. 掌握建立数学模型以解决增长率与降低率问题.3. 经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.教学难点根据“倍数关系”、“面积法”等之间的等量关系建立一元二次方程的数学模型.课时安排3课时.1教案A第1课时教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1.掌握用“倍数关系”建立数学模型,并利用它解决实际问题.2.经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点用“倍数关系”建立数学模型.教学难点用“倍数关系”建立数学模型.教学过程一、导入新课师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?生:审题、设未知数、找等量关系、列方程、解方程,最后答题.试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.二、新课教学探究1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?教师引导学生审题,让学生思考怎样设未知数,找等量关系列出方程.分析:设每轮传染中平均一个人传染了x个人.开始有一个人患了流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示,第一轮后共有个人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有个人患了流感.列方程1+x+x(x+1)=121,整理,得x2+2x-120=0.解方程,得x1=10,x2=-12(不合题意,舍去)2答:每轮传染中平均一个人传染了10个人.思考:按照这样的传染速度,经过三轮传染后共有多少人患流感?121+121×10=1331(人)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?后一轮被传染的人数是前一轮患病人数的x倍.三、巩固练习某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支,则1+x+xx=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.四、课堂小结本节课应掌握:1.利用“倍数关系”建立关于一元二次方程的数学模型,并利用恰当方法解它.2.解一元二次方程的一般步骤:一审、二设、三列、四解、五验(检验方程的解是否符合题意,将不符合题意的解舍去)、六答.五、布置作业习题21.3 第6题.第2课时教学内容21.3实际问题与一元二次方程(2):建立一元二次方程的数学模型,解决增长率与降低率问题.教学目标掌握建立数学模型以解决增长率与降低率问题.教学重点如何解决增长率与降低率问题.教学难点解决增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x是增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.教学过程一、导入新课同学们好,我们上节课学习了探究1关于“倍数”的问题,知道了解一元二次方程的一般步骤.今天,我们就学习如何解决“增长率”与“降低率”的问题.二、新课教学探究2:两年前生产1 t甲种药品的成本是5 000元,生产1 t乙种药品的成本是6 0003元,随着生产技术的进步,现在生产1 t甲种药品的成本是3 000元,生产1 t乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?分析:根据题意,很容易知道甲种药品成本的年平均下降额为(5 000-3 000)÷2=1 000(元);乙种药品成本的年平均下降额为(6 000-3 600)÷2=1 200(元).显然,乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下降率(百分数).解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5 000(1-x)元,两年后甲种药品成本为5 000(1-x)2元,于是有5 000(1-x)2=3 000.解方程,得x1≈0.225,x2≈1.775.根据药品的实际意义,甲种药品成本的年平均下降率约为22.5%.答:甲种药品成本的年平均下降率约为22.5%.算一算:乙种药品成本的年平均下降率是多少?试比较这两种药品成本的年平均下降率.解:设乙种药品成本的年平均下降率为x,则一年后乙种药品成本为6 000(1-x)元,两年后甲种药品成本为6 000(1-x)2元,于是有6 000(1-x)2=3 600.解方程,得x1≈0.225,x2≈1.775.同理,乙种药品成本的年平均下降率约为22.5%.甲、乙两种药品成本的年平均下降率相同,均约为22.5%.思考:经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗?应怎样全面地比较对象的变化状况?经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.小结:类似地,这种增长率的问题有一定的模式.若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)n=b(增长取+,降低取-).三、巩固练习某人将2 000元人民币按一年定期存入银行,到期后支取1 000元用于购物,剩下的1 000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1 320元,求这种存款方式的年利率.分析:设这种存款方式的年利率为x,第一次存2 000元取1 000元,剩下的本金和利息是1 000+2 000x×80%;第二次存,本金就变为1 000+2000x×80%,其它依此类推.解:设这种存款方式的年利率为x,则1 000+2 000x×80%+(1 000+2 000x×8%)x×80%=1 320.整理,得1 280x2+800x+1 600x=320,即8x2+15x-2=0.解得4。
21.3实际问题与一元二次方程教案

21.3实际问题与一元二次方程教案篇一:21.3实际问题与一元二次方程教学设计教案教学准备1.教学目标知识技能1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.2.能根据具体问题的实际意义,检验结果是否合理.过程方法经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
情感态度与价值观通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.2.教学重点/难点教学重点:列一元二次方程解有关传播问题的应用题教学难点:发现传播问题中的等量关系3.教学用具制作课件,精选习题4.标签教学过程一、导入新课师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?生:审题、设未知数、找等量关系、列方程、解方程,最后答题.试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.二、探索新知【问题情境】有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?【分析】(1)本题中有哪些数量关系?(2)如何理解“两轮传染”?(3)如何利用已知的数量关系选取未知数并列出方程?(4)能否把方程列得更简单,怎样理解?(5)解方程并得出结论,对比几种方法各有什么特点?【解答】设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感。
于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.【思考】如果按这样的传播速度,三轮传染后有多少人患了流感?【活动方略】教师提出问题学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应注意问题.【设计意图】使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验.三、例题分析例1、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支,则1+x+xx=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.例2、参加足球联赛的每两队之间都进行了两次比赛(双循环比赛),共要比赛90场,共有多少个队参加了比赛?例3、学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了15场比赛,那么有几个球队参加了这次比赛?【分析】(1)两题中有哪些数量关系?(2)由这些数量关系还能得到什么新的结论?你想如何利用这些数量关系?为什么?如何列方程?(3)对比两题,它们有什么联系与区别?【活动方略】教师活动:操作投影,将例题显示,组织学生讨论.学生活动:合作交流,讨论解答。
人教版九年级数学上册:21.3 实际问题与一元二次方程 教学设计4

人教版九年级数学上册:21.3 实际问题与一元二次方程教学设计4一. 教材分析人教版九年级数学上册第21.3节“实际问题与一元二次方程”是本册教材中的重要内容,旨在让学生通过解决实际问题,巩固和应用一元二次方程的解法。
本节课的内容包括:了解一元二次方程在实际问题中的应用,学会用一元二次方程解决实际问题,以及掌握一元二次方程的解法。
二. 学情分析九年级的学生已经学习了一元二次方程的理论知识,对解一元二次方程有一定的掌握。
但在解决实际问题时,还需要将理论知识和实际问题结合起来,灵活运用。
此外,学生需要进一步提高解决实际问题的能力,以及将数学知识应用到生活中的能力。
三. 教学目标1.了解一元二次方程在实际问题中的应用。
2.学会用一元二次方程解决实际问题。
3.掌握一元二次方程的解法。
4.提高解决实际问题的能力,培养将数学知识应用到生活中的意识。
四. 教学重难点1.教学重点:一元二次方程在实际问题中的应用,以及解一元二次方程的方法。
2.教学难点:如何将实际问题转化为数学问题,并用一元二次方程解决。
五. 教学方法采用问题驱动的教学法,通过设计具有代表性的实际问题,引导学生将实际问题转化为数学问题,并用一元二次方程解决。
在教学过程中,注重启发式教学,引导学生主动思考、探索,提高学生的数学素养。
六. 教学准备1.准备相关的实际问题,如购物问题、长度问题等。
2.准备一元二次方程的解法教学课件。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个购物问题,引导学生思考如何用数学方法解决实际问题。
例如:一件商品原价为x元,打8折后的价格为0.8x元。
如果购买这件商品需要支付100元,那么x可以是多少?2.呈现(10分钟)呈现实际问题,引导学生发现实际问题中存在的等量关系,并用一元二次方程表示。
例如:一件商品原价为x元,打8折后的价格为0.8x元。
如果购买这件商品需要支付100元,那么可以得到方程:0.8x = 100。
人教版九年级数学上册教学设计:21.3实际问题与一元二次方程

一、教学目标
(一)知识与技能
1.让学生掌握一元二次方程在解决实际问题中的应用,理解实际问题的数学模型构建过程,提高学生运用数学知识解决实际问题的能力。
2.使学生熟练掌握一元二次方程的求解方法,包括直接开平方法、配方法、公式法等,并能根据实际问题选择合适的方法进行求解。
4.拓展提升:针对学有余力的学生,布置一些拓展性的题目,如涉及一元二次方程与不等式、函数等知识的综合应用题。这些题目旨在提高学生的思维品质和数学素养,培养学生的自主学习能力。
5.反思总结:要求学生撰写一份学习心得,内容包括对本节课所学知识的理解、在解决问题过程中的收获与困惑以及今后学习的计划。这样有助于学生养成反思总结的良好习惯,提高自我认知能力。
4.培养学生严谨、踏实的科学态度,使学生养成勤奋刻苦的学习习惯,为未来的学习和发展奠定基础。
二、学情分析
九年级学生在经过前两年的数学学习后,已经具备了一定的数学基础和逻辑思维能力。在本章节的学习中,他们对于一元二次方程的求解方法有了一定的了解,但可能在解决实际问题时,还不能熟练地将数学知识运用其中。此外,学生在分析问题和解决问题的过程中,可能存在以下情况:
3.案例教学,总结规律:通过具体案例的分析,引导学生总结一元二次方程求解的方法和技巧,培养学生的归纳总结能力。
4.分层次教学,关注个体差异:针对不同层次的学生,设计不同难度的实际问题,使每个学生都能在原有基础上得到提高。
5.强化练习,巩固知识:通过课后练习和拓展训练,巩固学生对一元二次方程求解方法的掌握,提高学生的应用能力。
1.教学内容:对本节课所学的一元二次方程求解方法进行总结,强调各种方法在实际问题中的应用。
2.教学方法:引导学生自主总结,鼓励学生发表自己的看法,教师进行补充和归纳。
21.3 实际问题与一元二次方程+教学设计+2024—2025学年人教版数学九年级上册

21.3 实际问题与一元二次方程+教学设计+2024—2025学年人教版数学九年级上册【学情分析】一元二次方程是中学数学的主要内容,在初中数学中占有重要的地位.其中一元二次方程的应用也是初中数学应用问题的重点内容,同时也是难点.它是一元一次方程应用的继续,二次函数学习的基础,具有承前启后的作用,是研究现实世界数量关系和变化规律的重要数学模型.【教学目标】1.能根据具体问题中的数量关系,列出一元二次方程,并根据具体问题的实际意义,检验结果是否合理.2.经历将实际问题抽象为数学问题的过程,体会一元二次方程是刻画现实世界的一个有效的数学模型.3.感受与“增长率、下降率”相关的数学模型中的数量关系,提高用数学模型解释现实问题的能力,培养分析问题和解决问题的能力.【重点难点】重点:掌握建立数学模型以解决平均变化率问题.难点:分析题意,建立正确的数学模型【新课导入】复习:用方程解决实际问题的步骤是什么?设计意图:梳理前一节课所学,体会建立数学模型解决实际问题的思想和方法,为本节课后续学习做好铺垫.【新课讲解】2019年,研究人员在某杂志发表论文说,他们分析了两颗卫星的观测数据,发现在2000年至2017年间全球绿化面积增加了5%.其中约四分之一来自中国,贡献比例居全球首位.研究人员认为原因是中国在植树造林和集约农业等方面有突出表现.经调查,2000年全球绿化面积大约是38亿公顷,则2017年全球绿化面积大约是多少亿公顷?如果保持此增长率继续增长,那么到2034年,全球绿化面积约能达到多少呢?如果增长率是6%,那么2017年和2034年的全球绿化面积又该怎么表示呢?如果增长率用x表示,那么2017年和2034年的全球绿化面积又该怎么表示呢?设计意图:(1)-(4)通过层层递进的问题,帮助学生理解“增长率”的含义:并自然生成关于连续增长的数量关系,形成数学模型,建立一元二次方程和平均变化率实际问题之间的联系.当增长率为多少时,2034年的全球绿化面积可以达到45亿公顷?(精确到1%)设计意图:在形成和熟悉增长率有关模型的前提下,建立方程,解决实际问题..在解决问题的过程中,在此巩固用方程解决实际问题的思想和流程.归纳小结:类似地,这种变化率的问题在实际生活普遍存在,例如人口增长率、成本下降率等.本节讨论的是两轮(即两个时间段)的平均变化率,它可以用一元二次方程作为数学模型,设平均变化率为x,则有下列关系:变化前数量×( 1±x )²=变化后数量.设计意图:通过小结,归纳变化率问题的共同特征,并在一元二次方程和连续增长两次的问题之间建立知识联系,帮助学生形成解决同类问题的策略,并适时补充下降率的有关知识.【课堂小结】用一元二次方程解决实际问题的基本步骤阅读分析题意,建立模型,列出一元二次方程,将实际问题转化为数学问题.选择合适的方法求解一元二次方程.经过检验,找到符合题意的答案,解决实际问题.设计意图:一元二次方程是刻画现实世界中某些数量关系的有效数学模型.在运用一元二次方程分析、表达和解决实际问题的过程中,要注意体会建立数学模型解决实际问题的思想和方法.【布置作业】1.有一人患了流感,经过两轮传染后共有100人患了流感,则每轮传染中,平均一个人传染的人数为(C)A.11人B.10人C.9人D.8人2.两个相邻正整数的平方和比这两个数中较小的数的2倍大51,则这两个数是5,6.3.某人用手机发短信,获得信息人也按他的发送人数发送该条短信,经过两轮短信的发送,共有90人手机上获得同一条信息,则每轮发送短信中,平均一个人向9个人发送短信.【板书设计】21.3实际问题与一元二次方程第3课时用一元二次方程解决几何图形问题图形的面积(或体积)建立模型【教学反思】一元二次方程是刻画现实世界中某些数量关系的有效数学模型.在运用一元二次方程分析、表达和解决实际问题的过程中,要注意体会建立数学模型解决实际问题的思想和方法.。
初中数学人教版九年级上册:实际问题与一元二次方程 教案

21.3实际问题与一元二次方程【学习目标】1.使学生学会根据具体问题中的数量关系列一元二次方程并求解.2.进一步培养学生转化实际问题为数学问题的能力和分析问题、解决问题的能力.3.能根据具体问题的实际意义,检验结果的合理性.【学习重难点】重点建立数学模型,找等量关系,列方程难点找等量关系,列方程【教学过程】活动1疾病传染问题有一个人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?师问:设每轮传染中一个人传染了x 个人.(1)开场有一个人患了流感,那么第一轮的传染源就是这个人,他传染了x 个人,第一轮传染后共有___个人患了流感;(2)第二轮传染中,这些人中的每个人又传染了x 个人,第二轮后共___有个人患有流感.(3)等量关系是:______生答:(1)1x ();(2)[]11x x x ();(3)患病总人数=121人.思考:如何列方程求解生答:列方程:11121x x x ()解方程,得:121012x x ,(不合题意,舍去)故,平均一个人传染10个人.教师点拨:原有感染人数+新增感染人数=总感染人数.活动2增长率问题某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?老师点评分析:直接假设二月份、三月份生产电视机平均增长率为x .因为一月份是1万台,那么二月份应是1x ()台,三月份应是在二月份的基础上以二月份比一月份增长的同样“倍数”增长,即2111x x x x ()()(),那么就很容易从第一季度总台数列出等式.解:设二月份、三月份生产电视机平均增长的百分率为x ,则2111 3.31x x()()去括号:21112 3.31x x x 整理,得230.310x x解得:10%x 活动3几何问题现有长19cm ,宽为15cm 长方形硬纸片,将它的四角各剪去一个同样大小的正方形后,再折成一个无盖的长方形纸盒,要使纸盒的底面积为277cm ,问:剪去的小正方形的边长应是多少?解:设剪去的小正方形的边长为xcm ,则纸盒的长为192x (),宽为152x ()cm.依题意,得19215277x x ()().整理,得217520x x .解得13x ,214x (舍去).即剪去的小正方形的边长应为3cm.【知识梳理】(1)列方程解应用题的一般步骤:审,设,找,列,解,检验,答(2)疾病传染问题:原有量+新增量=总量;数字问题:根据题意设出符合条件的数,进而根据等量关系列方程;增长率问题:原有量(1+增长率)n =现有量原有量(1-减少率)n =现有量n 表示变化的次数。
人教版数学九年级上册21.3实际问题与一元二次方程优秀教学案例
4.教师巡回指导,给予学生必要的帮助和提示。
(四)总结归纳
1.让学生汇报各自小组的讨论成果,总结一元二次方程解决实际问题的方法;
2.教师引导学生归纳一元二次方程的解法及其应用,强调重点和难点;
3.结合学生的讨论,总结解决实际问题的策略和技巧;
4.培养学生自主探究、动手实践的能力,使其能在实际问题中灵活运用一元二次方程的解法。
(三)情感态度与价值观
1.让学生体验数学与生活的紧密联系,增强学生学习数学的兴趣和信心;
2.通过解决实际问题,让学生感受到数学在生活中的重要性,提高学生的数学应用意识;
3.培养学生勇于探索、积极动脑思考的良好学习习惯,增强学生的自主学习能力;
3.通过设置悬念,引发学生的好奇心,激发学生积极探索的欲望;
4.结合学生的认知水平,创设适宜难度的情境,使学生能顺利地进入学习状态。
(二)问题导向
1.引导学生分析问题,明确已知条件和所求目标,培养学生的问题解决能力;
2.鼓励学生提出假设,引导学生运用一元二次方程进行验证,培养学生的推理能力;
3.设计具有挑战性的问题,激发学生的思维,使学生在解决问题的过程中不断提高;
3.小组合作的学习方式:通过小组合作,学生能够相互交流、分享解题思路,培养团队合作精神和沟通能力。这种学习方式不仅提高了学生的学习效果,还使他们能够从同伴那里获得不同的观点和解决问题的方法。
五、案例亮点
1.生活情境的创设:本案例以购物场景为背景,让学生在熟悉的环境中感受数学与生活的紧密联系。这样的设计不仅激发了学生的学习兴趣,还使他们能够更容易地理解一元二次方程在实际问题中的应用,从而提高了教学的实效性。
人教版九年级数学上册:21.3 实际问题与一元二次方程 握手问题和互赠礼物问题 教案
人教版九年级数学上册:21.3 实际问题与一元二次方程握手问题和互赠礼物问题教案一. 教材分析人教版九年级数学上册第21.3节“实际问题与一元二次方程——握手问题和互赠礼物问题”主要通过具体的生活情境,让学生学会运用一元二次方程解决实际问题。
本节内容紧密联系学生的生活,激发学生的学习兴趣,培养学生运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已具备一定的数学基础,对一元二次方程有一定的了解。
但在解决实际问题时,部分学生可能会对将实际问题转化为数学问题感到困惑。
因此,在教学过程中,教师需要关注学生的个体差异,引导他们运用一元二次方程解决实际问题。
三. 教学目标1.知识与技能:让学生掌握一元二次方程在实际问题中的应用,提高学生运用数学知识解决实际问题的能力。
2.过程与方法:通过解决握手问题和互赠礼物问题,培养学生将实际问题转化为数学问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:一元二次方程在实际问题中的应用。
2.难点:将实际问题转化为数学问题,求解一元二次方程。
五. 教学方法采用问题驱动法、合作学习法和引导发现法,引导学生主动探究、合作交流,从而提高学生运用一元二次方程解决实际问题的能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,设计教学活动和板书。
2.学生准备:预习相关知识,了解一元二次方程的基本概念。
七. 教学过程1.导入(5分钟)教师通过向学生介绍握手问题的背景,引发学生的兴趣。
例如:“在一场聚会中,所有人都与其他人握手一次,请问总共发生了多少次握手?”2.呈现(10分钟)教师引导学生分析握手问题,将其转化为数学问题。
设共有n人参加聚会,每个人都要与其他人握手一次,求总共发生的握手次数。
3.操练(10分钟)教师引导学生运用一元二次方程解决握手问题。
设共有x人参加聚会,则握手次数为x(x-1)/2。
学生分组讨论,求解x的值。
21.3 实际问题与一元二次方程 2024-2025学年人教版数学九年级上册
解:(2)设第一次降价售出 a 件,则第二次降价售出
(20- a )件.由题意,得
[60(1-10%)-40] a +(48.6-40)×(20- a )
≥200,解得 a ≥5 .
∵ a 为非负整数,∴ a 的最小值是6.
答:第一次降价至少售出6件后,方可进行第二次降价.
典例导思
根据题意,得60(1- x )2=48.6,
解得 x 1=0.1=10%, x 2=1.9(舍去).
答:该商品每次降价的百分率为10%.
典例导思
(2)若该商品每件的进价为40元,计划通过以上两次降价的方
式,将库存的该商品20件全部售出,并且确保两次降价销售的总
利润不少于200元,那么第一次降价至少售出多少件后,方可进
(1+ x )2.当问题变为下降(或减产)率为 x 时,第二
次减少后的数量则为 a (1- x )2.
知识导航
例如:某品牌某羽绒服在冬季来临之际涨价销售,10、
11月份的平均增长率为 x ,9月份的售价为1 000元,10
月份的售价为
元,11月份的售
1 000(1+ x )
价为
元.若11月份的售价为1
典例导思
题型二 列一元二次方程解循环问题
例2 要组织一次篮球联赛,赛制为单循环形式(每两
队之间都赛一场),计划安排21场比赛,则参赛球队的
个数是( C )
A. 5个
B. 6个
C. 7个
D. 8个
典例导思
3. 在一次同学聚会上,每两人都互赠了一份礼物,所有人共送
了210份礼物,则参加聚会的同学有
知识导航
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)
21.3 实际问题与一元二次方程第1课时一、教学目标【知识与技能】会根据具体问题中的数量关系,列出一元二次方程并求解,能根据问题中的实际意义,检验所得结果的合理性.【过程与方法】经过“问题情境——建立模型——求解——解释与应用”的过程中,进一步锻炼学生的分析问题,解决问题的能力.【情感态度与价值观】通过建立一元二次方程解决实际问题,体验数学的应用价值,增强学习数学的兴趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】构建一元二次方程解决实际问题.【教学难点】会用代数式表示问题中的数量关系,能根据问题的实际意义,检验所得结果的合理性.五、课前准备课件六、教学过程(一)导入新课有一人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了几个人?(出示课件2)你能解决这个问题吗?(出示课件4)(二)探索新知出示课件5:设每轮传染中平均一个人传染了x个人. 传染源记作小明,其传染示意图如下:(1)第一轮传染后共有人患了流感;(2)第二轮传染后共人患了流感.根据示意图,列表如下:(出示课件6)最后师生共同完成解答过程:解:设每轮传染中平均一个人传染了x个人,列方程为1+x+(1+x)·x=121提取公因式,得(1+x)(1+x)=121,即(1+x)2=121.∴x1=10,x2=-12(不合题意,应舍去),故平均一个人传染了10个人.教师强调:一元二次方程的解有可能不符合题意,所以舍去.想一想:如果按照这样的传染速度,三轮传染后有多少人患流感?(出示课件7)师生共同分析:生1口答:第1种做法:以1人为传染源,3轮传染后的人数是:(1+x)3=(1+10)3=1331(人).生2口答:第2种做法:以第2轮传染后的人数121为传染源,传染一次后就是:121(1+x)=121(1+10)=1331(人).思考:如果按这样的传染速度,n轮后传染后有多少人患了流感?(出示课件8)师生共同分析:达成共识:经过n轮传染后共有(1+x)n人患流感.出示课件9:例1 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?师生共同分析后解答如下:解:设每个支干长出x个小分支,由题意可列方程为1+x+x2=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,应舍去),答:每个支干长出9个小分支.出示课件10:引导学生思考并解答如下问题:1.在分析引例和例1中的数量关系时它们有何区别?答案:每个树枝只分裂一次,每名患者每轮都传染.2.解决这类传播问题有什么经验和方法?答案:(1)审题,设元,列方程,解方程,检验,作答;(2)可利用表格梳理数量关系;(3)关注起始值、新增数量,找出变化规律.教师问:运用一元二次方程模型解决实际问题的步骤有哪些?(出示课件11)学生自主思考后,教师归纳如下:出示课件12:电脑勒索病毒的传播非常快,如果开始有6台电脑被感染,经过两轮感染后共有2400台电脑被感染. 每轮感染中平均一台电脑会感染几台电脑?学生思考后自主解决.解:设每轮感染中平均一台电脑会感染x台电脑.依题意得6+6x+6x(1+x)=2400.6(1+x)²=2400.解得x1=19或x2=-21(舍去).答:每轮感染中平均一台电脑会感染19台电脑.出示课件13:例2 一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共多少人?引导学生积极思考,寻求出实际问题中所蕴含的等量关系,最后师生共同完成解答过程.解:设这个小组共x人,根据题意列方程,得x(x-1)=72.化简,得x2-x-72=0.解方程,得x1=9,x2=-8(舍去).答:这个小组共9人.出示课件14:生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,求全组有多少名同学?学生独立思考,自主探究,找出题目中的等量关系后自主解答:解:全组有x名同学,根据题意,得x(x-1)=182.解得x1=14,x2=-13(不合题意,舍去).答:全组有14名同学.(三)课堂练习(出示课件15-22)1.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人2.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.73.元旦将至,九年级一班全体学生互赠贺卡,共赠贺卡1980张,问九年级一班共有多少名学生?设九年级一班共有x名学生,那么所列方程为()A.x2=1980B.x(x+1)=1980C.x(x-1)=1980D.x(x-1)=19804.有一根月季,它的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干、小分支的总数是73,设每个枝干长出x个小分支,根据题意可列方程为()A.1+x+x(1+x)=73B.1+x+x2=73C.1+x2=73D.(1+x)²=735.早期,甲肝流行,传染性很强,曾有2人同时患上甲肝.在一天内,一人平均能传染x人,经过两天传染后128人患上甲肝,则x的值为()?A.10B.9C.8D.76.为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有111个人参与了传播活动,则n=______.7.某校初三各班进行篮球比赛(单循环制),每两班之间共比赛了6场,求初三有几个班?8.某生物实验室需培育一群有益菌,现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?参考答案:1.C2.C3.D4.B5.D6.107.解:初三有x个班,根据题意列方程,得1x x-=(1) 6.2化简,得x2-x-12=0.解方程,得x1=4,x2=-3(舍去).答:初三有4个班.8.分析:设每轮分裂中平均每个有益菌可分裂出x个有益菌.解:设每个有益菌一次分裂出x个有益菌.60+60x+60(1+x)x=24000.x1=19,x2=-21(舍去).因此每个有益菌一次分裂出19个有益菌.三轮后有益菌总数为24000×(1+19)=480000.(四)课堂小结通过这节课的学习,你对传播类的应用问题的处理有哪些体会和收获?谈谈你的看法.(五)课前预习预习下节课(21.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.教师引导学生熟悉列一元二次方程解应用题的步骤,创设问题推导出列一元二次方程解应用题的步骤,有利于学生熟练掌握用一元二次方程解应用题的步骤.2.传播类和增长率问题是一元二次方程中的重点问题,本设计问题中反映出不同的“传播”和增长率,有利于学生更好地掌握这一问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第13课时 21.3 实际问题与一元二次方程(4)
教学内容
运用速度、时间、路程的关系建立一元二次方程数学模型解决实际问题.
教学目标
掌握运用速度、时间、路程三者的关系建立数学模型并解决实际问题.
通过复习速度、时间、路程三者的关系,提出问题,用这个知识解决问题.
重难点关键
1.重点:通过路程、速度、时间之间的关系建立数学模型解决实际问题.
2.难点与关键:建模.
教具、学具准备
小黑板
教学过程
一、复习引入
(老师口问,学生口答)路程、速度和时间三者的关系是什么?
二、探究新知
我们这一节课就是要利用同学们刚才所回答的“路程=速度×时间”来建立一元二次方程的数学模型,并且解决一些实际问题.
请思考下面的二道例题.
例某辆汽车在公路上行驶,它行驶的路程s(m)和时间t(s)•之间的关系为:•s=10t+3t2,那么行驶200m需要多长时间?
分析:这是一个加速运运,根据已知的路程求时间,因此,只要把s=200•代入求关系t 的一元二次方程即可.
解:当s=200时,3t2+10t=200,3t2+10t-200=0
解得t=20
3
(s)
答:行驶200m需20
3
s.
三、巩固练习
(1)同上题,求刹车后汽车行驶10m时约用了多少时间.(精确到0.1s)
(2)刹车后汽车行驶到20m时约用了多少时间.(精确到0.1s)
四、归纳小结
本节课应掌握:运用路程=速度×时间,建立一元二次方程的数学模型,并解决一些实际问题.
五、布置作业
教材综合运用9 P58复习题22。