2.3.2-等差数列前n项和的性质与应用导学案

合集下载

导学案029等差数列及其前n项和

导学案029等差数列及其前n项和

等差数列及其前n项和考纲要求1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.了解等差数列与一次函数的关系.考情分析1.等差数列的通项公式与前n项和公式是考查重点.2.归纳法、累加法、倒序相加法、方程思想、运用函数的性质解决等差数列问题是重点,也是难点.3.题型以选择题、填空题为主,与其他知识点结合则以解答题为主.教学过程基础梳理一、等差数列的有关概念1.定义:如果一个数列从起,每一项与它的前一项的都等于同一个常数,那么这个数列就叫做等差数列.符号表示为(n∈N*,d为常数).2.等差中项:数列a,A,b成等差数列的充要条件是,其中A 叫做a,b的.二、等差数列的有关公式1.通项公式:an=.2.前n项和公式:Sn== . 三、等差数列的性质1.若m,n,p,q∈N*,且m+n=p+q,{an}为等差数列,则.2.在等差数列{an}中,ak,a2k,a3k,a4k,…仍为等差列,公差为.3.若{an}为等差数列,则Sn,S2n-Sn,S3n-S2n,¡仍为等差数列,公差为.4.等差数列的增减性:d>0时为数列,且a1<0时前n项和Sn有最值.d<0时为数列,且当a1>0时前n项和Sn有最值.5.等差数列{a n}的首项是a1,公差为d.若其前n项之和可以写成S n=An2+Bn,则A=,B=,当d≠0时它表示函数,数列{a n}的前n项和S n=An2+Bn是{a n}成等差数列的 条件.双基自测1.(2011·重庆高考)在等差数列{an }中,a 2=2,a 3=4,则a 10=( )A .12B .14C .16D .182.(教材习题改编)在等差数列{a n }中,a 2+a 6=3π2,则sin ⎝⎛⎭⎫2a 4-π3=( )A.32B.12C .-32D .-123.(教材习题改编)已知数列{an },其通项公式为an =3n -17,则其前n 项和Sn 取得最小值时n 的值为( )A .4B .5C .6D .74.(2011·湖南高考)设Sn 是等差数列{an }(n ∈N*)的前n 项和,且a 1=1,a 4=7,则S 5=______.5.(2011·辽宁高考)Sn 为等差数列{an }的前n 项和,S 2=S 6,a 4=1,则a 5=________.典例分析考点一、等差数列的判断与证明[例1] (2011·北京宣武一模)数列{a n }的前n 项和为S n ,若a 1=3,点(S n ,S n +1)在直线y=n +1nx +n +1(n ∈N *)上.(1)求证:数列{Sn n }是等差数列;(2)求S n .变式1本例条件不变,若数列{bn }满足bn =an ·an2,{bn }的通项公式.变式2.(2012·银川模拟)数列{a n }中,a 1=2,a 2=1,2a n =1a n +1+1a n -1(n ≥2,n ∈N *),则其通项公式为a n =________.1.证明{a n }为等差数列的方法①用定义证明:a n -a n -1=d (d 为常数,n ≥2)⇔{a n }为等差数列; ②用等差中项证明:2a n +1=a n +a n +2⇔{a n }为等差数列; ③通项法:a n 为n 的一次函数⇔{a n }为等差数列;2.用定义证明等差数列时,常采用的两个式子a 1+n -a n =d 和aa n n 1--=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a 0无定义. 考点二、等差数列的基本运算[例2] (2011·福建高考)已知等差数列{an }中,a 1=1,a 3=-3. (1)求数列{an }的通项公式;(2)若数列{an }的前k 项和Sk =-35,求k 的值.变式2.(2012·北京西城区期末)设{an }是等差数列,若a 2= 4,a 5=7,则数列{an }的前10项和为( )A .12B .60C .75D .1201.等差数列的通项公式a n =a 1+(n -1)d 及前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d ,共涉及五个量a 1,a n ,d ,n ,S n , 知其中三个就能求另外两个,体现了用方程的思想解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法. 考点三、等差数列的性质 [例3] (2011·重庆高考)在等差数列{an }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________.[例4](2010·全国卷Ⅱ)如果等差数列{an}中,a3+a4+a5=12,那么a1+a2+…+a7等于()A.14 B.21C.28 D.35变式3.(2012·无锡联考)已知等差数列{an}的前n项和为Sn,且S10=10,S20=30,则S30=________.变式4.(2012·遵义模拟)已知数列{an}是等差数列.前四项和为21,末四项和为67,且前n 项和为286,则n=________.1.等差数列的性质是等差数列的定义、通项公式以及前n项和公式等基础知识的推广与变形,熟练掌握和灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题.2.应用等差数列的性质解答问题的关键是寻找项数之间的关系.一个推导利用倒序相加法推导等差数列的前n项和公式:S n=a1+a2+a3+…+a n,①S n=a n+a n-1+…+a1,②①+②得:S n=n a1+a n2.两个技巧已知三个或四个数组成等差数列的一类问题,要善于设元.(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.四种方法等差数列的判断方法(1)定义法:对于n≥2的任意自然数,验证a n-a n-1为同一常数;(2)等差中项法:验证2a n-1=a n+a n-2(n≥3,n∈N*)都成立;(3)通项公式法:验证a n=pn+q;(4)前n项和公式法:验证S n=An2+Bn.注后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.本节检测1.(2011·江西高考){a n}为等差数列,公差d=-2,S n为其前n项和.若S10=S11,则a1=() A.18B.20C.22 D.242.已知数列{a n}中,a3=2,a7=1,若{1a n+1}为等差数列,则a11=()A.0 B.1 2C.23D.23.若{a n}是公差为1的等差数列,则{a2n-1+2a2n}是()A.公差为3的等差数列B.公差为4的等差数列C.公差为6的等差数列D.公差为9的等差数列4.一个首项为23,公差为整数的等差数列,如果前6项均为正数,第7项起为负数,则它的公差为()A.-2 B.-3C.-4 D.-65.已知等差数列{a n}的前n项和为S n,并且S10>0,S11<0,若S n≤S k对n∈N*恒成立,则正整数k的取值为()A.5 B.6 C.4 D.76.已知数列{a n}为等差数列,S n为其前n项和,a7-a5=4,a11=21,S k=9,则k=________.7.设等差数列{a n}、{b n}的前n项和分别为S n、T n,若对任意自然数n都有S nT n=2n-34n-3,则a9b5+b7+a3b8+b4的值为__________.自我反思。

等差数列前n项和的性质

等差数列前n项和的性质
性质:若数列{an}是等差数列,那么数列Sk,S2k-Sk, S3k-S2k , …仍然成等差数列 公差为k2d
想一想: 在等差数列{an}中,Sn,S2n,S3n三者之间有什么
关系?
S3n=3(S2n-Sn)
思考2:若{an}为等差数列,那么
{Sn n
}是什么数列?
性质:数列{an}是等差数列
(2)∵an=2n-1, ∴bn=2n-112n+1=212n1-1-2n1+1, ∴Bn=b1+b2+b3+…+bn =121-13+2113-15+2115-17+…+122n1-1-2n1+1 =121-2n1+1=2nn+1.
『变式探究』
1.已知在正整数数列{an}中,前 n 项和 Sn 满足: Sn=18(an+2)2, (1)求证:{an}是等差数列; (2)若 bn=12an-30,求数列{bn}的前 n 项和的最小值.
则S2k 1 等于什么? T2k 1
ak S2k 1 bk T2k 1
例4:Sn,Tn分别是等差数列{an}、{bn}的前n项的和,

Sn Tn
7n 2 n3
,则
a5 b5
.
『变式探究』
1.已知两个等差数列{an}和{bn}的前n项和分别为An和
Bn,且
An Bn
7n 45,则使得 n3
3.设等差数列{an}的前n项和为Sn,若a1=12,S12>0, S13<0. (1)求数列{an}公差d的取值范围;(2)指出 S1, S2, S3, …,S12中哪一个值最大。
4.数列{an}首项为23,公差为整数的等差数列,且第六 项为正,第七项为负. (1)求数列{an}的公差d; (2)求前n项和Sn的最大值; (3)当Sn>0时,求n的最大值;

2.3 等差数列前n项和的性质

2.3 等差数列前n项和的性质

第2课时等差数列前n项和的性质学习目标1.会利用等差数列性质简化求和运算.2.会利用等差数列前n项和的函数特征求最值.知识点一 等差数列{a n }的前n 项和S n 的性质思考 若{a n }是公差为d 的等差数列,那么a 1+a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9是否也是等差数列?如果是,公差是多少?答案 (a 4+a 5+a 6)-(a 1+a 2+a 3)=(a 4-a 1)+(a 5-a 2)+(a 6-a 3)=3d +3d +3d =9d , (a 7+a 8+a 9)-(a 4+a 5+a 6)=(a 7-a 4)+(a 8-a 5)+(a 9-a 6)=3d +3d +3d =9d . ∴a 1+a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9是公差为9d 的等差数列. 知识点二 等差数列{a n }的前n 项和公式的函数特征1.公式S n =na 1+n (n -1)d 2可化成关于n 的表达式:S n =d2n 2+⎝⎛⎭⎫a 1-d 2n .当d ≠0时,S n 关于n 的表达式是一个常数项为零的二次式,即点(n ,S n )在其相应的二次函数的图象上,这就是说等差数列的前n 项和公式是关于n 的二次函数,它的图象是抛物线y =d2x 2+⎝⎛⎭⎫a 1-d 2x 上横坐标为正整数的一系列孤立的点. 2.等差数列前n 项和的最值(1)在等差数列{a n }中,当a 1>0,d <0时,S n 有最大值,使S n 取得最值的n 可由不等式组⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0确定;当a 1<0,d >0时,S n 有最小值,使S n 取到最值的n 可由不等式组⎩⎪⎨⎪⎧a n ≤0,a n +1≥0确定.(2)S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,若d ≠0,则从二次函数的角度看:当d >0时,S n 有最小值;当d <0时,S n 有最大值.当n 取最接近对称轴的自然数时,S n 取到最值.1.等差数列的前n 项和一定是常数项为0的关于n 的二次函数.( × )2.若等差数列{a n }的公差为d ,前n 项和为S n .则⎩⎨⎧⎭⎬⎫S n n 的公差为d2.( √ )3.数列{a n }的前n 项和S n =n 2+1,则{a n }不是等差数列.( √ )题型一 等差数列前n 项和性质的应用例1 (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m ; (2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5b 5的值.解 (1)方法一 在等差数列中, ∵S m ,S 2m -S m ,S 3m -S 2m 成等差数列, ∴30,70,S 3m -100成等差数列. ∴2×70=30+(S 3m -100),∴S 3m =210.方法二 在等差数列中,S m m ,S 2m 2m ,S 3m3m 成等差数列,∴2S 2m 2m =S m m +S 3m3m. 即S 3m =3(S 2m -S m )=3×(100-30)=210. (2)a 5b 5=12(a 1+a 9)12(b 1+b 9)=9(a 1+a 9)29(b 1+b 9)2=S 9T 9=7×9+29+3=6512. 反思感悟 等差数列前n 项和S n 的有关性质在解题过程中,如果运用得当可以达到化繁为简、化难为易、事半功倍的效果.跟踪训练1 一个等差数列的前10项和为100,前100项和为10,求前110项之和. 解 方法一 设S n =an 2+bn . ∵S 10=100,S 100=10,∴⎩⎪⎨⎪⎧102a +10b =100,1002a +100b =10,解得⎩⎨⎧a =-11100,b =11110.∴S n =-11100n 2+11110n .∴S 110=-11100×1102+11110×110=-110.方法二 S 100-S 10=a 11+a 12+…+a 100=90·a 11+a 1002=-90,∴a 11+a 1002=-1,∴S 110=110×(a 1+a 110)2=-110.题型二 求等差数列前n 项和的最值问题例2 在等差数列{a n }中,若a 1=25,且S 9=S 17,求S n 的最大值. 解 方法一 ∵S 9=S 17,a 1=25, ∴9×25+9(9-1)2d =17×25+17(17-1)2d ,解得d =-2.∴S n =25n +n (n -1)2×(-2)=-n 2+26n=-(n -13)2+169.∴当n =13时,S n 有最大值169. 方法二 同方法一,求出公差d =-2. ∴a n =25+(n -1)×(-2)=-2n +27. ∵a 1=25>0,由⎩⎪⎨⎪⎧a n =-2n +27≥0,a n +1=-2(n +1)+27≤0,得⎩⎨⎧n ≤1312,n ≥1212,又∵n ∈N *,∴当n =13时,S n 有最大值169. 方法三 同方法一,求出公差d =-2.∵S 9=S 17, ∴a 10+a 11+…+a 17=0.由等差数列的性质得a 13+a 14=0. ∴a 13>0,a 14<0.方法四 同方法一,求出公差d =-2.设S n =An 2+Bn . ∵S 9=S 17,∴二次函数f (x )=Ax 2+Bx 的对称轴为x =9+172=13,且开口方向向下,∴当n =13时,S n 取得最大值169.反思感悟 (1)等差数列前n 项和S n 最大(小)值的情形: ①若a 1>0,d <0,则S n 存在最大值,即所有非负项之和. ②若a 1<0,d >0,则S n 存在最小值,即所有非正项之和. (2)求等差数列前n 项和S n 最值的方法①寻找正、负项的分界点,可利用等差数列性质或利用⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0或⎩⎪⎨⎪⎧a n ≤0,a n +1≥0来寻找. ②运用二次函数求最值.跟踪训练2 已知等差数列{a n }中,a 1=9,a 4+a 7=0. (1)求数列{a n }的通项公式;(2)当n 为何值时,数列{a n }的前n 项和取得最大值? 解 (1)由a 1=9,a 4+a 7=0, 得a 1+3d +a 1+6d =0,解得d =-2, ∴a n =a 1+(n -1)·d =11-2n (n ∈N *). (2)方法一 由(1)知,a 1=9,d =-2,S n =9n +n (n -1)2·(-2)=-n 2+10n =-(n -5)2+25,∴当n =5时,S n 取得最大值.方法二 由(1)知,a 1=9,d =-2<0,∴{a n }是递减数列. 令a n ≥0,则11-2n ≥0,解得n ≤112.∵n ∈N *,∴n ≤5时,a n >0,n ≥6时,a n <0.题型三 求数列{|a n |}的前n 项和例3 若等差数列{a n }的首项a 1=13,d =-4,记T n =|a 1|+|a 2|+…+|a n |,求T n . 解 ∵a 1=13,d =-4,∴a n =17-4n . 当n ≤4时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n=na 1+n (n -1)2d =13n +n (n -1)2×(-4)=15n -2n 2;当n ≥5时,T n =|a 1|+|a 2|+…+|a n | =(a 1+a 2+a 3+a 4)-(a 5+a 6+…+a n ) =S 4-(S n -S 4)=2S 4-S n=2×(13+1)×42-(15n -2n 2)=56+2n 2-15n .∴T n =⎩⎪⎨⎪⎧15n -2n 2,n ≤4,n ∈N *,2n 2-15n +56,n ≥5,n ∈N *.反思感悟 等差数列的各项取绝对值后组成数列{|a n |}.若原等差数列{a n }中既有正项,也有负项,那么{|a n |}不再是等差数列,求和关键是找到数列{a n }的正负项分界点处的n 值,再分段求和.跟踪训练3 已知等差数列{a n }中,S n 为数列{a n }的前n 项和,若S 2=16,S 4=24,求数列{|a n |}的前n 项和T n .解 设等差数列{a n }的首项为a 1,公差为d , 由S 2=16,S 4=24, 得⎩⎨⎧2a 1+2×12d =16,4a 1+4×32d =24,即⎩⎪⎨⎪⎧2a 1+d =16,2a 1+3d =12,解得⎩⎪⎨⎪⎧a 1=9,d =-2.所以等差数列{a n }的通项公式为a n =11-2n (n ∈N *). 由a n ≥0,解得n ≤512,则①当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-n 2+10n . ②当n ≥6时,T n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a 5-a 6-a 7-…-a n =2S 5-S n =2×(-52+10×5)-(-n 2+10n ) =n 2-10n +50,故T n =⎩⎪⎨⎪⎧-n 2+10n ,n ≤5且n ∈N *,n 2-10n +50,n ≥6且n ∈N *.用数形结合思想求解数列中的参数问题典例 在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为 . 答案 ⎝⎛⎭⎫-1,-78 解析 方法一 由当且仅当n =8时S n 最大,知a 8>0且a 9<0,于是⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78,故d 的取值范围为⎝⎛⎭⎫-1,-78. 方法二 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 对称轴x =-⎝⎛⎭⎫a 1-d 22⎝⎛⎭⎫d 2=12-a 1d ,∵n =8时,S n 取最大值. ∴7.5<12-a 1d <8.5,即-8<7d <-7,∴d ∈⎝⎛⎭⎫-1,-78. [素养评析] 利用数形结合抓住事物本质,解决问题才能思路清晰,方法简捷.等差数列{a n }(a 1>0,d <0或a 1<0,d >0)中,a n =dn +(a 1-d ),其图象为y =dx +(a 1-d )上的一系列点,要求S n 的最大(小)值,只需找出距x 轴最近的两个点;S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,其图象为y =d 2x 2+⎝⎛⎭⎫a 1-d2x 上的一系列点.要求S n 的最大(小)值,只需找出距对称轴最近的点.1.设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( ) A .13 B .35 C .49 D .63 答案 C解析 S 7=7(a 1+a 7)2=7(a 2+a 6)2=7(3+11)2=49.2.已知数列{a n }满足a n =26-2n ,则使其前n 项和S n 取最大值的n 的值为( )A .11或12B .12C .13D .12或13答案 D解析 ∵a n =26-2n ,∴a n -a n -1=-2,∴数列{a n }为等差数列.又a 1=24,d =-2,∴S n =24n +n (n -1)2×(-2)=-n 2+25n =-⎝⎛⎭⎫n -2522+6254. ∵n ∈N *,∴当n =12或13时,S n 最大.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A .63B .45C .36D .27答案 B解析 ∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.4.已知数列{a n }的前n 项和S n =-32n 2+2052n ,求数列{|a n |}的前n 项和T n . 考点 等差数列前n 项和绝对值之和题点 求等差数列前n 项和绝对值之和解 a 1=S 1=-32×12+2052×1=101. 当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫-32n 2+2052n -⎣⎡⎦⎤-32(n -1)2+2052(n -1) =-3n +104.∵n =1也符合上式,∴数列{a n }的通项公式为a n =-3n +104(n ∈N *).由a n =-3n +104≥0,得n ≤1043. 即当n ≤34时,a n >0;当n ≥35时,a n <0.(1)当n ≤34时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n=S n =-32n 2+2052n ; (2)当n ≥35时,T n =|a 1|+|a 2|+…+|a 34|+|a 35|+…+|a n |=(a 1+a 2+…+a 34)-(a 35+a 36+…+a n )=2(a 1+a 2+…+a 34)-(a 1+a 2+…+a n )=2S 34-S n=2⎝⎛⎭⎫-32×342+2052×34-⎝⎛⎭⎫-32n 2+2052n =32n 2-2052n +3 502. 故T n=⎩⎨⎧ -32n 2+2052n ,n ≤34且n ∈N *,32n 2-2052n +3 502,n ≥35且n ∈N *.1.等差数列{a n }的前n 项和S n ,有下面几种常见变形(1)S n =n (a 1+a n )2; (2)S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ;(3)S n n =d 2n +⎝⎛⎭⎫a 1-d 2⎝⎛⎭⎫⎩⎨⎧⎭⎬⎫S n n 是公差为d 2的等差数列. 2.求等差数列前n 项和最值的方法(1)二次函数法:用求二次函数的最值方法来求其前n 项和的最值,但要注意n ∈N *,结合二次函数图象的对称性来确定n 的值,更加直观.(2)通项法:当a 1>0,d <0,⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0时,S n 取得最大值;当a 1<0,d >0,⎩⎪⎨⎪⎧a n ≤0,a n +1≥0时,S n 取得最小值.3.求等差数列{a n }前n 项的绝对值之和,关键是找到数列{a n }的正负项的分界点.一、选择题1.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7等于( )A .12B .13C .14D .15答案 B解析 ∵S 5=5a 3=25,∴a 3=5,∴d =a 3-a 2=5-3=2,∴a 7=a 2+5d =3+10=13.故选B.2.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,那么此数列前20项的和为( )A .160B .180C .200D .220答案 B解析 由a 1+a 2+a 3=3a 2=-24,得a 2=-8,由a 18+a 19+a 20=3a 19=78,得a 19=26,于是S 20=10(a 1+a 20)=10(a 2+a 19)=10×(-8+26)=180.3.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是( )A .-2B .-1C .0D .1答案 B解析 ∵等差数列前n 项和S n 的形式为S n =An 2+Bn ,∴λ=-1.4.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 016,S k =S 2 008,则正整数k 为( )A .2 017B .2 018C .2 019D .2 020答案 C解析 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S 2 011=S 2 016,S k =S 2 008,可得2 011+2 0162=2 008+k 2,解得k =2 019. 5.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9答案 B解析 因为a n +1-a n =-3,所以数列{a n }是以19为首项,-3为公差的等差数列,所以a n =19+(n -1)×(-3)=22-3n .设前k 项和最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0, 所以⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,即193≤k ≤223. 因为k ∈N *,所以k =7.故满足条件的n 的值为7.6.含2n +1项的等差数列,其奇数项的和与偶数项的和之比为( )A.2n +1nB.n +1nC.n -1nD.n +12n答案 B解析 S 奇=(n +1)(a 1+a 2n +1)2,S 偶=n (a 2+a 2n )2,∵a 1+a 2n +1=a 2+a 2n ,∴S 奇S 偶=n +1n . 7.已知等差数列{a n }中,a 1 009=4,S 2 018=2 018,则S 2 019等于( )A .-2 019B .2 019C .-4 038D .4 038答案 C解析 因为{a n }是等差数列,所以S 2 018=1 009(a 1+a 2 018)=1 009(a 1 009+a 1 010)=2 018, 则a 1 009+a 1 010=2.又a 1 009=4,所以a 1 010=-2,则S 2 019=2 019(a 1+a 2 019)2=2 019a 1 010=-4 038. 8.已知S n 是等差数列{a n }的前n 项和,且S 6>S 7>S 5,有下列四个命题:①d <0;②S 11>0;③S 12<0;④数列{S n }中的最大项为S 11,其中正确命题的序号是( )A .②③B .①②C .①③D .①④答案 B解析 ∵S 6>S 7,∴a 7<0,∵S 7>S 5,∴a 6+a 7>0,∴a 6>0,∴d <0,①正确.又S 11=112(a 1+a 11)=11a 6>0,②正确. S 12=122(a 1+a 12)=6(a 6+a 7)>0,③不正确. {S n }中最大项为S 6,④不正确.故正确的是①②.二、填空题9.等差数列{a n }的前m 项和S m 为20,前3m 项和S 3m 为90,则数列{a n }的前2m 项和S 2m 的值是 .答案 50解析 由题易知S m ,S 2m -S m ,S 3m -S 2m 成等差数列,∴2(S 2m -S m )=S m +S 3m -S 2m ,∴2(S 2m -20)=20+90-S 2m ,∴S 2m =50.10.设S n 为等差数列{a n }的前n 项和,若a 4=1,S 5=10,则当S n 取得最大值时,n 的值为 .答案 4或5解析 由⎩⎪⎨⎪⎧ a 4=a 1+3d =1,S 5=5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=4,d =-1, ∴a 5=a 1+4d =0,∴S 4=S 5且同时最大.∴n =4或5.11.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3(n ∈N *),则a 7b 7+a 9b 11= . 答案 463解析 设A n =kn (7n +45),B n =kn (n +3),则n >1,n ∈N *时,a n =A n -A n -1=k (14n +38),b n=k (2n +2),则a 7b 7=k (14×7+38)k (2×7+2)=172,a 9b 11=k (14×9+38)k (2×11+2)=416,所以a 7b 7+a 9b 11=172+416=463. 三、解答题12.设等差数列{a n }满足a 3=5,a 10=-9.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的自然数n 的值.解 (1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9,得⎩⎪⎨⎪⎧ a 1+2d =5,a 1+9d =-9,解得⎩⎪⎨⎪⎧a 1=9,d =-2,所以数列{a n }的通项公式为a n =11-2n ,n ∈N *.(2)由(1)知,S n =na 1+n (n -1)2d =10n -n 2. 因为S n =-(n -5)2+25,所以当n =5时,S n 取得最大值.13.在数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0 (n ∈N *).(1)求数列{a n }的通项公式;(2)设T n =|a 1|+|a 2|+…+|a n |,求T n .解 (1)∵a n +2-2a n +1+a n =0,∴a n +2-a n +1=a n +1-a n ,∴{a n }是等差数列,又∵a 1=8,a 4=2,∴d =-2,a n =a 1+(n -1)d =10-2n ,n ∈N *.(2)设数列{a n }的前n 项和为S n ,则S n =8n +n (n -1)2×(-2)=9n -n 2.∵a n =10-2n ,令a n =0,得n =5.当n >5时,a n <0;当n =5时,a n =0;当n <5时,a n >0.∴当n >5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n )=S 5-(S n -S 5)=2S 5-S n=2×(9×5-25)-9n +n 2=n 2-9n +40,当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =9n -n 2.∴T n =⎩⎪⎨⎪⎧ 9n -n 2,n ≤5,n ∈N *,n 2-9n +40,n ≥6,n ∈N *.14.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n 等于( )A .12B .14C .16D .18答案 B解析 因为S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n (a 1+a n )2=210,得n =14. 15.已知S n ,T n 分别是等差数列{a n },{b n }的前n 项和,且S n T n =2n +14n -2(n ∈N *),则a 10b 3+b 18+a 11b 6+b 15= .答案 4178解析 因为b 3+b 18=b 6+b 15=b 10+b 11,所以a 10b 3+b 18+a 11b 6+b 15=a 10+a 11b 10+b 11=10(a 10+a 11)10(b 10+b 11)=S 20T 20=2×20+14×20-2=4178.。

等差数列的前n项和教案

等差数列的前n项和教案

等差数列的前n项和教案一、教学目标1. 理解等差数列的概念及其性质。

2. 掌握等差数列的前n项和的计算公式。

3. 能够运用等差数列的前n项和公式解决实际问题。

二、教学重点1. 等差数列的概念及其性质。

2. 等差数列的前n项和的计算公式。

三、教学难点1. 等差数列的前n项和的公式的推导过程。

2. 运用等差数列的前n项和公式解决实际问题。

四、教学方法1. 采用问题驱动法,引导学生主动探究等差数列的前n项和的计算方法。

2. 通过实例分析,让学生掌握等差数列的前n项和的应用。

3. 利用数形结合法,帮助学生直观地理解等差数列的前n项和的性质。

五、教学内容1. 等差数列的概念及其性质。

2. 等差数列的前n项和的计算公式。

3. 等差数列的前n项和的性质。

4. 运用等差数列的前n项和公式解决实际问题。

第一章:等差数列的概念及其性质1.1 等差数列的定义1.2 等差数列的性质1.3 等差数列的通项公式第二章:等差数列的前n项和的计算公式2.1 等差数列前n项和的定义2.2 等差数列前n项和的计算公式2.3 等差数列前n项和的性质第三章:等差数列的前n项和的性质3.1 等差数列前n项和的单调性3.2 等差数列前n项和的奇偶性3.3 等差数列前n项和的最值问题第四章:运用等差数列的前n项和公式解决实际问题4.1 等差数列前n项和在实际问题中的应用4.2 等差数列前n项和的优化问题4.3 等差数列前n项和与数学竞赛第五章:等差数列的前n项和公式的推导过程5.1 等差数列前n项和公式的推导方法5.2 等差数列前n项和公式的证明5.3 等差数列前n项和公式的拓展与应用六、等差数列的前n项和的图形直观6.1 等差数列前n项和的图形表示6.2 等差数列前n项和的图形性质6.3 等差数列前n项和的图形应用7.1 等差数列前n项和的数值方法7.2 等差数列前n项和的数值例子7.3 等差数列前n项和的数值分析八、等差数列的前n项和的实际应用8.1 等差数列前n项和在经济学中的应用8.2 等差数列前n项在工程学中的应用8.3 等差数列前n项在和生物学中的应用九、等差数列的前n项和的问题拓展9.1 等差数列前n项和的相关问题拓展9.2 等差数列前n项和的问题研究进展9.3 等差数列前n项和的问题解决策略十、等差数列的前n项和的教学设计10.1 等差数列前n项和的教学目标设计10.2 等差数列前n项和的教学方法设计10.3 等差数列前n项和的教学评价设计重点和难点解析一、等差数列的概念及其性质补充和说明:等差数列是一种常见的数列,其特点是相邻两项的差值是常数。

2.3.2等差数列的前n项和的性质课件

2.3.2等差数列的前n项和的性质课件
故 d 的取值范围为 d≤-2 2或 d≥2 2.
2
例 4:已知一个等差数列{an}的通项公式 an=25-5n,求数
列{ |an|} 的前 n 项和 Sn.
错因剖析:解本题易出现的错误就是:(1)由an≥0 得,n≤5
理解为n=5,得出结论:Sn=a1+a2+a3+a4+a5=50(n≤5), 20-5nn-5 Sn= ;(2)把“前 n 项和”认为“从n≥6 起”的和. 2 事实上,本题要对n 进行分类讨论. 正解:由an≥0 得n≤5,
4-1.已知 Sn 为等差数列{an}的前 n 项和,Sn=12n-n2. (1)求|a1|+|a2|+|a3|; (2)求|a1|+|a2|+|a3|+…+|a10|; (3)求|a1|+|a2|+|a3|+…+|an|.
解:∵Sn=12n-n2,
∴当n=1 时,a1=S1=12-1=11, 当n≥2 时,an=Sn-Sn-1 =(12n-n2)-12(n-1)+(n-1)2=13-2n, 当n=1 时,13-2×1=11=a1,∴an=13-2n. 13 , 由an=13-2n≥0,得 n≤ 2 ∴当1≤n≤6 时,an>0;当n≥7 时,an<0. (1)|a1|+|a2|+|a3|=a1+a2+a3 =S3=12×3-32=27;
-15 解:(1)由题意知 S6= S =-3,a6=S6-S5=-8, 5
5a1+10d=5 ∴ a1+5d=-8
.解得 a1=7,
∴S6=-3,a1=7.
(2)∵S5S6+15=0,
∴(5a1+10d)(6a1+15d)+15=0, 即2 a1+9da1+10d2+1=0. 故(4a1+9d)2=d2-8. ∴d2≥8.
解法五:∵{an}为等差数列, ∴设Sn=a·n2+m=4m2a+2mb=100,

高中数学必修5高中数学必修5《2.3等差数列的前n项和(二)》教案

高中数学必修5高中数学必修5《2.3等差数列的前n项和(二)》教案

2.3 等差数列的前项和(二)教学要求:进一步熟练掌握等差数列的通项公式和前n 项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题;会利用等差数列通项公式与前项和的公式研究 的最值. 如果A n ,B n 分别是等差数列{a n },{b n }的前n 项和,则1212--=n n n n B A b a . 教学重点:熟练掌握等差数列的求和公式.教学难点:灵活应用求和公式解决问题.教学过程:一、 复习准备:1、等差数列求和公式:2)(1n n a a n S +=,d n n na S n 2)1(1-+= 2、在等差数列{a n }中(1) 若a 5=a , a 10=b , 求a 15; (2) 若a 3+a 8=m , 求a 5+a 6;(3) 若a 5=6, a 8=15, 求a 14; (4) 若a 1+a 2+…+a 5=30, a 6+a 7+…+a 10=80,求a 11+a 12+…+a 15.二、讲授新课:1、探究:等差数列的前n 项和公式是一个常数项为零的二次式.例1、已知数列{}n a 的前n 项和为212n S n n =+,求这个数列的通项公式. 这个数列是等差数列吗?如果是,它的首项与公差分别是什么?【结论】数列{}n a 的前n 项和n S 与n a 的关系:由n S 的定义可知,当n=1时,1S =1a ;当n ≥2时,n a =n S -1-n S ,即n a =⎩⎨⎧≥-=-)2()1(11n S S n S n n . 练习:已知数列{}n a 的前n 项和212343n S n n =++,求该数列的通项公式. 这个数列是等差数列吗? 探究:一般地,如果一个数列{},n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少?(是,1a p q r =++,2d p =).由此,等差数列的前n 项和公式2)1(1d n n na S n -+=可化成式子:n )2d a (n 2d S 12n -+=,当d ≠0,是一个常数项为零的二次式.2. 教学等差数列前n 项和的最值问题:① 例题讲解:例2、数列{}n a 是等差数列,150,0.6a d ==-. (1)从第几项开始有0n a <;(2)求此数列的前n项和的最大值.结论:等差数列前项和的最值问题有两种方法:(1) 当n a >0,d<0,前n 项和有最大值可由n a ≥0,且1+n a ≤0,求得n 的值;当n a <0,d>0,前n 项和有最小值可由n a ≤0,且1+n a ≥0,求得n 的值.(2)由n )2d a (n 2d S 12n -+=利用二次函数配方法求得最值时n 的值. 练习:在等差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值.例3、已知等差数列....,743,724,5的前n 项的和为n S ,求使得n S 最大的序号n 的值。

高中数学:第二章 2.3 等差数列的前n项和

等差数列的前n项和(1)数列前n项和的定义是什么?通常用什么符号表示?(2)能否根据首项、末项与项数求出等差数列的前n项和?(3)能否根据首项、公差与项数求出等差数列的前n项和?[新知初探]1.数列的前n项和对于数列{a n},一般地称a1+a2+…+a n为数列{a n}的前n项和,用S n表示,即S n=a1+a2+…+a n.2.等差数列的前n项和公式已知量首项,末项与项数首项,公差与项数选用公式S n=n(a1+a n)2S n=na1+n(n-1)2d[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)数列的前n项和就是指从数列的第1项a1起,一直到第n项a n所有项的和()(2)a n=S n-S n-1(n≥2)化简后关于n与a n的函数式即为数列{a n}的通项公式()(3)在等差数列{a n}中,当项数m为偶数2n时,则S偶-S奇=a n+1()解析:(1)正确.由前n项和的定义可知正确.(2)错误.例如数列{a n}中,S n=n2+2.当n≥2时,a n=S n-S n-1=n2-(n-1)2=2n-1.又∵a1=S1=3,∴a1不满足a n=S n-S n-1=2n-1,故命题错误.(3)错误.当项数m为偶数2n时,则S偶-S奇=nd.★答案★:(1)√(2)×(3)×预习课本P42~45,思考并完成以下问题2.等差数列{a n }中,a 1=1,d =1,则S n 等于( ) A .n B .n (n +1) C .n (n -1)D.n (n +1)2解析:选D 因为a 1=1,d =1,所以S n =n +n (n -1)2×1=2n +n 2-n 2=n 2+n 2=n (n +1)2,故选D.3.设等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6等于( )A .16B .24C .36D .48解析:选D 设等差数列{a n }的公差为d , 由已知得4a 1+4×32d =20, 即4×12+4×32d =20,解得d =3,∴S 6=6×12+6×52×3=3+45=48.4.在等差数列{a n }中,S 4=2,S 8=6,则S 12=________.解析:由等差数列的性质,S 4,S 8-S 4,S 12-S 8成等差数列,所以2(S 8-S 4)=S 4+(S 12-S 8),S 12=3(S 8-S 4)=12.★答案★:12等差数列的前n 项和的有关计算[典例] 已知等差数列{a n }.(1)a 1=56,a 15=-32,S n =-5,求d 和n ;(2)a 1=4,S 8=172,求a 8和d .[解] (1)∵a 15=56+(15-1)d =-32,∴d =-16.又S n =na 1+n (n -1)2d =-5, 解得n =15或n =-4(舍).(2)由已知,得S8=8(a1+a8)2=8(4+a8)2=172,解得a8=39,又∵a8=4+(8-1)d=39,∴d=5.等差数列中的基本计算(1)利用基本量求值:等差数列的通项公式和前n项和公式中有五个量a1,d,n,a n和S n,这五个量可以“知三求二”.一般是利用公式列出基本量a1和d的方程组,解出a1和d,便可解决问题.解题时注意整体代换的思想.(2)结合等差数列的性质解题:等差数列的常用性质:若m+n=p+q(m,n,p,q∈N*),则a m+a n=a p+a q,常与求和公式S n=n(a1+a n)2结合使用.[活学活用]设S n是等差数列{a n}的前n项和,已知a2=3,a8=11,则S9等于() A.13B.35C.49 D.63解析:选D∵{a n}为等差数列,∴a1+a9=a2+a8,∴S9=9(a2+a8)2=9×142=63.已知S n求a n问题[典例]已知数列{a n}的前n项和S n=-2n2+n+2.(1)求{a n}的通项公式;(2)判断{a n}是否为等差数列?[解](1)∵S n=-2n2+n+2,∴当n≥2时,S n-1=-2(n-1)2+(n-1)+2=-2n2+5n-1,∴a n=S n-S n-1=(-2n2+n+2)-(-2n2+5n-1)=-4n +3.又a 1=S 1=1,不满足a n =-4n +3,∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.(2)由(1)知,当n ≥2时,a n +1-a n =[-4(n +1)+3]-(-4n +3)=-4, 但a 2-a 1=-5-1=-6≠-4,∴{a n }不满足等差数列的定义,{a n }不是等差数列.(1)已知S n 求a n ,其方法是a n =S n -S n -1(n ≥2),这里常常因为忽略条件“n ≥2”而出错. (2)在书写{a n }的通项公式时,务必验证n =1是否满足a n (n ≥2)的情形.如果不满足,则通项公式只能用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2表示.[活学活用]1.已知数列{a n }的前n 项和为S n =-n 2,则( ) A .a n =2n +1 B .a n =-2n +1 C .a n =-2n -1D .a n =2n -1解析:选B 当n =1时,a 1=S 1=-1;n ≥2时,a n =S n -S n -1=-n 2+(n -1)2=-2n +1,此时满足a 1=-1.综上可知a n =-2n +1.2.已知S n 是数列{a n }的前n 项和,根据条件求a n . (1)S n =2n 2+3n +2; (2)S n =3n -1.解:(1)当n =1时,a 1=S 1=7,当n ≥2时,a n =S n -S n -1=(2n 2+3n +2)-[2(n -1)2+3(n -1)+2]=4n +1,又a 1=7不适合上式,所以a n =⎩⎪⎨⎪⎧7,n =1,4n +1,n ≥2.(2)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=(3n -1)-(3n -1-1)=2×3n -1,显然a 1适合上式, 所以a n =2×3n -1(n ∈N *).等差数列的前n 项和性质[典例] (1)等差数列前n 项的和为30,前2n 项的和为100,则它的前3n 项的和为( ) A .130 B .170 C .210D .260(2)等差数列{a n }共有2n +1项,所有的奇数项之和为132,所有的偶数项之和为120,则n 等于________.(3)已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n =2n +2n +3,则a 5b 5=________.[解析] (1)利用等差数列的性质: S n ,S 2n -S n ,S 3n -S 2n 成等差数列. 所以S n +(S 3n -S 2n )=2(S 2n -S n ), 即30+(S 3n -100)=2(100-30), 解得S 3n =210.(2)因为等差数列共有2n +1项,所以S 奇-S 偶=a n +1=S 2n +12n +1,即132-120=132+1202n +1,解得n =10.(3)由等差数列的性质,知a 5b 5=a 1+a 92b 1+b 92=a 1+a 92×9b 1+b 92×9=S 9T 9=2×9+29+3=53. [★答案★] (1)C (2)10 (3)53等差数列的前n 项和常用的性质(1)等差数列的依次k 项之和,S k ,S 2k -S k ,S 3k -S 2k …组成公差为k 2d 的等差数列.(2)数列{a n }是等差数列⇔S n =an 2+bn (a ,b 为常数)⇔数列⎩⎨⎧⎭⎬⎫S n n 为等差数列.(3)若S 奇表示奇数项的和,S 偶表示偶数项的和,公差为d , ①当项数为偶数2n 时,S 偶-S 奇=nd ,S 奇S 偶=a na n +1;②当项数为奇数2n -1时,S 奇-S 偶=a n ,S 奇S 偶=n n -1. [活学活用]1.设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( ) A .18B .17C .16D .15解析:选A 设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.2.等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________.解析:因为a n =2n +1,所以a 1=3, 所以S n =n (3+2n +1)2=n 2+2n , 所以S nn=n +2,所以⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列,所以前10项和为3×10+10×92×1=75.★答案★:75等差数列的前n 项和最值问题[典例] 在等差数列{a n }中,a 1=25,S 17=S 9,求前n 项和S n 的最大值. [解] 由S 17=S 9,得 25×17+17×(17-1)2d =25×9+9×(9-1)2d , 解得d =-2, [法一 公式法] S n =25n +n (n -1)2×(-2)=-(n -13)2+169. 由二次函数性质得,当n =13时,S n 有最大值169. [法二 邻项变号法]∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2(n -1)≥0,a n +1=25-2n ≤0,得⎩⎨⎧n ≤1312,n ≥1212,即1212≤n ≤1312.又n ∈N *,∴当n =13时,S n 有最大值169.求等差数列的前n 项和S n 的最值的解题策略(1)将S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n 配方,转化为求二次函数的最值问题,借助函数单调性来解决.(2)邻项变号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0的项数n 使S n 取最大值.当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0的项数n 使S n 取最小值.[活学活用]已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .21解析:选C ∵S n 有最大值,∴d <0,则a 10>a 11,又a 11a 10<-1,∴a 11<0<a 10,a 10+a 11<0,S 20=10(a 1+a 20)=10(a 10+a 11)<0,S 19=19a 10>0,∴S 19为最小正值.故选C.层级一 学业水平达标1.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n 2B .-32n 2-n 2C.32n 2+n 2D.32n 2-n 2解析:选A ∵a n =2-3n ,∴a 1=2-3=-1,∴S n =n (-1+2-3n )2=-32n 2+n 2.2.等差数列{a n }的前n 项和为S n ,若a 7>0,a 8<0,则下列结论正确的是( ) A .S 7<S 8 B .S 15<S 16 C .S 13>0D .S 15>0解析:选C 由等差数列的性质及求和公式得,S 13=13(a 1+a 13)2=13a 7>0,S 15=15(a 1+a 15)2=15a 8<0,故选C.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36D .27解析:选B ∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.4.已知等差数列{a n }的前n 项和为S n,7a 5+5a 9=0,且a 9>a 5,则S n 取得最小值时n 的值为( )A .5B .6C .7D .8解析:选B 由7a 5+5a 9=0,得a 1d =-173.又a 9>a 5,所以d >0,a 1<0.因为函数y =d 2x 2+⎝⎛⎭⎫a 1-d 2x 的图象的对称轴为x =12-a 1d =12+173=376,取最接近的整数6,故S n 取得最小值时n 的值为6.5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D.12解析:选A S 9S 5=92(a 1+a 9)52(a 1+a 5)=9×2a 55×2a 3=9a 55a 3=95×59=1. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________. 解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .★答案★:2A7.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,则m =________.解析:因为S n 是等差数列{a n }的前n 项和,所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,所以S m m +S m +2m +2=2S m +1m +1,即-2m +3m +2=0,解得m =4. ★答案★:48.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析:设等差数列{a n }的项数为2n +1, S 奇=a 1+a 3+…+a 2n +1 =(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1, 所以S 奇S 偶=n +1n =4433,解得n =3,所以项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. ★答案★:11 79.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,求数列{a n }的通项公式. 解:由已知条件,可得S n +1=2n +1, 则S n =2n +1-1.当n =1时,a 1=S 1=3,当n ≥2时,a n =S n -S n -1=(2n +1-1)-(2n -1)=2n , 又当n =1时,3≠21,故a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.10.在等差数列{a n }中,S n 为其前n 项的和,已知a 1+a 3=22,S 5=45. (1)求a n ,S n ;(2)设数列{S n }中最大项为S k ,求k .解:(1)由已知得⎩⎪⎨⎪⎧ 2a 2=22,5a 3=45, 即⎩⎪⎨⎪⎧a 2=11,a 3=9,所以⎩⎪⎨⎪⎧a 1=13,d =-2,所以a n =-2n +15,S n =-n 2+14n .(2)由a n ≥0可得n ≤7,所以S 7最大,k =7.层级二 应试能力达标1.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ) A .12 B .14 C .16D .18解析:选B 因为S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n (a 1+a n )2=210,得n =14.2.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 014,S k =S 2 009,则正整数k 为( ) A .2 014 B .2 015 C .2 016D .2 017解析:选C 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S 2 011=S 2 014,S k =S 2 009,可得2 011+2 0142=2 009+k 2,解得k =2 016.故选C.3.已知S n 为等差数列{a n }的前n 项和,S 1<0,2S 21+S 25=0,则S n 取最小值时,n 的值为( )A .11B .12C .13D .14解析:选A 设等差数列{a n }的公差为d ,由2S 21+S 25=0得,67a 1+720d =0,又d >0,∴67a 11=67(a 1+10d )=67a 1+670d <0,67a 12=67(a 1+11d )=67a 1+737d >0,即a 11<0,a 12>0.故选A.4.已知等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .5解析:选D ∵a nb n =a 1+a 2n -12b 1+b 2n -12=a 1+a 2n -12(2n -1)b 1+b 2n -12(2n -1)=A 2n -1B 2n -1=7(2n -1)+452n -1+3=14n +382n +2=7+12n +1,∴当n 取1,2,3,5,11时,符合条件,∴符合条件的n 的个数是5. 5.若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n <0的最大自然数n 是________.解析:由a 203+a 204>0⇒a 1+a 406>0⇒S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d >0,则数列{a n }的前203项都是负数,那么2a 203=a 1+a 405<0,所以S 405<0,所以使前n 项和S n <0的最大自然数n =405.★答案★:4056.已知等差数列{a n }的前n 项和为S n ,若S 4≤4,S 5≥15,则a 4的最小值为________. 解析:S 4=2(a 1+a 4)≤4⇒2a 3-d ≤2,S 5=5a 3≥15⇒a 3≥3.因为2a 3-d ≤2,所以d -2a 3≥-2,又因为a 3≥3,所以2a 3≥6,所以d ≥4,所以a 4=a 3+d ≥7,所以a 4的最小值为7.★答案★:77.已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28. (1)求数列{a n }的通项公式;(2)若b n =S n n +c (c 为非零常数),且数列{b n }也是等差数列,求c 的值. 解:(1)∵S 4=28,∴(a 1+a 4)×42=28,a 1+a 4=14,a 2+a 3=14, 又a 2a 3=45,公差d >0,∴a 2<a 3,∴a 2=5,a 3=9,∴⎩⎪⎨⎪⎧ a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧a 1=1,d =4,∴a n =4n -3. (2)由(1),知S n =2n 2-n ,∴b n =S n n +c =2n 2-n n +c , ∴b 1=11+c ,b 2=62+c ,b 3=153+c. 又{b n }也是等差数列,∴b 1+b 3=2b 2,即2×62+c =11+c +153+c, 解得c =-12(c =0舍去).8.在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求{|a n |}的前n 项和S n .解:(1)由⎩⎪⎨⎪⎧ a 1+9d =23,a 1+24d =-22,得⎩⎪⎨⎪⎧a 1=50,d =-3, ∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533, ∴当n ≤17,n ∈N *时,a n >0;当n ≥18,n ∈N *时,a n <0,∴{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n (n -1)2d =-32n 2+1032n . 当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n=2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2⎝⎛⎭⎫-32×172+1032×17-⎝⎛⎭⎫-32n 2+1032n =32n 2-1032n +884. ∴S n=⎩⎨⎧-32n 2+1032n ,n ≤17,n ∈N *,32n 2-1032n +884,n ≥18,n ∈N *.。

等差数列前n项和课件


即Sn=a+n an-1+an-2+…+a3+ a2 +a1,
+得: 2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1).
由等差数列的性质:当m+n=p+q时,am+an=ap+aq 知: a1+an=a2+an-1=a3+an-2=…=an+a1,所以式可化为: 2Sn=(a1+an)+(a1+an)+ … +(a1+an) = n(a1+an).
an = Sn - Sn-1
= n2 + 1 n -[(n - 1)2 + 1(n - 1)]= 2n - 1 .
2
2
2
当n = 1时,
a1
=
S1
=
12
+
1×1 2
=
3 ,也满足上式. 2
所以数列an 的通项公式为an
=
2n
-
1. 2
由此可知,数列an
是一个首项为3 2
,公差为2的等差数列.
技巧方法:
下面来看1+2+3+…+98+99+100的高斯算法.
设S100=1 + 2 + 3 +…+98+99+100 作
+ +++
+ + +加
反序S100=100+99+98+…+ 3+ 2 + 1 法

等差数列前n项和公式导学案(二)

第 1 页 共 2 页等差数列的前n 项和(二)一、等差数列的前n 项和的性质 1、当公差d ≠时,前n和2111(1)()222n d ds na n n d n a n =+-=+-是关于n 的二次函数且常数项为0.2、在等差数列{}n a 中,当项数为偶数2n 时,S S nd =偶奇-;项数为奇数21n -时,,21(21)n S n a -=-⋅中(这里a 中即n a )。

3、等差数列{}n a 前项n 和n s ,则232,,k k k k k S S S S S -- ,…也成等差数列。

4、若等差数列{}n a 、{}n b 的前n 和分别为n A 、n B ,则2121(21)(21)n n n n n n a n a A b n b B ---==-.5、等差数列{}n a 前项n 和n s ,则数列n s n ⎧⎫⎨⎬⎩⎭也成等差数列。

例1、设S n 是等差数列{a n }的前n 项和,(1)若S 9=18,则a 12= ;(2)若a 12=-8,S 9=-9,则S 16=_______.变式练习1、(1)已知一等差数列中a 7=10,则s 13=( ) A 、45 B 、60 C 、 90 D 、120(2)设S n 是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________.例2、设{n a }与{n b }是两个等差数列,它们的前n 项和分别为n S 和n T ,若3413-+=n n T S nn,那么66a b = ;=nn b a 。

变式练习2、设{n a }与{n b }是两个等差数列,它们的前n 项和分别为n S 和n T ,若313n nS n T n -=+,那么77a b = ;=nn b a 。

例3、等差数列{a n }的前5项和为30,前10项和为100,则它的前15项和为( )A.130B.170C.210D.260变式练习3、等差数列{a n }的前n 项和为S n ,已知100s =,1525s =,则5s的值为________.巩固练习1.{}n a 为等差数列,n S 为其前n 项和,已知77521a S ==,,则 10S = (A).40 (B )35 (C )30 (D )282.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A .58 B.88 C .143 D .173.设{n a }与{n b }是两个等差数列,它们的前n 项和分别为n S 和n T ,若44a b =6,77S T = .4.在等差数列{}n a 中,12013a =-,其前n 项和为n S ,若20142012220142012S S -=,则2013S 的值等于( ) A.2013- B .2012- C .2012 D .2013 5.已知等差数列{}n a 的前n 项之和记为S n,S10=10 ,S 30=70,则S 40等于 。

2.3.2《等差数列前N项和公式》

二.等差数列an 的首项a1 0, 公差d 0时,前n项和S n 有最小值
2 d 1、利用S n:S n d n ( a 1 2 )n.借助二次函数最值问题 2
2、利用 an:借助通项公式 an的正负情况与前 n项和S n的 变化情况, an 0且an 1 0
例4:已知数列an 是等差数列,sn是其前n项的和。 求证:s6 , ( s12 s6 ), ( s18 s12 )也成等差数列
因为a17 a18 a20 S 20 S16 , 则 a17 a18 a20的值为129。
返回
s6 6a1 15d s12 12a1 66d s18 18a1 153d s12 s6 6a1 51d s18 s12 6a1 87 d ( s12 s6 ) s6 36d ( s18 s12 ) ( s12 s6 ) s6 , s12 s6 , s18 s12也成等差数列,公差为36d
解:根据上例解得 an
只有r 0时,数列an 才是等差数列 首项为: a1 p q, 公差为: d 2 p 如果数列an 的前n项和是常数项为 0,且是
( n 1) p q r 2 pn p q ( n1)
关于n的一元二次关系式,那 么数列an 是等差数列。
sk , s2k sk , s3k s2 k 也成等差数列。( k Z ) 能不能把此结论推广到 一般情况:如果 an 为等差数列,
公差为原来公差的 k 2倍
解:设等差数列首项为a1 , 公差为d,则有 :
等差数列sn=25,s2n=100,求s3n
本节课学习的主要内容有: 1、如何利用数列的前n项和 求通项公式 2、等差数列前n项和最值求解 3、等差数列简单性质.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3.2 等差数列前n项和的性质与应用 导学案
设计 高二数学组 审 核 高二数学组 授课人 课 型 新授课
年级 高二 班 级 小 组 姓 名
学习课题
使用时间 年 月 日第 节 第 课时 累计 课时

学习
目标

1、进一步熟练掌握等差数列的通项公式和前n项和公式

2、会解等差数列前n项和的最值问题
3、理解an与Sn的关系,能根据Sn求an

学习
重点
等差数列前n项和的性质及应用;求等差数列前n项和的最值

学习
难点
等差数列前n项和性质的理解

学 习 过 程
学 习 过 程【导、探、议、练】 备 注


知识点一:数列中an与Sn的关系
思考:已知数列{an}的前n项和Sn=n2,怎样求a1,an?

梳理:对任意数列{an},Sn与an的关系可以表示为an=),2______()1_(__________Nnnn
知识点二:由数列的Sn判断数列的类型
梳理:由于等差数列前n项和公式Sn=na1+nn-12d=d2n2+(a1-d2)n.令A=d2,B=

a1-d2,则Sn=____________,所以Sn是关于n的常数项为0的______函数,反过
来,对任意数列{an},如果Sn是关于n的常数项为0的________函数,那么这个数
列也是______________数列.
知识点三:等差数列前n项和的最值

思考:我们已经知道当公差d≠0时,等差数列前n项和是关于n的二次函数Sn=
d
2

n2+(a1-d2)n,类比二次函数的最值情况,等差数列的S
n
何时有最大值?何时有最

小值?

梳理:等差数列前n项和的最值与{Sn}的单调性有关.
(1)若a1>0,d<0,则数列的前面若干项为正项(或0),所以将这些项相加即得{Sn}
的最大值.
(2)若a1<0,d>0,则数列的前面若干项为负项(或0),所以将这些项相加即得{Sn}
的最小值.
(3)若a1>0,d>0,则{Sn}是递增数列,S1是{Sn}的最小值;若a1<0,d<0,则{Sn}是
递减数列,S1是{Sn}的最大值.

探-议
类型一:已知数列{an}的前n项和Sn求an
例1:已知数列{an}的前n项和为Sn=n2+12n,求这个数列的通项公式.这个数列是
等差数列吗?如果是,它的首项与公差分别是什么?

引申探究:例1中前n项和改为Sn=n2+12n+1,求通项公式.
跟踪训练1:已知数列{an}的前n项和Sn=3n,求an.
类型二:等差数列前n项和的最值
例2:已知等差数列5,427,347,…的前n项和为Sn,求使得Sn最大的序号n的值.

跟踪训练2:在等差数列{an}中,an=2n-14,试用两种方法求该数列前n项和Sn的
最小值.
类型三:求等差数列前n项的绝对值之和
例3:若等差数列{an}的首项a1=13,d=-4,记Tn=|a1|+|a2|+…+|an|,求Tn.

跟踪训练3:已知数列{an}中,Sn=-n2+10n,数列{bn}的每一项都有bn=|an|,求
数列{bn}的前n项和Tn的表达式.


A
1.若数列{an}的前n项和Sn=n2-1,则a4等于( )
A.7 B.8 C.9 D.17
2.数列{an}为等差数列,它的前n项和为Sn,若Sn=(n+1)2+λ,则λ的值是
( )
A.-2 B.-1 C.0 D.1
3.已知数列{an}满足an=26-2n,则使其前n项和Sn取最大值的n的值为( )
A.11或12 B.12
C.13 D.12或13
4.一个等差数列的项数为2n,若a1+a3+…+a2n-1=90,a2+a4+…+a2n=72,
且a1-a2n=33,则该数列的公差是( )
A.3 B.-3 C.-2 D.-1
5.已知等差数列{an}中,|a5|=|a9|,公差d>0,则使得前n项和Sn取得最小值时
的正整数n的值是________.
6.设Sn为等差数列{an}的前n项和,若a4=1,S5=10,则当Sn取得最大值时,n
的值为________.
7.设等差数列{an}的前n项和为Sn,已知a3=12,且S12>0,S13<0.
(1)求公差d的范围;
(2)问前几项的和最大,并说明理由.
8.已知等差数列{an}中,若S2=16,S4=24,求数列{|an|}的前n项和Tn.

B
9.已知数列{an}的前n项和Sn=n2-9n,第k项满足5A.9 B.8 C.7 D.6
10.设等差数列{}an的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m等于
( )
A.3 B.4 C.5 D.6
11.若数列{an}是等差数列,首项a1>0,a2 003+a2 004>0,a2 003·a2 004<0,则使前
n项和Sn>0成立的最大自然数n是________.

12.数列{an}的各项都为正数,且满足Sn=an+124(n∈N*),求数列的通项公式an.
13.已知数列{an},an∈N*,Sn是其前n项和,Sn=18(an+2)2.
(1)求证{an}是等差数列;
(2)设bn=12an-30,求数列{bn}的前n项和的最小值.

【课后反思】
学完本节课,你在知识、方法等方面有什么收获与感受?请

写下来

作业 1.完成课时作业

相关文档
最新文档