第四讲 拟合插值

合集下载

插值与拟合

插值与拟合

且 f(1.5) ≈L1(1.5) = 0.885。
Lagrange插值法的缺点
• 多数情况下,Lagrange插值法效果是不错的, 但随着节点数n的增大,Lagrange多项式的次 (Runge)现象。
• 例:在[-5,5]上用n+1个等距节点作插值多项 式Ln(x),使得它在节点处的值与函数y = 1/(1+25x2)在对应节点的值相等,当n增大时, 插值多项式在区间的中间部分趋于y(x),但 对于满足条件0.728<|x|<1的x, Ln(x)并不趋 于y(x)在对应点的值,而是发生突变,产生 剧烈震荡,即Runge现象。
总结
• 拉格朗日插值:其插值函数在整个区间 上是一个解析表达式;曲线光滑;收敛 性不能保证,用于理论分析,实际意义 不大。
• 分段线性插值和三次样条插值:曲线不 光滑(三次样条已有很大改进);收敛 性有保证;简单实用,应用广泛。
1.2 二维插值
• 二维插值是基于一维插值同样的思想, 但是它是对两个变量的函数Z=f(x,y)进 行插值。
• n=5; • x0=-1:1/(n-1):1;y0=1./(1+25*x0.^2);y1=lagr(x0,y0,x); • subplot(2,2,2), • plot(x,z,'r-',x,y,'m-'),hold on %原曲线 • plot(x,y1,'b'),gtext('L8(x)','FontSize',12),pause %Lagrange曲线
基函数为
l0 (x)
x x1 x0 x1
x2 1 2
2
x
l1(x)
线性插值函数为

数学建模~插值与拟合(课件ppt)

数学建模~插值与拟合(课件ppt)

• 代数多项式插值是最常用的插值方式,其内容也 是最丰富的,它又可分为以下几种插值方式: (1)非等距节点插值,包括拉格朗日插值、利用 均差的牛顿插值和埃特金插值; (2)非等距节点插值,包括利用差分的牛顿插值 和高斯插值等; (3)在插值中增加了导数的Hermite(埃尔米特) 插值; (4)分段插值,包括分段线性插值、分段Hermite (埃尔米特)插值和样条函数插值; (5)反插值。 • 按被插值函数的变量个数还可把插值法分为一元 插值和多元插值。
引言2---插值和拟合的联系与区别
联系:二者都是函数逼近的主要方法
• 区别: •运算过程上的区别:
– 拟合:是将数据点用最恰当的曲线描述出来,以反映问题的规律, 是特殊到一般的过程。 – 插值:是在知道曲线的形状后得出某些具体点的性质的过程,是 从一般到特殊。
•求解误差上的区别:
– 拟合:考虑观察值的误差(误差不可避免时)。以偏差的某种最 小为拟合标准
n n ik
0 i k 而: lk xi 1 i k
22
例1
x1 1, x2 2, x3 4, f ( x1 ) 8, f ( x2 ) 1, f ( x3 ) 5
求二次插值多项式。
解:
按拉格朗日方法,有:
L( x) y1l1 x y2l2 x y3l3 x ( x 2)( x 4) ( x 1)( x 4) ( x 1)( x 2) 8 1 5 (1 2)(1 4) (2 1)(2 4) (4 1)(4 2) 3x 2 16 x 21
4.2 插值方法 选用不同类型的插值函数,逼近的效 果就不同,一般有: (1)拉格朗日插值(lagrange插值) (2)分段线性插值 (3)Hermite (4)三次样条插值。

第四讲matlab插值、拟合和回归分析

第四讲matlab插值、拟合和回归分析

第四讲matlab插值、拟合和回归分析第四讲插值、拟合与回归分析在⽣产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的⼀批离散样本点,要求得到变量之间的函数关系或得到样本点之外的数据。

解决此类问题的⽅法⼀般有插值、拟合和回归分析等。

设有⼀组实验数据0011(,),(,),(,)n n x y x y x y ,当原始数据精度较⾼,要求确定⼀个简单函数()y x ?=(⼀般为多项式或分段多项式)通过各数据点,即(),0,,i i y x i n ?== ,称为插值问题。

另⼀类是拟合问题,当我们已经有了函数关系的类型,⽽其中参数未知或原始数据有误差时,我们确定的初等函数()y x ?=并不要求经过数据点,⽽是要求在某种距离度量下总体误差达到最⼩,即(),0,,i i i y x i n ?ε=+= ,且20ni i ε=∑达到最⼩值。

对同⼀组实验数据,可以作出各种类型的拟合曲线,但拟合效果有好有坏,需要进⾏有效性的统计检验,这类问题称为回归分析。

⼀、插值(interpolation)常⽤的插值⽅法有分段线性插值、分段⽴⽅插值、样条插值等。

1、⼀元插值yi=interp1(x,y,xi,method)对给定数据点(x,y),按method 指定的⽅法求出插值函数在点(或数组)xi 处的函数值yi 。

其中method 是字符串表达式,可以是以下形式:'nearest' ——最邻近点插值'linear' ——分段线性插值(也是缺省形式)'spline' ——分段三次样条插值'cubic' 分段⽴⽅插值例:在⼀天24⼩时内,从零点开始每间隔2⼩时测得环境温度数据分别为(℃):12,9,9,10,18,24,28,27,25,20,18,15,13⽤不同的插值⽅法估计中午1点(即13点)的温度,并绘出温度变化曲线。

>> x=0:2:24;>> y=[12 9 9 10 18 24 28 27 25 20 18 15 13];>>y_linear=interp1(x,y,13),y_nearest=interp1(x,y,13,'nearest')>>y_cubic=interp1(x,y,13,'cubic'),y_spline=interp1(x,y,13,'spline')>> y1=interp1(x,y,xx); y2=interp1(x,y,xx,'nearest');>> y3=interp1(x,y,xx,'cubic');y4=interp1(x,y,xx,'spline');>> subplot(2,2,1),plot(x,y,'or',xx,y1)>> subplot(2,2,2),plot(x,y,'or',xx,y2)>> subplot(2,2,3),plot(x,y,'or',xx,y3)>> subplot(2,2,4),plot(x,y,'or',xx,y4)2、⼆元插值zi=interp2(X,Y,Z,xi,yi,method)已知数据点(X,Y,Z),求插值函数在(xi,yi)处的函数值zi,插值⽅法method同interp1。

第四讲 拟合插值

第四讲  拟合插值

0
2
4
6
8
10
pp=spline (x,y) ….返回分段多项式的表示
yi=ppval(pp,xi)
或 yi=spline(x,y,xi)
plot(xi,yi)
[break, coefs,pieces,order]=unmkpp(pp)
……分解分段多项式表示
pp=mkpp(break,coefs)…形成分段多项式表示 其中
fprime = fnder(pp,dorder) 其中 pp:为样条函数的描述 dorder:求导的阶数 fprime:求导后的分段表达形式
fnint样条函数的积分
intgrf = fnint(pp)
intgrf = fnint(f,value)
其中
Pp:为样条函数的描述
fnplt样条函数的绘图
缺省情况: 使用各个端点附近的四个数据计 算斜率
当conds为1*2阶的矩阵时,可使两个边界点 具有不同的边界条件:如conds(i)=j,则给定 端点i处的j阶导数(j=0,1,2).
PP = CSAPE({X,Y},Z, CONDS,VALCONDS) x=0:20; y=0:10; [xx,yy]=meshgrid(x,y); zz=(sin(xx)).^2+(cos(yy)).^2; pp=csape({x,y},zz'); fnplt(pp)
Break是断点/节点
Coefs是矩阵,其第i行是第i个三次多项式
pieces是分段多项式的数目
order 是每个多项式系数的数目(阶数-1)
i
断点
在每一个区间为多项式
x=0:0.1:3*pi; y=sin(x); pp=spline(x,y)

4插值与拟合方法课件-11

4插值与拟合方法课件-11

第4章 插值与拟合方法插值与拟合方法是用有限个函数值(),(0,1,,)i f x i n =⋅⋅⋅去推断或表示函数()f x 的方法,它在理论数学中提到的不多。

本章主要介绍有关解决这类问题的理论和方法,涉及的内容有多项式插值,分段插值及曲线拟合等。

对应的方法有Lagrange 插值,Newton 插值,Hermite 插值,分段多项式插值和线性最小二乘拟合。

4.1 实际案例4.2 问题的描述与基本概念先获得函数(已知或未知)()y f x =在有限个点n x x x ⋅⋅⋅,,10上的值x0x 1x … n x y0y 1y … n y 由表中数据构造一个函数P (x )作为f (x ) 的近似函数,去参与有关f (x )的运算。

科学计算中,解决不易求出的未知函数的问题主要采用插值和拟合两种方法。

1)插值问题的描述已知函数()y f x =在[a,b ]上的n +1个互异点x ,0处的函数值()i i y f x =,求f (x ) 的一个近似函数P (x ),满足()()(0,1,,)i i P x f x i n ==⋅⋅⋅ (4.1)● P (x ) 称为f (x )的一个插值函数;● f (x ) 称为被插函数;点i x 为插值节点; ● ()()(0,1,,)i i P x f x i n ==⋅⋅⋅称为插值条件; ● ()()()R x f x P x =-称为插值余项。

当插值函数P (x )是多项式时称为代数插值(或多项式插值)。

一个代数插值函数P (x )可写为0()()()mkm k k k P x P x a x a R ===∈∑若它满足插值条件(4.1),则有线性方程组20102000201121112012m m mm m nn m n n a a x a x a x y a a x a x a x y a a x a x a x y ⎧+++⋅⋅⋅=⎪+++⋅⋅⋅=⎪⎨⎪⎪+++⋅⋅⋅=⎩ (4.2)当m=n ,它的系数行列式为范德蒙行列式)(1110212110200j i ni j nnnn nn x x x x x x x x x x x D -∏==≤≤≤因为插值节点互异,0D ≠,故线性方程组(4.2)有唯一解,于是有定理 4.1 当插值节点互异时,存在一个满足插值条件()()(0,1i i P x f x i n ==⋅⋅⋅的n 次插值多项式。

第四章插值和曲线拟合

第四章插值和曲线拟合
第四章 插值和曲线拟合
在实际问题和科学实验中所遇到的函数y=f(x),往往
没有解析表达式 , 只能根据试验观察或其它方法提供一
系列点的函数值; 有时尽管可以写出表达式,但是比较
复杂, 直接使用它感到不方便。我们经常需要利用已知
的数据去寻求某个简单的函数φ (x)来逼近f(x),即用φ (x)
作为f(x)的近似表达式。本章的插值法和曲线拟合就是
φ (xi) = yi ,
插值法的几何意义
插值法的几何意义就是通过n+1个点: (xi,yi) (i=0,1,2,…,n) 作一条近似曲线y= φ (x) 代替y=f(x)。如下图所示。 y=f(x) (xn,yn) y= φ (x) y
(x1,y1) (x0,y0) (x2,y2)
(xn-1,yn-1)
三、n次拉格朗日插值
仿照P2 (x)的构造方法,可得出 Pn(x)=L0(x)y0+L1(x)y1+…+Ln(x)yn 其中 L0(x)=[(x-x1)(x-x2)…(x-xn)]/ [(x0-x1)(x0-x2)…(x0-xn)] Lk(x)= [(x-x0)…(x-xk-1)(x-xk+1) …(x-xn)] /[(xk-x0)…(xk-xk-1)(xk-xk+1) …(xk-xn)] ( k = 0, 1, …, n ) 这就是n次拉格朗日插值多项式。 也可写为 n n n x x k P ( x ) L ( x ) y y n i i i x x i 0 i 0 k 0 , k i i 或 k
线性插值举例
例 解 或 已知 1001/2 =10,1211/2 =11 求 1151/2 P1(x) = y0+(y1-y0)/(x1-x0)*(x-x0) P1(115) = 10+(11-10)/(121-100)*(115-100)

数值计算04-插值与拟合


二维插值的定义
第一种(网格节点):
y
O
x
已知 mn个节点 其中 互不相同,不妨设
构造一个二元函数
通过全部已知节点,即
再用
计算插值,即
第二种(散乱节点):
y



0
x
已知n个节点
其中 互不相同,
构造一个二元函数
通过全部已知节点,即
再用
计算插值,即
最邻近插值
y
( x1 , y2 ) ( x2 , y2 )
( x1 , y1 ) ( x2 , y1 )

x
O
注意:最邻近插值一般不连续。具有连续性的最简单 的插值是分片线性插值。
分片线性插值
速度最快,但平滑性差
linear
占有的内存较邻近点插值方法多,运算时间 也稍长,与邻近点插值不同,其结果是连续 的,但在顶点处的斜率会改变 运算时间长,但内存的占有较立方插值方法 要少,三次样条插值的平滑性很好,但如果 输入的数据不一致或数据点过近,可能出现 很差的插值结果 需要较多的内存和运算时间,平滑性很好 二维插值函数独有。插值点处的值和该点值 的导数都连续
x=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 y=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
海拔高度数据为: z=89 90 87 85 92 91 96 93 90 87 82 92 96 98 99 95 91 89 86 84 82 84 96 98 95 92 90 88 85 84 83 81 85 80 81 82 89 95 96 93 92 89 86 86 82 85 87 98 99 96 97 88 85 82 83 82 85 89 94 95 93 92 91 86 84 88 88 92 93 94 95 89 87 86 83 81 92 92 96 97 98 96 93 95 84 82 81 84 85 85 81 82 80 80 81 85 90 93 95 84 86 81 98 99 98 97 96 95 84 87 80 81 85 82 83 84 87 90 95 86 88 80 82 81 84 85 86 83 82 81 80 82 87 88 89 98 99 97 96 98 94 92 87

拟合与插值专题ppt课件

在大量的应用领域中,人们经常面临用一个解析 函数描述数据(通常是测量值)的任务。对这个问 题有两种方法。
一种是插值法,数据假定是正确的,要求以某种方法描述数 据点之间所发生的情况。
另一种方法是曲线拟合或回归。人们设法找出某条光滑曲线, 它最佳地拟合数据,但不必要经过任何数据点。
本专题的主要目的是:了解插值和拟合的基本内容; 掌握用Matlab求解插值与拟合问题的基本命令。
cj 103 4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59
该问题即解最优化问题:
min 1 F (a,b, k)
2
1 2
10
[a be0.02kt j
j 1
c j ]2
解法1. 用命令lsqcurvefit
F(x,tdata)= (a be0.02kt1 ,, a be0.02kt10 )T ,x=(a,b,k)
ydata=(ydata1,ydata2,…,ydatan) lsqcurvefit用以求含参量x(向量)的向量值函数
F(x,xdata)=(F(x,xdata1),…,F(x,xdatan))T
中的参变量x(向量),使得
1
2
n i 1
( F ( x,
xdatai )
2
ydatai )
最小
输入格式: (1) x = lsqcurvefit (‘fun’,x0,xdata,ydata); (2) x =lsqcurvefit (‘fun’,x0,xdata,ydata,lb, ub);
1)编写M-文件 curvefun1.m
function f=curvefun1(x,tdata)
f=x(1)+x(2)*exp(-0.02*x(3)*tdata)

第四章插值与拟合

第四章 插值与拟合插值与拟合是来源于实际,又广泛应用于实际的两种重要的方法。

随着计算机的不断发展及计算水平的不断提高,他们已在国民生产和科学研究等方面扮演着越来越重要的角色。

在测量上观测值不等间隔和后续值的预测及观测值的曲线拟合,都需要插值与拟合来完成。

本节将对插值法中重要的LAGRANGE 插值,分段线性插值,HERMITE 插值及三次洋条插值做介绍,说明利用MATLAB 处理此类问题的方法。

另外还对拟合中最为重要的最小二乘法拟合和快速FURIER 变换加以介绍。

第一节 插值运算(一)LAGRANGE 插值1.方法介绍对给定的N 个插值节点x1,x2,x3……,xn 及对应的函数值y1,y2,y3……,yn,利用(n-1)次LAGRANGE 插值多项式公式,则对插值区间内的任意X 的函数值Y 可通过下式求得.Y(x)=∑=nk Yk 1( ∏≠=nkj j ,1xx x x --)2.MATLAB 的实现 Lagrange.mFunction y=lagrange(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0;for j=1;nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;end3.题目举例例: 给出F(x)=ln(x)的数值表,用LAGRANGE插值计算ln0.54的近似值解: 在MATLAB命令窗口中输入x=[0.4:0.1:0.8];y=[-0.916291 -0.693147 -0.510826 -0.356675 -0.223144];lagrange(x,y,0.54)ans=-0.616143说明:同精确解ln(0.54)=-0.616186比较起来,误差还是可以接受的,特别是在工程应用之中.(二)RUNGE现象的产生和分段线性插值1.方法介绍上面根据区间[a,b]上给出的节点做插值多项式ln(x)近似值,一般总认为ln(x)的次数越高逼近f(x)的精度就越好。

插值拟合方法

表9.2 氮肥量 0 34 67 101 135 202 259 336 404 471
(kg) 土豆产 15.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.83 30.75 量(kg)
请根据表9.2的数据,给出土豆产量与氮肥施肥量之间的关系
y(tu dou chan liang)
第4讲 数据的插值拟合法
4.1 数据的拟合方法 4.2 数据的插值方法
4.1 数据的拟合方法
问 已知n个数据点(xi, yi),i=1,2,…,n,xi互不相
同,如何寻求函数 y=f(x) ,使f(x)在某种准则下
题 与这n个点最接近?
一、拟合原理
拟合模型通过寻找简单的因果变量之间的数量关 系,对未知的情形作出预测与预报.
b2=-0.2347
clear t=[0.25 0.5 1 1.5 2 3 4 6 8]; y=[19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01]; Y=log(y); b=polyfit(t,Y,1)
a e b 1 e 2 .9 9 4 3 1 9 .9 7 0 9 , b 0 .2 3 4 7
表 9.1
t
20.5 32.7 51.0
73
95.7
R
765
826
873
942 1032
试给出温度与电阻间的函数关系,并计算温度为60度 时的电阻值
一、模型假设 假设所测数据均为抽样数据.
二、模型的分析与建立 先画出散点图,见下图.
1050
R
1000
t=[20.5 32.7 51 73 95.7];
三、模型求解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

pp = form: 'pp' breaks: [0 1 2 3 4] coefs: [4x4 double] pieces: 4
order: 4
dim: 1
fnval样条函数的求值
Y = fnval(pp,X) 其中: pp:样条函数的描述 x: 待求值的点
fnder样条函数的导数
fprime = fnder(pp)
f ( x, y)
f y ( x, y)
f xxy ( dxdy
[x,y,z] = peaks(10);
[xi,yi] = meshgrid(-3:.1:3,-3:.1:3);
zi = interp2(x,y,z,xi,yi); mesh(xi,yi,zi)
Peaks 6 4 2 0 -2 -4 -6 2 0 -2 y -3 -2 -1 x 0 1 2 3
插值前
fprime = fnder(pp,dorder) 其中 pp:为样条函数的描述 dorder:求导的阶数 fprime:求导后的分段表达形式
fnint样条函数的积分
intgrf = fnint(pp)
intgrf = fnint(f,value)
其中
Pp:为样条函数的描述
fnplt样条函数的绘图
插值前
插值后
Csapi 构造not-a-knot边界条 件下的三次样条函数
VALUES = CSAPI(X,Y,XX) PP = CSAPI(X,Y)
csaps 构造具有不同光滑性的 三次样条函数
VALUES = CSAPs(X,Y,p,XX) PP = CSAPS(X,Y,p)
p [0,1]
P=0,光滑程度最低 P=1光滑程度最高
getcurve 交互式构造三次 样条曲线
[xx,pp]=getcurve
其中xx为数据 Pp为样条pp形式
Pp形式及其分解
ppbrk(pp)
breaks(1:l+1) 0 1 2 3 4 coefficients(d*l,k) -0.0179 0.0179 1.0000 -2.0000 0.0536 -0.0357 0.9821 -1.0000 -0.1964 0.1250 1.0714 0 0.7321 -0.4643 0.7321 1.0000 pieces number l 4 order k 4 dimension d of target 1
fnplt(pp)
FNPLT(F,SYMBOL,INTERV,LINEWIDTH)
其中
f: 样条函数的描述

subplot(221) fnplt(pp) subplot(222) fnplt(fnder(pp,[0,1])) subplot(223) fnplt(fnder(pp,[2,1])) subplot(224) fnplt(fnder(pp,[-1,-2]))
YI = interp1(X,Y,XI,'method') 其中X,Y为原始数据点,method为
'nearest' - nearest neighbor interpolation 'linear' - linear interpolation 'spline' - piecewise cubic spline interpolation (SPLINE) 'pchip' - piecewise cubic Hermite interpolation (PCHIP) 'cubic' - same as 'pchip' 'v5cubic' - the cubic interpolation from MATLAB 5, which does not extrapolate and uses 'spline' if X is not equally spaced.
a1.m
非线性拟合
f ( x ) Ae Bxe
x
Cx
Ax B g ( x) 1 e
Cx
可根据MATLAB中的函数求出待定的
参数A,B,C等
如:fmins, curvefit, lsqcurvefit and etc.
【例】
二﹑插值函数
1. 一维插值函数
YI = interp1(X,Y,XI)
其中X,Y,Z为原始数据点,method为 'nearest' - nearest neighbor interpolation 'linear' - bilinear interpolation 'cubic' - bicubic interpolation 'spline' - spline interpolation
插值后
三次样条插值
Yi=spline(x,y,xi)
x = 0:10; y = sin(x);
xx = 0:.25:10;
yy = spline(x,y,xx);
plot(x,y,'o',xx,yy)
1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1
插值点
样条插值曲线
x = 0:10; y = sin(x); xi = 0:.25:10; yi = interp1(x,y,xi,'spline');plot(x,y,'o',xi,yi)
1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1
样条插值
0
2
4
6
8
10
2、二维插值函数
ZI = INTERP2(X,Y,Z,XI,YI, 'method')
Break是断点/节点
Coefs是矩阵,其第i行是第i个三次多项式
pieces是分段多项式的数目
order 是每个多项式系数的数目(阶数-1)
i
断点
在每一个区间为多项式
x=0:0.1:3*pi; y=sin(x); pp=spline(x,y)
pp =

form: 'pp' breaks: [1x95 double] coefs: [94x4 double] pieces: 94 order: 4 dim: 1
x = 0:10; y = sin(x); xi = 0:.25:10; yi = interp1(x,y,xi,‘linear’); plot(x,y,'o',xi,yi)
1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1
线性插值
0
2
4
6
8
10
x = 0:10; y = sin(x); xi = 0:.25:10; yi = interp1(x,y,xi,’nearst’); plot(x,y,'o',xi,yi)
构造具有各种不同边界条件的三次插值样条函数
Csape (Cubic spline interpolation)
PP = CSAPE(X,Y,CONDS,VALCONDS) CONDS: ’complete‘ or ’clamped‘…给定端点斜率
‘not-a-knot’, 第一和最后一个内点3阶导数连续 ‘periodic‘…给定端点周期条件 ‘second‘…给定端点2阶导数条件 ‘variational‘…给定端点2阶导数条件
缺省情况: 使用各个端点附近的四个数据计 算斜率
当conds为1*2阶的矩阵时,可使两个边界点 具有不同的边界条件:如conds(i)=j,则给定 端点i处的j阶导数(j=0,1,2).
PP = CSAPE({X,Y},Z, CONDS,VALCONDS) x=0:20; y=0:10; [xx,yy]=meshgrid(x,y); zz=(sin(xx)).^2+(cos(yy)).^2; pp=csape({x,y},zz'); fnplt(pp)
(2) 采用什么样的曲线拟合(线性与非线性)
多项式拟合(Polynomial fit)
P=polyfit(x,y,n)….n为多项式次数
yy=polyval(P,xx)….计算多项式P在xx处的值 如:给定一组数据
x=0:0.1:2*pi
y=sin(x) 现用多项式拟合该组数据(x,y)
x=0:0.1:2*pi; y=sin(x); plot(x,y,'r+'); legend('sin(x)'); pause for n=1:6 p=polyfit(x,y,n); xx=0:0.01:2*pi; yy=polyval(p,xx); plot(x,y,'r+',xx,yy) PN=strcat(int2str(n),'次拟合多项式'); title(PN); legend('sin(x)',PN); pause end
0
2
4
6
8
10
pp=spline (x,y) ….返回分段多项式的表示
yi=ppval(pp,xi)
或 yi=spline(x,y,xi)
plot(xi,yi)
[break, coefs,pieces,order]=unmkpp(pp)
……分解分段多项式表示
pp=mkpp(break,coefs)…形成分段多项式表示 其中
MATLAB插值与拟合 (插值函数与样条工具箱)
对三次插值样条函数的操作
对PP形式样条函数的操作
对B形式样条函数的操作(与pp形式类似) 对张量式样条函数的操作
相关文档
最新文档