高斯投影正算与反算的理论方法与实
高斯投影反算实习报告

一、实习背景高斯投影是一种广泛应用的地图投影方法,它将地球表面的经纬度坐标转换为平面直角坐标。
高斯投影在测绘、地理信息系统、地图编制等领域有着重要的应用。
为了更好地掌握高斯投影的相关知识,提高自己的实践能力,我们进行了高斯投影反算的实习。
二、实习目的1. 理解高斯投影的基本原理和方法;2. 掌握高斯投影反算的计算步骤;3. 提高自己的实践操作能力;4. 培养团队协作精神。
三、实习内容1. 高斯投影原理高斯投影是一种等角投影,其基本原理是将地球椭球面上的经纬度坐标转换为平面直角坐标。
高斯投影具有以下特点:(1)等角投影:保持地球椭球面上任意两点间的夹角不变;(2)等积投影:保持地球椭球面上任意两块区域的面积比不变;(3)高斯-克吕格投影:以中央子午线和赤道为基准线,将地球椭球面投影到平面上。
2. 高斯投影反算步骤高斯投影反算是指将平面直角坐标转换为地球椭球面上的经纬度坐标。
其计算步骤如下:(1)计算投影面大地坐标(φ,λ):根据给定的平面直角坐标(X,Y),利用高斯投影公式计算投影面大地坐标(φ,λ);(2)计算大地坐标(φ,λ):根据投影面大地坐标(φ,λ)和投影带参数,计算大地坐标(φ,λ);(3)计算经纬度坐标(B,L):根据大地坐标(φ,λ)和椭球参数,计算经纬度坐标(B,L)。
3. 实习过程在实习过程中,我们首先学习了高斯投影的基本原理和方法,了解了高斯投影在地图编制、地理信息系统等领域的应用。
然后,我们通过查阅相关资料,掌握了高斯投影反算的计算步骤。
在实践操作环节,我们使用高斯投影软件,对给定的平面直角坐标进行反算,得到对应的经纬度坐标。
在操作过程中,我们遇到了一些问题,如坐标转换误差、投影带参数设置等。
通过查阅资料、请教老师,我们解决了这些问题,最终完成了实习任务。
四、实习总结通过本次高斯投影反算实习,我们取得了以下成果:1. 掌握了高斯投影的基本原理和方法;2. 熟悉了高斯投影反算的计算步骤;3. 提高了实践操作能力;4. 培养了团队协作精神。
高斯坐标正反算

正形投影的一般条件基本出发点:在正形投影中,长度比与方向无关。
1、长度比的通用公式如图4-42,在微分直角三角形P1P2P3及P1′P2′P3′中有:其中l=L-L0,L0通常是中央子午线的经度,L是P点的经度令:()()222222d=d cos dd=d dS M B N B ls x y++(1)m平方可为:()()()22222222222d d d d dd d cos d dcos dcoss x y x ymS M B N B l M BN B lN B++⎛⎫===⎪⎡⎤⎝⎭+⎛⎫+⎢⎥⎪⎝⎭⎢⎥⎣⎦(2)为简化公式,令:ddcosM BqN B=dc o sB M BqN B=⎰(3) q称为等量纬度,因为它只与纬度B有关。
这样,式(2)可表示为:()()222222d dd dx ymr q l+=⎡⎤+⎣⎦(4)我们投影的目的是:建立平面坐标xy和大地坐标BL之间的函数关系,由式(3)可知,即建立xy和bl的函数关系。
令()(),,x x l q y y l q==(5) 对上式进行全微分可得:d d dd d dx xx q lq ly yy q lq l∂∂⎧=+⎪∂∂⎪⎨∂∂⎪=+⎪∂∂⎩(6)将上式代入式(1)中第二项,并令:2222x yEq qx x y yFq l q lx yGl l⎧⎛⎫⎛⎫∂∂=+⎪ ⎪ ⎪∂∂⎪⎝⎭⎝⎭⎪∂∂∂∂⎪=+⎨∂∂∂∂⎪⎪∂∂⎛⎫⎛⎫⎪=+⎪ ⎪∂∂⎪⎝⎭⎝⎭⎩(7)可得: ()()()()222d d 2d d d s E q F q l G l =++ (8) 则式(4)可写为: ()()()()()()222222d 2d d d d d E q F q l G l m r q l ++=⎡⎤+⎣⎦ (9)2 柯西-黎曼条件在上式引入方向,如图4-42所示:2313d d cot d d P P M B q A PP r l l === (10) 即: d tan d l A q = (11)将式(11)代入式(9)可得:注意sec 1cos A A =()()()()()222222222222222d 2tan d tan d d tan d 2tan tan sec cos 2sin cos sin E q F A q G A q m r q A q E F A G A r AE AF A AG A r ++=⎡⎤+⎣⎦++=++=(12)要想让m 和A 无关,必须使F=0,E=G ,即22220x x y y q l q l x y x y q q l l ∂∂∂∂⎧+=⎪∂∂∂∂⎪⎨⎛⎫⎛⎫∂∂∂∂⎛⎫⎛⎫⎪+=+⎪ ⎪ ⎪ ⎪⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎩ (13) 由上式第一式可得:y y x q l x lq∂∂∂∂∂=-∂∂∂(14)代入第二式可得: 222222y x y y x lq q q q x q ∂⎛⎫⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂∂∂⎝⎭+=+⎢⎥ ⎪ ⎪ ⎪ ⎪∂∂∂∂⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫∂⎣⎦⎪∂⎝⎭(15) 消去公共项可得: 22x y q l ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (16)开方并代入式(13)的第一项:x y q l x y lq ∂∂⎧=⎪∂∂⎪⎨∂∂⎪=-⎪∂∂⎩ (17)高斯投影坐标正算高斯投影三条件:L0为直线;L0长度不变;正形投影 1、幂级数展开公式(x 偶y 奇)l /ρ微小量(ρ''=206265),可进行级数展开,可得:2402435135x m m l m l y m l m l m l ⎧=+++⎪⎨=+++⎪⎩(18) 式中mi 为待定系数,是q 、B 的函数。
高斯投影及计算

x y y 2 - 1= y
C
2dδ
ε 2
2dδ
δ21
dξ
B
dδ dσ
DA
Tδ12
1
y
x B′
y A′
B dδ
A dδ
η
椭球面上的方向和长度归算至高斯投影平面
• 二、方向改正计算 • 方向改正——正形投影后,椭球面上大地线投影
到平面上仍为曲线,化为直线方向所加的改正δ。 • 适用于三、四等三角测量的方向改正计算公式
2、将椭球面上起算元素和观测元素归算至高斯投影平面, 然后解算平面三角形,推算各边坐标方位角,在平面上进 行平差计算,求解各点的平面直角坐标。
高斯投影计算内容
归算
解算
椭球面
大地坐标
高斯投影 坐标公式
两
种
地面观测数据
方
高斯直角 平面坐标
法
归算
椭球面
高斯平面
归算
解算平面三角形
平差计算
高斯投影计பைடு நூலகம்内容
Vy 2 项。
项y,4m
西(Cauchy)—黎曼(Riemann)条件,式中,f代 表任意解析函数。
x iy f (q il)
高斯投影坐标计算
• 高斯投影坐标正算——由(B,L)求(x, y)
• 高斯投影坐标反算——由(x,y)求(B, L)
高斯投影坐标计算
大地经度L是从起始子午面开始起算的 起始子午线作为投影的中央子午线
上式的计算精度为0.1″。
椭球面上的方向和长度归算至高斯投影平面
• 三、距离改正计算
• 距离改正——椭球面上大地线长S改换为平面上投
影曲线两端点间的弦长D,要加距离改正△S。
高斯投影高斯投影正算公式

高斯-克吕格投影也称等角横切椭圆柱投 影,它可看作是等角圆柱投影(墨卡托投 影,1569)的一种,它由德国科学家高斯 处理三角测量成果时首先提出,后经克吕 格完善(1919) ,我国于1952年起正式采 用高斯-克吕格投影。
四个世纪以来,世界各国都用墨卡托投影作 为海图的数学基础。当代常用于较大比例尺 分幅海图或赤道附近的航空图。
《大地测量学基础》(FOUNDATION OF GEODESY)
高斯-克吕格投影 高斯平面坐标系与大地坐标系
的关系(1)
测绘学院一系大地测量教研室
上节课内容回顾
☺ 长度比? m d s
dS
☺ 椭球面到平面的长度比在什么方 向取极值?
子午方向和卯酉方向 MNcosB
☺ 最大角度变形? sin a b
② 分带的方法
1) 6°带划分 (n为带号 )
6°带中央子午线的经度计算公式 L0 6 n3
已知6°带中央子午线的经度反算带号
n
1 6
(L0
3
)
计算任意经度所在投影带的带号公式
nL的 整 数 商 ( 1有 余 数 时 ) 6
2、高斯投影的分带
Zone-dividing of Gauss Projection
② 分带的方法
2) 3°带划分 (n'为带号 )
3°带中央子午线的经度计算公式 L0 3 n
已知3°带中央子午线的经度反算带号 n L 0 3
计算任意经度所在投影带的带号公式 n L 1.5 1 3
③ UTM分带的方法
UTM的分带是从经度180°起向东每6°为一 带,即与国际百万分之一地形图的划分一致;
(135°02′30″)
南海南沙群岛的曾母 暗沙(3°52′)
高斯投影正反算

高斯投影正、反算及换带程序执行条件※数组投影选择T、换算点个数“Z=0 F≠0”、=0正算0、≠0反算※坐标系选择“54 ≠54”、=54换算为1954年北京坐标系输入54、≠54换算为1988年西安坐标系M、中央子午线经度(°′″)输入※大地坐标I、序列号B、L:大地纬度和经度(地理坐标)(°′″)※高斯平面坐标轴子午线I、序列号X、Y:高斯平面坐标(m) Z、轴子午线(°)输出※大地坐标子午收敛角N、序列号B、L:大地纬度和经度(地理坐标)(°′″) R、子午收敛角(°′″)※高斯平面坐标子午收敛角N、序列号X、Y:高斯平面坐标(m) R、子午收敛角(°′″)注:1、程序执行前必须进行数组定位。
如:Defm 10 T×2=5×2=102、Y坐标值要去掉带号及避免出现负值的500公里;4、本程序运算时,各已知数据、观测变量不会随之变化,可非常方便地进行各数据的核对;5、本程序在进行换带计算时采用的是间接换带计算法。
Prog GSXYDefm 10:TA“Z=0 F≠0”G“54 ≠54”Z:Fixm:I=0:「b」0:I=I+1◢J=2I-1:M=Z[J:L=Z[J+1:A=0=>Prog“3”:B=M:M=L+Z:Prog“3”:L=M:{BL}:M=B:Prog“2”: B=M:M=L:Prog“2”:L=M-Z:≠>X=M:Y=L:{XY}:B=X:L=Y⊿Z[J]=B:Z[J+1]=L:I<T=>Goto 0⊿G=54=>C=6399698.90178271:E=.006738525414684:≠>C=6399596.65198801:E=.006 739501819473⊿I=0:「b」0:I“N”=I+1◢J=2I-1:B=Z[J:L=Z[J+1:A≠0=>X=B:Y=L:Goto 2⊿S=sin B:G=54=>F=111134.8611B-(32 005.7799S+133.9238S∧3+.6973S∧5+.0039S∧7)cos B:≠>F=111133.0047B-(32009.857 S+133.9602S∧3+.6976S∧5+.0039S∧7)cos B⊿U=√Ecos B:V=√(1+U2:N=C÷V:W=tan B: M=cos B(Lπ÷180:X=F+NW(.5M2+1┛24(5-W2+9U2+4U∧4)M∧4+1┛720(61-58W2+W∧4)M∧6◢Y=N(M+1┛6(1-W 2+U 2)M ∧3+1┛120(5-18W 2+W ∧4+14U 2-58U 2W 2)M ∧5◢M=W ┛π(180M+60(1+3U 2+2U ∧4)M ∧3+12(2-W 2)M ∧5:Goto 3:「b 」2:W=E ﹣6X-3:G=54=>F=27.11115372595+9.024********W-.00579740442W 2-4.3532572E ﹣4W ∧3+4.857285E ﹣5W ∧4+2.15727E ﹣6W ∧5-1.9399E ﹣7W ∧6:≠>F=27.11162289465+9.024********W-.00579850656W2-4.3540029E ﹣4W ∧3+4.858357E ﹣5W ∧4+2.15769E ﹣6W ∧5-1.9404E ﹣7W ∧6⊿U=√Ecos F:V=√(1+U 2:Q=YV ÷C:W=tan F:M=F-(1+U 2)W ┛π(90Q 2-7.5(5+3W 2+U 2-9U 2W 2)Q ∧4+.25(61+90W 2+45W ∧4)Q ∧6:Prog “3”:B=M ◢M=Z+1┛(πcos F)(180Q-30(1+2W 2+U 2)Q ∧3+1.5(5+28W 2+24W ∧4)Q ∧5:Prog “3”:L=M ◢M=W ┛π(180Q-60(1+W 2-U 2)Q ∧3+12(2+5W 2+3W ∧4)Q ∧5:「b 」3:Prog “3”:R=M ◢ I<T=>Goto 1⊿“END ”概要说明:我国的经度范围西边自73°起,东边至135°,可分成6°带共11带或3°共22带。
高斯投影正反算原理

高斯投影正反算原理高斯投影是一种常用于地图制图的投影方式,也被广泛应用于其他领域的空间数据处理。
高斯投影正反算是对于已知的地球坐标系上的位置(经纬度),通过计算得到该点的平面坐标(东、北坐标),或者对于已知的平面坐标(东、北坐标),通过计算得到该点的地球坐标系上的位置(经纬度)的过程。
本文将详细介绍高斯投影正反算的原理。
一、高斯投影简介高斯投影是一种圆锥投影,其投影面在地球表面的某个经线上,也就是说,投影面是以该经线为轴的圆锥面。
经过对圆锥体的调整后,使其切于地球椭球面,在该经线上进行投影,同时保持沿该经线方向的比例尺一致,从而达到地图上各点在包括该经线的垂直面上映射的目的。
这种投影方式在某一特定区域内得到高精度的结果,因此广泛应用于地图制图。
二、高斯投影数学模型对于高斯投影正反算,需要先建立高斯投影坐标系与地球坐标系的转换模型。
1.高斯投影坐标系的建立高斯投影坐标系的建立需要确定圆锥面的基本参数,首先需要确定其所处的中央子午线,再确定该子午线上的经度为零点,并利用该经线上某一点的经度和该点的高度来确定该点所在的圆锥体。
圆锥体的底面包括所有与地球椭球面相切的圆面,通过对这些圆面进行调整,使得圆锥体转动后能够在中央子午线上进行投影。
在此基础上,可建立高斯投影坐标系,其中投影面为圆锥面,且中央子午线与投影面的交点称为该投影坐标系的中心,投影面的上端点和下端点分别对应正北方向和正南方向。
2.地球坐标系的建立地球坐标系是以地球椭球体为基础建立的,其坐标系原点确定为地球椭球体上的一个特定点。
在已知该点经纬度和高度的前提下,可确定以该点为中心的地球椭球体,并可根据它与地球坐标系之间的转换关系得到平面坐标系。
3.高斯投影坐标系与地球坐标系之间的转换关系由于高斯投影坐标系与地球坐标系存在不同的坐标体系和基准面,因此需要通过数学关系式来建立它们之间的转换关系。
(1)高斯投影坐标系转地球坐标系:已知高斯投影坐标系中任意一点的东北坐标(N,E),以及所属的中央子午线经度λ0、椭球参数a和e,则可通过以下公式求出该点的地球坐标系经纬度(φ,λ)和高度H:A0为以地球椭球体中心为原点,高斯投影坐标系中心投影坐标为(0,0)的点到椭球面的距离。
高斯投影坐标计算

B
d B dq
2
dX dq dq
c
(
cos B dV V dB
2
dB dq
sin B dB V dq
2
)
2
d B dq
2
cos B c ( tan B V
2 2
3
V
sin B cos B
)
N sin B cos B
同理得
d X dq
3
N cos B ( 1
3
3
2
0
l
L
L
0
高斯投影坐标正算的函数式:
x y
l 是以弧度为单位的经度差。
F B , l F B , l
1 2
一 高斯投影坐标正算公式计算
如图,椭球面上一点投影 到平面后为d点,椭球面上 该点的平行圈(B或q为一 常数)与中央子午线的交 点为e点,若将上式中的展 开点z0设为e处,则很据高 斯投影条件,中央子午线 的长度比m=1,且纵坐标x 等于从赤道起到该平行圈 间的子午线弧长X。此时 可以写出下列方程:
4 2
二、高斯投影坐标反算公式
最后得到坐标反算的公式为:
B B
f
2M
f
t
f
y N
f
2
t 24 M
2 f
f
f
f
N
4 f
3 f
5 3 t
6
2 f
2 f
9 f t
2
2 f
y
4
t
高斯投影正反算公式

高斯投影坐标正反算一、基本思想:高斯投影正算公式就是由大地坐标(L ,B )求解高斯平面坐标(x ,y ),而高斯投影反算公式则是由高斯平面坐标(x ,y )求解大地坐标(L ,B )。
二、计算模型:基本椭球参数:椭球长半轴a椭球扁率f椭球短半轴:(1)b a f =-椭球第一偏心率:e a= 椭球第二偏心率:e b'=高斯投影正算公式:此公式换算的精度为0.001m6425644223422)5861(cos sin 720)495(cos 24cos sin 2l t t B B N l t B simB N l B B N X x ''+-''+''++-''+''⋅''+=ρηηρρ 5222425532233)5814185(cos 120)1(cos 6cos l t t t B N l t B N l B N y ''-++-''+''+-''+''⋅''=ηηρηρρ其中:角度都为弧度B 为点的纬度,0l L L ''=-,L 为点的经度,0L 为中央子午线经度; N 为子午圈曲率半径,1222(1sin )N a e B -=-;tan t B =; 222cos e B η'=1803600ρπ''=*其中X 为子午线弧长:2402464661616sin cos ()(2)sin sin 33X a B B B a a a a a B a B ⎡⎤=--++-+⎢⎥⎣⎦02468,,,,a a a a a 为基本常量,按如下公式计算:200468242684468686883535281612815722321637816323216128m a m m m m m m a m m m a m m m m a m a ⎧=++++⎪⎪⎪=+++⎪⎪⎪=++⎨⎪⎪=+⎪⎪⎪=⎪⎩02468,,,,m m m m m 为基本常量,按如下公式计算:22222020426486379(1);;5;;268m a e m e m m e m m e m m e m =-====;高斯投影反算公式:此公式换算的精度为0.0001’’.()()()()2222243246532235242225053922461904572012cos 6cos 5282468120cos f f f f f f f f f f f f f f f f f f f f f ff f f f f f ft t B B y t t yM N M N t y t t yM N y y l t N B N B y t t t N B L l L ηηηηη=-+++--++=-+++++++=+其中: 0L 为中央子午线经度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高斯投影正算与反算的理论方法与实现代码高斯投影是正形投影的一种,同一坐标系中的高斯投影换带计算公式是根据正形投影原理推导出的两个高斯坐标系间的显函数式。
在同一大地坐标系中(例如1954北京坐标系或1980西安坐标系),如果两个高斯坐标系只是主子午线的经度不同,那么显函数式前的系数可以根据坐标系使用的椭球元素和主子午线经度唯一确定。
但如果两个高斯坐标系除了主子午线的经度不同以外,还存在其他线性系,则将线性变换公式代入换带计算的显函数式中,仍然可以得到严密的坐标变换公式。
此时显函数式前的系数等价于使用两个坐标系主子午线的经度和线性变换参数联合求解得到的,可以唯一确定。
//6度带宽54北京坐标系
//高斯投影由大地坐标(Unit:Metres)反算经纬度(Unit:DD)
void GaussProjInvCal(double X, double Y, double *longitude, double *latitude)
{
int ProjNo; int ZoneWide; ////带宽
double longitude1,latitude1, longitude0,latitude0, X0,Y0, xval,yval;
double e1,e2,f,a, ee, NN, T,C, M, D,R,u,fai, iPI;
iPI = 0.0174532925199433; ////3.1415926535898/180.0;
a = 6378245.0; f = 1.0/298.3; //54年北京坐标系参数
////a=6378140.0; f=1/298.257; //80年西安坐标系参数
ZoneWide = 6; ////6度带宽
ProjNo = (int)(X/1000000L) ; //查找带号
longitude0 = (ProjNo-1) * ZoneWide + ZoneWide / 2;
longitude0 = longitude0 * iPI ; //中央经线
X0 = ProjNo*1000000L+500000L;
Y0 = 0;
xval = X-X0; yval = Y-Y0; //带内大地坐标
e2 = 2*f-f*f;
e1 = (1.0-sqrt(1-e2))/(1.0+sqrt(1-e2));
ee = e2/(1-e2);
M = yval;
u = M/(a*(1-e2/4-3*e2*e2/64-5*e2*e2*e2/256));
fai = u+(3*e1/2-27*e1*e1*e1/32)*sin(2*u)+(21*e1*e1/16-55*e1*e1*e1*e1/32)*sin( 4*u)+(151*e1*e1*e1/96)*sin(6*u)+(1097*e1*e1*e1*e1/512)*sin(8*u);
C = ee*cos(fai)*cos(fai);
T = tan(fai)*tan(fai);
NN = a/sqrt(1.0-e2*sin(fai)*sin(fai));
R = a*(1-e2)/sqrt((1-e2*sin(fai)*sin(fai))*(1-e2*sin(fai)*sin(fai))*(1-e2*sin
(fai)*sin(fai)));
D = xval/NN;
//计算经度(Longitude) 纬度(Latitude)
longitude1 =
longitude0+(D-(1+2*T+C)*D*D*D/6+(5-2*C+28*T-3*C*C+8*ee+24*T*T)*D
*D*D*D*D/120)/cos(fai);
latitude1 = fai -(NN*tan(fai)/R)*(D*D/2-(5+3*T+10*C-4*C*C-9*ee)*D*D*D*D/24
+(61+90*T+298*C+45*T*T-256*ee-3*C*C)*D*D*D*D*D*D/720);
//转换为度DD
*longitude = longitude1 / iPI;
*latitude = latitude1 / iPI;
}
//高斯投影由经纬度(Unit:DD)正算平面坐标(含带号,Unit:Metres)
void GaussProjCal(double longitude, double latitude, double *X, double *Y) {
int ProjNo=0; int ZoneWide; ////带宽
double longitude1,latitude1, longitude0,latitude0, X0,Y0, xval,yval; double a,f, e2,ee, NN, T,C,A, M, iPI;
iPI = 0.0174532925199433; ////3.1415926535898/180.0;
ZoneWide = 6; ////6度带宽
a=6378245.0; f=1.0/298.3; //54年北京坐标系参数
////a=6378140.0; f=1/298.257; //80年西安坐标系参数
ProjNo = (int)(longitude / ZoneWide) ;
longitude0 = ProjNo * ZoneWide + ZoneWide / 2;
longitude0 = longitude0 * iPI ;
latitude0=0;
longitude1 = longitude * iPI ; //经度转换为弧度
latitude1 = latitude * iPI ; //纬度转换为弧度
e2=2*f-f*f;
ee=e2*(1.0-e2);
NN=a/sqrt(1.0-e2*sin(latitude1)*sin(latitude1));
T=tan(latitude1)*tan(latitude1);
C=ee*cos(latitude1)*cos(latitude1);
A=(longitude1-longitude0)*cos(latitude1);
M=a*((1-e2/4-3*e2*e2/64-5*e2*e2*e2/256)*latitude1-(3*e2/8+3*e2*e2/32+45*e2 *e2
*e2/1024)*sin(2*latitude1)+(15*e2*e2/256+45*e2*e2*e2/1024)*sin(4*latitude1)-(3 5*e2*e2*e2/3072)*sin(6*latitude1));
xval = NN*(A+(1-T+C)*A*A*A/6+(5-18*T+T*T+72*C-58*ee)*A*A*A*A*A/120); yval = M+NN*tan(latitude1)*(A*A/2+(5-T+9*C+4*C*C)*A*A*A*A/24
+(61-58*T+T*T+600*C-330*ee)*A*A*A*A*A*A/720);
X0 = 1000000L*(ProjNo+1)+500000L;
Y0 = 0;
xval = xval+X0; yval = yval+Y0;
*X = xval;
*Y = yval;
}
NN卯酉圈曲率半径,测量学里面用N表示
M为子午线弧长,测量学里用大X表示
fai为底点纬度,由子午弧长反算公式得到,测量学里用Bf表示R为底点所对的曲率半径,测量学里用Nf表示。