高考数学二轮复习微专题20答案 (2)
专题20 解决直线与圆问题-2021年高考数学二轮复习核心考点微专题(苏教版)(解析版)

1.直线l :y =kx +1与圆x 2+y 2-2ax +a 2-2a -4=0恒有交点,则实数a 的取值范围是________. 【答案】-1≤a ≤3【解析】圆方程为(x -a )2+y 2=2a +4,则a >-2,又直线l 过定点(0,1),故只需点(0,1)在圆内或圆上,即-1≤a ≤3,综上,实数a 的取值范围是-1≤a ≤3.2.若圆x 2+y 2=r 2(r >0)上有且只有两个点到直线x -y -2=0的距离为1,则实数r 的取值范围是________. 【答案】2-1<r <2+1.3.若对圆M :(x -1)2+(y -1)2=1上任意一点P (x ,y ),|3x -4y +a |+|3x -4y -9|的取值与x ,y 无关,则实数a 的取值范围是________. 【答案】a ≥6.【解析】设直线l 1:3x -4y +a =0,直线l 2:3x -4y -9=0,则|3x -4y +a |+|3x -4y -9|=5(dP -l 1+dP -l 2),因为|3x -4y +a |+|3x -4y -9|的取值与x 无关,所以,圆M 恰完全在直线l 1和直线l 2所夹带状区域内,所以,直线l 1:3x -4y +a =0在圆M 的上方,dM -l 1=|-1+a |5=a -15≥1,所以,a ≥6.4.已知圆O :x 2+y 2=r 2(r >0)及圆上的点A (0,-r ),过点A 的直线l 交圆于另一点B ,交x 轴于点C ,若OC =BC ,则直线l 的斜率为________.【解析】设直线l 的斜率为k ,则直线l :y =kx -r ,与x 2+y 2=r 2联立解得B (2kr k 2+1,(k 2-1)r k 2+1),而C (rk ,0),由OC =BC 得(r k )2=(2kr k 2+1-r k )2+[(k 2-1)r k 2+1]2即k =±3.学&科网【考向分析】直线与圆的位置关系是高考常考的知识内容.对它们的研究,既可以从几何的角度来探索它们的位置关系,又可以从方程角度来解决一些度量问题(如类似阿氏圆一类问题),体现用代数方法研究几何问题的思想.对这类问题的考查,一般会涉及弦长、距离的计算、圆的切线及与点(直线、圆)的位置关系判定问题等,解答此类问题,注重“圆的特征直角三角形”是关键.(一)直线与圆基本问题盘点 例1. 直线tx +y +3=0与圆x 2+y 2=4相交于A 、B 两点,若|OA →+OB →|>|AB →|,则实数t 的范围________.【答案】-142<t <-52或52<t <142.变式1若直线l 1:y =x +a 和直线l 2:y =x +b 将圆(x -1)2+(y -2)2=8分成长度相等的四段弧,则a 2+b 2=________. 【答案】18【解析】由题意得直线l 1:y =x +a 和直线l 2:y =x +b 截得圆的弦所对圆周角相等,皆为直角,因此圆心到两直线距离皆为22r =2,即|1-2+a |2=|1-2+b |2=2,所以a 2+b 2=(22+1)2+(-22+1)2=18. 变式2 在平面直角坐标系xOy 中,已知圆C :x 2+(y -1)2=4.若等边△P AB 的一边AB 为圆C 一条弦,则PC 的最大值为________. 【答案】4【解析】由△P AB 为等腰三角形,故PC 与AB 垂直,设PC 与AB 交于点H ,记AH =BH =x ,PH =y ,PC =t ,则CH =3x ,满足⎩⎨⎧x 2+y 2=4(x ,y >0)t =3x +y求PC 的最小值.记直线l :y =-3x +t ,利用线性规划作图,可知当直线l 与圆弧x 2+y 2=4(x ,y >0)相切时,则t 取最大值,求得t max =4,即PC 的最大值为4.(二)圆与圆的位置关系应用例2. 设集合A ={(x ,y )|m2≤(x -2)2+y 2≤m 2,x ,y ∈R },B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R }.若A ∩B ≠∅,则实数m 的取值范围是________. 【答案】12≤m ≤2+ 2.变式1 在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________. 【答案】-13<c <13.【解析】圆半径为2,圆心(0,0)到直线12x -5y +c =0的距离小于1,即|c |13<1,解得:-13<c <13.变式2 已知圆C :(x -2)2+y 2=1,点P 在直线l :x +y +1=0上,若过点P 存在直线m 与圆C 交于A 、B 两点,且点A 为PB 的中点,则点P 横坐标x 0的取值范围是________. 【答案】-1≤x 0≤2.【解析】数形结合法:设P (x 0,1-y 0),由题意可得|CP |≤3,即(x 0-2)2+(-1-x 0)2≤3,解之得-1≤x 0≤2. (三)阿波罗尼斯圆问题梳理例3. 已知圆M :(x -1)2+(y -1)2=4,直线l :x +y -6=0,A 为直线l 上一点.若圆M 上存在两点B ,C ,使得∠BAC =60°,则点A 横坐标的取值范围________. 【答案】[1,5].【解析】可判断出直线l 与圆M 相离,故点A 在圆外,由于圆M 上存在两点B ,C ,使得∠BAC =60°,则设直线AE ,AF 为过点 A 作圆M 的两条切线,切点分别为E ,F ,则∠EAF ≥∠MAN =60°,故∠MAC ≥30°且r =2,则CA ≤4,设A (a,6-a ),所以(a -1)2+(5-a )2≤4,解得a ∈[1,5].学科*网变式1 满足条件AB =2,AC =2BC 的△ABC 的面积的最大值是________. 【答案】2 2.变式2 已知点A (-2,0),B (4,0),圆C :(x +4)2+(y +b )2=16,点P 是圆C 上任意一点,若P APB为定值,则b =________. 【答案】0【解析】设P (x ,y ),P APB=k ,则(x +2)2+y 2(x -4)2+y2=k ,整理得(1-k 2)x 2+(1-k 2)y 2+(4+8k 2)x +4-16k 2=0,又P 是圆C 上的任意一点,故k ≠1,圆C 的一般方程为x 2+y 2+8x +2by +b 2=0,因此2b =0,故4+8k 21-k 2=8,4-16k 21-k 2=b 2,解得b =0.1.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________. 【答案】[-1,1].【解析】如图,过点M 作⊙O 的切线,切点为N ,连结ON .M 点的纵坐标为1,MN 与⊙O 相切于点N ,设∠OMN =θ,则θ≥45°,即sin θ≥22,即ON OM ≥22.而ON =1,所以OM ≤ 2.因为M 为(x 0,1),所以x 20+1≤2,解得-1≤x 0≤1,所以x 0的取值范围为[-1,1].2.已知圆C :(x -a )2+(y -a )2=a 2和直线l :3x +4y +3=0,若圆C 上有且仅有两个点到l 的距离等于1,则a 的取值范围________. 【答案】⎝⎛⎭⎫16,1∪⎝⎛⎭⎫-4,23.【解析】到直线l :3x +4y +3=0的点组成的轨迹为直线l 1:3x +4y -2=0或直线l 2:3x +4y +8=0,又圆C 圆心在直线y =x 上,且与两轴相切,由于圆C 上有且仅有两个点到l 的距离等于1,则直线l 1或l 2与圆C 相交,于是当a >0时,r =a ,则圆C 与l 1:3x +4y -2=0相交,则d =|7a -2|5<a ,得a ∈(16,1),当a <0时,r =-a ,则圆C 与l 1:3x +4y +8=0相交,则d =|7a +8|5<a ,则a ∈⎝⎛⎭⎫-4,23,综上a 的取值范围是⎝⎛⎭⎫16,1∪⎝⎛⎭⎫-4,23.学科#网3.△ABC 中,BC =22,AB →·AC →=1,则△ABC 面积的最大值为________.4.在平面直角坐标系xOy 中,已知点A ,B 分别为x 轴,y 轴上一点,且AB =2,若点P (2,5),则|AP →+BP →+OP →|的取值范围是________. 【答案】[7,11].【解析】++=3-(+),由于⊥,且AB =2,设+=,则点M 的轨迹为以O 为圆心半径r =2的圆,记3==(6,35),于是|++|=|-|=MQ ,即圆上一点M 到定点Q (6,35)的距离,其取值范围是[OQ -r ,OQ +r ],即[7,11].1.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 【答案】2555.【解析】圆心为(2,-1),半径r =2.圆心到直线的距离d =|2+2×(-1)-3|1+4=355,所以弦长为2r 2-d 2=222-(355)2=2555.2.若直线3x +4y -m =0与圆x 2+y 2+2x -4y +4=0始终有公共点,则实数m 的取值范围是________. 【答案】0≤m ≤10.【解析】因为(x +1)2+(y -2)2=1,所以由题意得:|-3+4×2-m |5≤1,化简得|m -5|≤5即0≤m ≤10.3.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________. 【答案】(x -1)2+y 2=2.【解析】由直线mx -y -2m -1=0得m (x -2)-(y +1)=0,故直线过点(2,-1).当切线与过(1,0),(2,-1)两点的直线垂直时,圆的半径最大,此时有r =1+1=2,故所求圆的标准方程为(x -1)2+y 2=2. 4.在平面直角坐标系xOy 中,A (2,0),O 是坐标原点,若在直线x +y +m =0上总存在点P ,使得P A =3PO ,则实数m 的取值范围是________. 【答案】1-6≤m ≤1+ 6.5. 已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN 的长. 【答案】(1)(4-73,4+73)(2)2【解析】(1)由题设,可知直线l 的方程为y =kx +1.因为l 与C 交于两点,所以|2k -3+1|1+k 2<1.解得4-73<k <4+73.所以k 的取值范围为(4-73,4+73).(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0.所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. ·=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8=12,解得k =1,所以l 的方程是y =x +1.故圆心C在l 上,所以MN 的长为2.6. 在平面直角坐标系xOy 中,若直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=16相交于A ,B 两点,且△ABC 为直角三角形,则实数a 的值是________. 【答案】a =-1【解析】圆心C (1,a ),半径r =4,因为△ABC 为直角三角形,所以圆心C 到直线AB 的距离d =2 2.7. 在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围. 【答案】⎣⎡⎦⎤0,125.8. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 【答案】0≤k ≤43.【解析】将圆C 的方程整理为标准方程得:(x -4)2+y 2=1,所以圆心(4,0),半径r =1,因为直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需圆C ′(x -4)2+y 2=4与y =kx -2有公共点,即|4k -2|k 2+1≤2,解得:0≤k ≤43.9. 已知直线kx -y +1=0与圆C :x 2+y 2=4相交于A ,B 两点,若点M 在圆C 上,且有OM →=OA →+OB →(O为坐标原点),则实数k =________. 【答案】0【解析】设AB 的中点为D ,有=+=2,因为||=2||=2,所以||=1,故|0-0+1|k 2+1=1解得k =0. 学#科网10. 在平面直角坐标系xOy 中,已知圆O :x 2+y 2=1,O 1:(x -4)2+y 2=4,动点P 在直线x +3y -b =0上,过P 分别作圆O ,O 1的切线,切点分别为A ,B ,若满足PB =2P A 的点P 有且只有两个,则实数b 的取值范围是________. 【答案】-203<b <4.11. 已知A (0,1),B (1,0),C (t,0),点D 是直线AC 上的动点,若AD ≤2BD 恒成立,则最小正整数t 的值为________. 【答案】4【解析】由A (0,1),C (t,0),得l :y =-1tx +1,D ⎝⎛⎭⎫x ,-1t x +1.又AD ≤2BD ,故x 2+x 2t 2≤2(x -1)2+⎝⎛⎭⎫1-x t 2,化简得⎝⎛⎭⎫3+3t 2x 2-⎝⎛⎭⎫8+8t x +8≥0对任意x 恒成立,则⎝⎛⎭⎫8+8t 2-4×8×⎝⎛⎭⎫3+3t 2≤0,化简得t 2-4t +1≥0,解得t ≥2+3或0<t ≤2-3,因此最小正整数t 的值为4.12.在等腰三角形ABC 中,AB =AC ,D 在线段AC 上,AD =kAC (k 为常数,且0<k <1),BD =l 为定长,则△ABC 的面积最大值为________.【解析】如图,以B 为原点,BD 为x 轴建立直角坐标系xBy . 设A (x ,y ),y >0.因AD =kAC =kAB ,故AD 2=k 2AB 2, 于是(x -l )2+y 2=k 2(x 2+y 2).所以,y 2=-(1-k 2)x 2+2lx -l 21-k 2=-(1-k 2)(x -l 1-k 2)2+k 2l 21-k 21-k 2≤k 2l 2(1-k 2)2,于是,y max =kl 1-k 2,(S △ABD )max =kl 22(1-k 2),所以,(S △ABC )max =1k (S △ABD )max =l 22(1-k 2).。
2020新高考文科数学二轮培优基础保分强化试题二及答案解析(7页)

2020新高考文科数学二轮培优基础保分强化试题二1.已知集合A =[1,+∞),B ={|x ∈R 12a ≤x ≤2a -1},若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B.⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)答案 A 解析因为A ∩B ≠∅,所以⎩⎨⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A.2.若复数z =1+m i1+i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-1,1)B .(-1,0)C .(1,+∞)D .(-∞,-1)答案 A解析 因为z =1+m i 1+i =(1+m i )(1-i )(1+i )(1-i )=1+m 2+m -12i ,在复平面内对应的点为⎝ ⎛⎭⎪⎫1+m 2,m -12,且在第四象限,所以⎩⎨⎧1+m2>0,m -12<0,解得-1<m <1,故选A.3.设S n 是各项均不为0的等差数列{a n }的前n 项和,且S 13=13S 7,则a 7a 4等于( )A .1B .3C .7D .13 答案 C解析 因为S n 是各项均不为0的等差数列{a n }的前n 项和,且S 13=13S 7,所以13(a 1+a 13)2=13×7(a 1+a 7)2,即a 7=7a 4,所以a 7a 4=7.故选C. 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某简单几何体的三视图,则该几何体的体积为( )A.4π3B.8π3C.16π3D.32π3 答案 A解析 由三视图可得该几何体为半圆锥,底面半圆的半径为2,高为2,则其体积V =12×13×π×22×2=4π3,故选A.5.已知i 与j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,则实数λ的取值范围是( )A .(-∞,-2)∪⎝⎛⎭⎪⎫-2,12 B.⎝ ⎛⎭⎪⎫12,+∞ C.⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞ D.⎝ ⎛⎭⎪⎫-∞,12 答案 A解析 因为i 与j 为互相垂直的单位向量,所以i 2=j 2=1,i ·j =0.又因为a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,所以a ·b =1-2λ>0,λ<12.但当λ=-2时,a =b ,不满足要求,故满足条件的实数λ的取值范围为(-∞,-2)∪⎝⎛⎭⎪⎫-2,12.故选A.6.若函数f (x )=sin2x +cos2x ,则下列结论正确的是( ) A .函数f (x )的最小正周期为2πB .对任意的x ∈R ,都有f ⎝ ⎛⎭⎪⎫x -π4+f (-x )=0 C .函数f (x )在⎝⎛⎭⎪⎫π2,3π4上是减函数D .函数f (x )的图象关于直线x =-π8对称 答案 B解析 函数f (x )=sin2x +cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π4,则函数f (x )的最小正周期为T=2π2=π,故A 错误;f ⎝ ⎛⎭⎪⎫x -π4+f (-x )=2sin ⎝ ⎛⎭⎪⎫2x -π4+2sin ⎝ ⎛⎭⎪⎫-2x +π4=0,故B 正确;令π2+2k π≤2x +π4≤2k π+3π2(k ∈Z ),解得π8+k π≤x ≤k π+5π8(k ∈Z ),当k =0时,函数的单调递减区间为⎣⎢⎡⎦⎥⎤π8,5π8,故C 错误;当x =-π8时,f ⎝⎛⎭⎪⎫-π8=0.故D 错误,故选B.7.已知长方体ABCD -A 1B 1C 1D 1中,B 1C ,C 1D 与底面ABCD 所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为( )A.64B.14C.26D.36 答案 A解析 ∵B 1C 和C 1D 与底面ABCD 所成的角分别为60°和45°,∴∠B 1CB =60°,∠C 1DC =45°.由图可知,B 1C 与C 1D 所成的角,即为A 1D与C 1D 所成的角,即∠A 1DC 1.令BC =1,则B 1B =AB =3,∴A 1D =2,A 1C 1=2,C 1D = 6.由余弦定理,得cos ∠A 1DC 1=22+(6)2-222×2×6=64.故选A.8.如图,在矩形区域ABCD 中,AB =2,AD =1,且在A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机选一地点,则该地点无信号的概率是( )A .2-π2 B.π2-1 C .1-π4 D.π4 答案 C解析 由条件得扇形区域ADE 和扇形区域CBF 的面积均为π4,又矩形区域ABCD 的面积为2×1=2,根据几何概型概率公式可得所求概率为P =2-2×π42=1-π4,即在该矩形区域内随机选一地点,则该地点无信号的概率是1-π4.9.已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是双曲线C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角的大小为30°,则双曲线C 的渐近线方程是( )A.2x ±y =0 B .x ±2y =0 C .2x ±y =0 D .x ±2y =0答案 A解析 不妨设|PF 1|>|PF 2|,则⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a ,且|F 1F 2|=2c ,即|PF 2|为最小边,所以∠PF 1F 2=30°,则△PF 1F 2为直角三角形,所以2c =23a ,所以b =2a ,即渐近线方程为y =±2x ,故选A.10.若x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0,kx -y +3≥0,y ≥0,且z =y -x 的最小值为-12,则k 的值为( )A.12 B .-12 C.14 D .-14 答案 D解析 依题意,易知k ≤-1和k ≥0不符合题意.由⎩⎪⎨⎪⎧kx -y +3=0,y =0得A ⎝ ⎛⎭⎪⎫-3k ,0,结合图形可知,当直线z =y -x 过点A ⎝ ⎛⎭⎪⎫-3k ,0时,z 有最小值,于是有0+3k =-12,k =-14,选D.11.椭圆x 24+y 2=1上存在两点A ,B 关于直线4x -2y -3=0对称,若O 为坐标原点,则|OA →+OB →|=( )A .1 B. 3 C. 5 D.7 答案 C解析 由题意,直线AB 与直线4x -2y -3=0垂直,设直线AB 的方程为y =-12x +m .由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 2=1消去y 整理得x 2-2mx +2m 2-2=0,∵直线AB与椭圆交于两点,∴Δ=(-2m )2-4(2m 2-2)=-4m 2+8>0,解得-2<m < 2.设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),则x 1+x 2=2m ,∴x 0=x 1+x 22=m ,y 0=-12x 0+m =m2,∴点M 的坐标为⎝ ⎛⎭⎪⎫m ,m 2.由题意得点M 在直线4x -2y -3=0上,∴4m -2×m 2-3=3m -3=0,解得m =1.∴x 1+x 2=2,y 1+y 2=-12(x 1+x 2)+2m =1,∴OA →+OB →=(2,1),∴|OA →+OB →|= 5.故选C.12.已知角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点P (-1,2),则cos2α=________.答案 -35解析 设点P 到原点的距离是r ,由三角函数的定义,得r =5,sin α=2r =25,可得cos2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫252=-35.13.将1,2,3,4,…正整数按如图所示的方式排成三角形数组,则第10行左数第10个数为________.答案 91解析 由三角形数组可推断出,第n 行共有2n -1项,且最后一项为n 2,所以第10行共19项,最后一项为100,左数第10个数是91.14.已知在△ABC 中,B =2A ,∠ACB 的平分线CD 把三角形分成△BCD 和△ACD ,且S △BCD ∶S △ACD =4∶3,则cos A =________.答案 38解析 在△ADC 中,由正弦定理,得AC sin ∠ADC =37AB sin ∠ACD ⇒AC 37AB =sin ∠ADCsin ∠ACD.同理,在△BCD 中,得BC sin ∠BDC =47AB sin ∠BCD ⇒BC 47AB=sin ∠BDCsin ∠BCD,又sin ∠ADC =sin ∠BDC ,sin ∠ACD =sin ∠BCD ,所以AC 37AB =BC 47AB ⇒AC =34BC ,由正弦定理,得sin B =34sin A ,又B =2A ,即sin B =2sin A cos A ,求得cos A =38.。
2025高考数学二轮复习导数应用中的函数构造技巧

函数形式出现的是“-”法形式时,优先考虑构造 y=型函数.
(2)利用f(x)与ex(enx)构造
() ()
常用的构造形式有 e f(x),e f(x), e , e ,这类形式一方面是对 y=uv,y=型函
x
nx
数形式的考查,另外一方面也是对(ex)'=ex,(enx)'=nenx 的考查.所以对于
f'(x)cos x-f(x)sin x>0,所以 F'(x)>0,即函数
由于
f
π
6
f
π
6
π
0<6
<
π
4
π
π
cos6<f 4
<
3
π
3
3
<
π
3
<
π
,所以
2
π
π
cos4<f 3
π
F(x)在区间(0,2)
π
4
<F
π
cos3,因此可得
π
6
,故选 AD.
F
π
6
<F
f
π
x∈(0,2)时,
π
3
<
内单调递增.
,即
锐角三角形,则( D )
A.f(sin A)sin2B>f(sin B)sin2A
B.f(sin A)sin2B<f(sin B)sin2A
C.f(cos A)sin2B>f(sin B)cos2A
D.f(cos A)sin2B<f(sin B)cos2A
解析 因为
() '
2
2023届高考数学二轮复习微专题:三角形中的面积问题 含答案解析

4 三角形中的面积问题1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =7,c =3且∠A =π3.则△ABC 的面积是________.2.在△ABC 中,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是________.3.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知b>c ,a =6,b =5,△ABC 的面积为9.则sin B 的值是________.4.如图,在△ABC 中,已知AC =7,∠B =45°,D 是边AB 上的一点,AD =3,∠ADC =120°.则△ABC 的面积是________.5.我国南宋时期数学家秦九韶的著作《数书九章》中记载了求三角形面积的“三斜求积”方法,相当于如下公式:S △ABC =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222.现已知△ABC 的周长为42,面积为84,且cos B =513,则边AC 的长为________.6.如图,等腰△ABC 腰上的中线BD 为定长3,当顶角α变化时,则△ABC 面积的最大值为________.7.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知B =60°,c =8.(1)若点M 是线段BC 的中点,AM BM=3,求b 的值; (2)若b =12,求△ABC 的面积.答案及解析1.答案:6 3.解析:在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,可得49=b 2+9-2b ×3×12,解得b =8,所以△ABC 的面积为S △ABC =12bc sin A =12×8×3×32=6 3. 2.答案:152. 解法1取BC 中点E ,DC 中点F ,由题意得AE ⊥BC ,BF ⊥CD ,在△ABE 中,由余弦定理可得,cos ∠ABC =BE AB =14,所以 cos ∠DBC =-14,sin ∠DBC =1-116=154,所以 S △BCD =12×BD ×BC ×sin ∠DBC =152. 解法2△ABC 底边BC 上的高为42-12=15,所以S △ABC =12×2×15=15,S △BCD =12S △ABC =152. 3.答案:31313. 解析:因为△ABC 的面积S =12ab sin C ,所以12×6×5sin C =9,因为b>c ,所以cos C =45.在△ABC 中,由余弦定理得c 2=a 2+b 2-2ab cos C =13,所以c =13.又因为b =5,sin C =35,所以在△ABC 中,由正弦定理得sin B =b sin C c =31313. 4.答案:75+5538. 解析:在△ACD 中,由余弦定理得AC 2=AD 2+CD 2-2AD·CD cos ∠ADC ,72=32+CD 2-2×3CD cos 120°,解得CD =5.在△BCD 中,由正弦定理得BD sin ∠BCD =CD sin B ,BD sin 75°=5sin 45°,解得BD =5+532, 所以S △ABC =S △ACD +S △BCD =12AD·CD sin ∠ADC +12CD·BD sin ∠BDC =12×3×5sin 120°+12×5×5+532sin 60°=75+5538. 5.答案:15.解析:由cos B =513,得sin B =1213,由S △ABC =12ac sin B =84,得ac =182,又a +b +c =42,所以a +c =42-b ,由余弦定理得b 2=a 2+c 2-2ac cos B =(a +c)2-2ac -2ac cos B =(42-b)2-504,解得b =15.6.答案:6.解析:在△ABD 中,设AB =AC =x ,由余弦定理有BD 2=x 2+x 24-2x·x 2·cos α,即cos α=5x 2-364x 2. S △ABC =x 22sin α=x 221-(5x 2-364x 2)2= 18-9x 4+360x 2-16×81=18-9(x 2-20)2+36×64≤1836×64=6. 7.答案:(1)8;(2)242+8 3.解析:(1)因为点M 是线段BC 的中点,AM BM=3,设BM =x ,则AM =3x ,又B =60°,c =8,在△ABM 中,由余弦定理得3x 2=64+x 2-2×8x cos 60°,解得x =4(负值舍去),则BM =4,BC =8.所以△ABC 中为正三角形,则b =8. (2)在△ABC 中,由正弦定理b sin B =c sin C ,得sin C =c sin B b =8×3212=33. 又b>c ,所以B>C ,则C 为锐角,所以cos C =63. 则sin A =sin (B +C)=sin B cos C +cos B sin C =32×63+12×33=32+36,所以△ABC 的面积S =12bc sin A =48×32+36=242+8 3.。
2022高考数学(文)二轮复习高考小题标准练(二) Word版含答案

温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。
关闭Word 文档返回原板块。
高考小题标准练(二)满分75分,实战模拟,40分钟拿下高考客观题满分!一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x ∈Z|2<2x+2≤8},B={x ∈R|x 2-2x>0},则A ∩(R B)所含的元素个数为( )A.0B.1C.2D.3【解题提示】求出A 中不等式的解集,找出解集中的整数解确定出A ,求出B 中不等式的解集,确定出B ,求出B 的补集,找出A 与B 补集的交集,即可确定出元素个数.【解析】选C.由集合A 中的不等式变形得:21<2x+2≤23,得到1<x+2≤3, 解得:-1<x ≤1,且x 为整数,所以A={0,1};由集合B 中的不等式变形得:x(x-2)>0,解得:x>2或x<0,即B=(-∞,0)∪(2,+∞),所以R B=[0,2],所以A ∩(R B)={0,1},即元素有2个.2.设i 是虚数单位,a 为实数,复数z=1+ai i为纯虚数,则z 的共轭复数为( )A.-iB.iC.2iD.-2i 【解析】选B.由于z=1+ai i=(1+ai)i i 2=−a+i −1=a-i ,由于z 为纯虚数,故a=0,所以z=-i , 则z ̅=i.3.甲乙两人在一次赛跑中,从同一地点动身,路程s 与时间t 的函数关系如图所示,则下列说法正确的是( )A.甲比乙先动身B.乙比甲跑的路程多C.甲,乙两人的速度相同D.甲比乙先到达终点【解析】选D.由图形可知甲,乙两人从同一时间动身,且路程相同,甲用的时间短,故甲比乙先到达终点.4.某高校进行自主招生,先从报名者中筛选出400人参与笔试,再按笔试成果择优选出100人参与面试.现随机调查了24名笔试者的成果,如表所示:分数段 [60,65) [65,70) [70,75) [75,80) [80,85) [85,90)人数234951据此估量允许参与面试的分数线大约是( )A.75B.80C.85D.90【解析】选B.由于参与笔试的400人中择优选出100人,故每个人被择优选出的概率P=100400=14,由于随机调查24名笔试者,则估量能够参与面试的人数为24×14=6,观看表格可知,分数在[80,85)有5人,分数在[85,90)的有1人,故面试的分数线大约为80分,故选B.5.已知等比数列{a n}中,a3=2,a4a6=16,则a10−a12a6−a8的值为( )A.2B.4C.8D.16【解题提示】结合已知条件得到q4=4,再利用等比数列的性质即可. 【解析】选B.由于a3=2,a4a6=16,所以a4a6=a32q4=16,即q4=4,则a10−a12 a6−a8=q4(a6−a8)a6−a8=q4=4.6.当m=6,n=3时,执行如图所示的程序框图,输出的S值为( )A.6B.30C.120D.360【解题提示】模拟执行程序框图,依次写出每次循环得到的S,k的值,当k=3时,满足条件k<m-n+1=4,退出循环,输出S的值为120.【解析】选C.模拟执行程序框图,可得m=6,n=3,k=6,S=1,不满足条件k<m-n+1=4,S=6,k=5;不满足条件k<m-n+1=4,S=30,k=4;不满足条件k<m-n+1=4,S=120,k=3;满足条件k<m-n+1=4,退出循环,输出S的值为120. 7.实数x,y满足{x≥1,y≤a,a>1,x−y≤0,若目标函数z=x+y取得最大值4,则实数a的值为( )A.4B.3C.2D.32【解析】选C.画出可行域得直线y=-x+z过(a,a)点时取得最大值,即2a=4,a=2.8.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为( )A.83B.43C.4√3D.2√3【解析】选A.结合三视图,借助正方体想象该棱锥的直观图,如图所示.该棱锥是四棱锥P-ABCD.其底面ABCD为一个底边长为2√2和2的矩形,面积S=4√2,高是P点到底面ABCD的距离,即h=√2,故此棱锥的体积V=13Sh=83.9.设函数f(x)是定义在R上的奇函数,当x>0时,f(x)=e x+x-3,则f(x)的零点个数为( )A.1B.2C.3D.4【解题提示】先由函数f(x)是定义在R上的奇函数确定0是一个零点,再令x>0时的函数f(x)的解析式等于0转化成两个函数,转化为推断两函数交点个数问题,最终依据奇函数的对称性确定答案.【解析】选C.由于函数f(x)是定义域为R的奇函数,所以f(0)=0,所以0是函数f(x)的一个零点.当x>0时,令f(x)=e x+x-3=0,则e x=-x+3,分别画出函数y=e x,和y=-x+3的图象,如图所示,有一个交点,所以函数f(x)在x>0时有一个零点,又依据对称性知,当x<0时函数f(x)也有一个零点.综上所述,f(x)的零点个数为3,故选C.【加固训练】函数f(x)=2x3-6x2+7在(0,2)内零点的个数为( )A.0B. 1C.2D.4 【解析】选B.由于f′(x)=6x2-12x=6x(x-2),由f′(x)>0,得x>2或x<0;由f′(x)<0得0<x<2.所以函数f(x)在(0,2)上是减函数,而f(0)=7>0,f(2)=-1<0,由零点存在定理可知,函数f(x)=2x3-6x2+7在(0,2)内零点的个数为1.10.已知二次函数y=ax2+bx+c(ac≠0)图象的顶点坐标为(−b2a,−14a),与x轴的交点P,Q位于y轴的两侧,以线段PQ为直径的圆与y轴交于F1(0,4)和F2(0,-4),则点(b,c)所在曲线为( )A.圆B.椭圆C.双曲线D.抛物线【解析】选B.结合二次函数的顶点坐标为(−b2a,4ac−b24a),依据题意可得Δ=b 2-4ac=1,①,二次函数图象和x轴的两个交点分别为(−b+12a,0)和(−b−12a,0),利用射影定理即得:-(−b+12a×−b−12a)=16 1-b2=64a2,结合①先求出a和c之间的关系,代入①可得到,(b,c)所在的曲线为b2+c24=1,表示椭圆.二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知a=(1,2),b=(4,2),设a,b的夹角为θ,则cosθ= .【解析】由平面对量的夹角公式得,cosθ==1212√x1+y1·√x2+y2=√5×√20=45.答案:45【加固训练】已知向量a=(1,√3),b=(3,m).若向量b在a方向上的投影为3,则实数m= .【解析】依据投影的定义:|b|·cos<a,b>==3+√3m2=3;解得m=√3. 答案:√312.已知函数f(x)={x 3+1,x ≥0,x 2+2,x <0,若f(x)=1,则x= .【解析】若x ≥0则x 3+1=1,所以x=0,若x<0则x 2+2=1无解,所以x=0.答案:013.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且(b-c)(sin B+ sin C)=(a-√3c)·sinA ,则角B 的大小为 .【解题提示】由正弦定理化简已知等式可得c 2+a 2-b 2=√3ac ,由余弦定理可求 cos B ,结合B 的范围即可得解.【解析】由正弦定理,可得sinB=b2R,sin C=c2R,sinA=a2R, 所以由(b-c)(sin B+sin C)=(a-√3c)·sin A 可得(b- c)(b+c)=a(a-√3c),即有c 2+a 2-b 2=√3ac ,则cos B=a 2+c 2−b 22ac=√32,由于0°<B<180°,则B=30°. 答案:30°14.已知三棱锥S-ABC 的全部顶点都在球O 的球面上,SA ⊥平面ABC ,SA=2√3,AB=1,AC=2,∠BAC=π3,则球O 的表面积为 .【解析】三棱锥S-ABC 的全部顶点都在球O 的球面上,由于SA ⊥平面ABC ,SA=2√3,AB=1,AC=2,∠BAC=60°,所以BC=√1+4−2×1×2×cos60°=√3,所以∠ABC=90°. 所以△ABC 截球O 所得的圆O ′的半径r=12AC=1,所以球O 的半径R=√12+(2√32)2=2,所以球O 的表面积S=4πR 2=16π. 答案:16π15.已知直线y=kx+1与曲线y=x 3+ax+b 相切于点(1,3),则b 的值为 . 【解题提示】由于切点在直线与曲线上,将切点的坐标代入两个方程,得到关于a ,b ,k 的方程,再求出在点(1,3)处的切线的斜率的值,即利用导数求出在x=1处的导函数值,结合导数的几何意义求出切线的斜率,再列出一个等式,最终解方程组即可得,从而问题解决.【解析】由于直线y=kx+1与曲线y=x 3+ax+b 相切于点(1,3), 所以{k +1=3,1+a +b =3,①又由于y=x 3+ax+b ,所以y ′=3x 2+a ,当x=1时,y ′=3+a 得切线的斜率为3+a ,所以k=3+a , ②所以由①②得:b=3. 答案:3关闭Word 文档返回原板块。
2020-2021学年高考总复习数学(理科)二轮复习模拟试题及答案解析二十

最新十省重点中学命制高考数学二模试卷(理科)(三)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数,则在复平面内对应的点坐标为()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)2.已知两个集合A={x|y=ln(﹣x2+x+2)},则A∩B=()A.B.C.(﹣1,e)D.(2,e)3.随机变量ξ~N(0,1),则P(1≤ξ≤2)=()(参考数据:P(μ﹣σ≤ξ≤μ+σ)=0.6286,P(μ﹣2σ≤ξ≤μ+2σ)=0.9544,P(μ﹣3σ≤ξ≤μ+σ3)=0.9974)A.0.0215 B.0.1359 C.0.1574 D.0.27184.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A=“第一次取到的是奇数”,B=“第二次取到的是奇数”,则P(B|A)=()A.B.C.D.5.按图所示的程序框图运算:若输出k=2,则输入x的取值范围是()A.(20,25] B.(30,32] C.(28,57] D.(30,57]6.已知数列{a n}满足:当p+q=11(p,q∈N*,p<q)时,a p+a q=2p,则{a n}的前10项和S10()A.31 B.62 C.170 D.10237.已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.f(x)=﹣x3B.f(x)=+x3C.f(x)=﹣x3 D.f(x)=﹣﹣x38.如图1,已知正方体ABCD﹣A1B1C1D1的棱长为a,动点M,N,Q分别在线段AD1,B1C,C1D1上,当三棱锥Q﹣BMN的俯视图如图2所示,三棱锥Q﹣BMN正视图的面积等于()A. B.a2C.D.a29.若正数a,b满足:则的最小值为()A.2 B.C.D.110.如图,圆O与x轴的正半轴的交点为A,点B,C在圆O上,点B的坐标为(﹣1,2),点C位于第一象限,∠AOC=α.若|BC|=,则sin cos+cos2﹣=()A.﹣B.﹣C.D.11.已知A,B,P是双曲线上的不同三点,且AB连线经过坐标原点,若直线PA,PB的斜率乘积,则该双曲线的离心率e=()A.B. C. D.12.已知函数,对∀a∈R,∃b∈(0,+∞),使得f(a)=g(b),则b﹣a的最小值为()A.B.C. D.二、填空题:本大题共4小题,每小题5分.13.设1+x5=a0+a1(x﹣1)+a2(x﹣1)2+…+a5(x﹣1)5,则a1+a2+…+a5= .14.关于x的方程x3﹣px+2=0有三个不同实数解,则实数p的取值范围为.15.已知△ABC外接圆的圆心为O,且,则∠AOC= .16.函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是k A,k B,规定φ(A,B)=叫曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题:(1)函数y=x3﹣x2+1图象上两点A、B的横坐标分别为1,2,则φ(A,B)>;(2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;(3)设点A、B是抛物线,y=x2+1上不同的两点,则φ(A,B)≤2;(4)设曲线y=e x上不同两点A(x1,y1),B(x2,y2),且x1﹣x2=1,若t•φ(A,B)<1恒成立,则实数t的取值范围是(﹣∞,1);以上正确命题的序号为(写出所有正确的)三.解答题:解答应写出文字说明,证明过程或演算步骤.17.甲、乙、丙三人参加某次招聘会,若甲应聘成功的概率为,乙、丙应聘成功的概率均为(0<t<3),且三人是否应聘成功是相互独立的.(Ⅰ)若甲、乙、丙都应聘成功的概率是,求t的值;(Ⅱ)在(Ⅰ)的条件下,设ξ表示甲、乙两人中被聘用的人数,求ξ的数学期望.18.已知函数f(x)=,方程f(x)=在(0,+∞)上的解按从小到达的顺序排成数列{a n}(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=,数列{b n}的前n项和为S n,求S n的表达式.19.如图,在斜三棱柱ABC﹣A1B1C1中,侧面ACC1A1与侧面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.(Ⅰ)求证:AB1⊥CC1;(Ⅱ)若AB1=,求二面角C﹣AB1﹣A1的余弦值.20.已知椭圆的离心率为,其左顶点A在圆O:x2+y2=16上.(Ⅰ)求椭圆W的方程;(Ⅱ)若点P为椭圆W上不同于点A的点,直线AP与圆O的另一个交点为Q.是否存在点P,使得?若存在,求出点P的坐标;若不存在,说明理由.21.已知函数f(x)=e x(sinx+cosx)+a,g(x)=(a2﹣a+10)e x(a∈R且a为常数).(Ⅰ)若曲线y=f(x)在(0,f(0))处的切线过点(1,2),求实数M的值;(Ⅱ)判断函数φ(x)=+1+lnx(b>1)在(0,+∞)上的零点个数,并说明理由.选考题(请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,答题时用2B铅笔在答题卡上把所选题目的题号涂黑.)[选修4-1:几何证明选讲]22.如图,直线AB经过圆O上的点C,并且OA=OB,CA=CB,圆O交直线OB于点E、D,其中D在线段OB上.连结EC,CD.(Ⅰ)证明:直线AB是圆O的切线;(Ⅱ)若tan∠CED=,圆O的半径为3,求OA的长.[选修4-4:坐标系与参数方程选讲]23.在直角坐标系xoy中,曲线C1的参数方程为(t为参数),以原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设点M(2,﹣1),曲线C1与曲线C2交于A,B,求|MA|•|MB|的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣a|.(1)若f(x)≤m的解集为{x|﹣1≤x≤5},求实数a,m的值.(2)当a=2且0≤t<2时,解关于x的不等式f(x)+t≥f(x+2).参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数,则在复平面内对应的点坐标为()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】利用复数的运算法则、共轭复数的定义、几何意义即可得出.【解答】解:复数==﹣1+i,则在复平面内=i•(﹣1﹣i)=﹣i+1对应的点坐标为(1,﹣1),故选:D.2.已知两个集合A={x|y=ln(﹣x2+x+2)},则A∩B=()A.B.C.(﹣1,e)D.(2,e)【考点】交集及其运算.【分析】求出A中x的范围确定出A,求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:由A中y=ln(﹣x2+x+2),得到﹣x2+x+2>0,即(x﹣2)(x+1)<0,解得:﹣1<x<2,即A=(﹣1,2),由B中不等式变形得:﹣2≤0,即≤0,整理得:(2x+1)(x﹣e)≥0,且x﹣e≠0,解得:x≤﹣或x>e,即B=(﹣∞,﹣]∪(e,+∞),则A∩B=(﹣1,﹣].故选:B.3.随机变量ξ~N(0,1),则P(1≤ξ≤2)=()(参考数据:P(μ﹣σ≤ξ≤μ+σ)=0.6286,P(μ﹣2σ≤ξ≤μ+2σ)=0.9544,P(μ﹣3σ≤ξ≤μ+σ3)=0.9974)A.0.0215 B.0.1359 C.0.1574 D.0.2718【考点】正态分布曲线的特点及曲线所表示的意义.【分析】随机变量ξ服从正态分布N(0,1),得到曲线关于x=0对称,根据曲线的对称性及概率的性质得到结果.【解答】解:随机变量ξ服从正态分布N(0,1),∴曲线关于x=0对称,∴P(0≤ξ≤1)=×0.6286=0.3143,P(0≤ξ≤2)=×0.9544=0.4722,∴P(1≤ξ≤2)=0.4722﹣0.3143=0.1359,故选:B.4.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A=“第一次取到的是奇数”,B=“第二次取到的是奇数”,则P(B|A)=()A.B.C.D.【考点】条件概率与独立事件.【分析】先计算P(AB)、P(A),再利用P(B|A)=,即可求得结论.【解答】解:由题意,P(AB)==,P(A)==∴P(B|A)==.故选:D.5.按图所示的程序框图运算:若输出k=2,则输入x的取值范围是()A.(20,25] B.(30,32] C.(28,57] D.(30,57]【考点】程序框图.【分析】根据框图的流程计算k=1时输出x值与k=2时输出x的值,利用k=1时不满足条件x>115,k=2时满足条件x>11,求得x的范围.【解答】解:由程序框图知:第一次循环x=2x+1,k=1;第二次循环x=2(2x+1)+1,k=2,当输出k=2时,应满足,得28<x≤57.故选:C.6.已知数列{a n}满足:当p+q=11(p,q∈N*,p<q)时,a p+a q=2p,则{a n}的前10项和S10()A.31 B.62 C.170 D.1023【考点】数列的求和.【分析】数列{a n}满足:当p+q=11(p,q∈N*,p<q)时,a p+a q=2p,分别取n=1,2,3,4,5,再利用等比数列的前n项和公式即可得出.【解答】解:∵数列{a n}满足:当p+q=11(p,q∈N*,p<q)时,a p+a q=2p,∴a1+a10=2,a2+a9=22,,,,∴{a n}的前10项和S10=a1+a2+…+a10=2+22+23+24+25==26﹣2=62.∴{a n}的前10项和S10=62.故选:B.7.已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.f(x)=﹣x3B.f(x)=+x3C.f(x)=﹣x3D.f(x)=﹣﹣x3【考点】函数的图象.【分析】本题是选择题,可采用排除法,根据函数的定义域可排除选项C再根据特殊值排除B,D,即可得到所求【解答】解:由图象可知,函数的定义域为x≠a,a>0,故排除C,当x→+∞时,y→0,故排除B,当x→﹣∞时,y→+∞,故排除B,当x=1时,对于选项A.f(1)=0,对于选项D,f(1)=﹣2,故排除D.故选:A.8.如图1,已知正方体ABCD﹣A1B1C1D1的棱长为a,动点M,N,Q分别在线段AD1,B1C,C1D1上,当三棱锥Q﹣BMN的俯视图如图2所示,三棱锥Q﹣BMN正视图的面积等于()A. B.a2C.D.a2【考点】棱柱、棱锥、棱台的侧面积和表面积.【分析】由三棱锥Q﹣BMN的俯视图可得Q在D1,N在C,所以三棱锥Q﹣BMN正视图为△D1EC(E为D1D的中点),即可求出三棱锥Q﹣BMN正视图的面积.【解答】解:由三棱锥Q﹣BMN的俯视图可得Q在D1,N在C,所以三棱锥Q﹣BMN正视图为△D1EC(E为D1D的中点),其面积为=.故选:B.9.若正数a,b满足:则的最小值为()A.2 B.C.D.1【考点】基本不等式.【分析】由题意可得b=且a﹣1>0,代入消元并化简可得=+,由基本不等式可得.【解答】解:∵正数a,b满足,∴b=,由b=>0可得a﹣1>0,∴=+=+=+≥2=2当且仅当=即a=b=3时取等号故选:A10.如图,圆O与x轴的正半轴的交点为A,点B,C在圆O上,点B的坐标为(﹣1,2),点C位于第一象限,∠AOC=α.若|BC|=,则sin cos+cos2﹣=()A.﹣B.﹣C.D.【考点】任意角的三角函数的定义.【分析】根据三角函数的倍角公式将函数式进行化简,结合三角函数的定义即可得到结论.【解答】解:∵点B的坐标为(﹣1,2),∴|OB|=|OC|=,∵|BC|=,∴△OBC是等边三角形,则∠AOB=α+.则sin(α+)==,cos(α+)==﹣,则sin cos+cos2﹣=sinα+cosα=sin(α+)=,故选:D.11.已知A,B,P是双曲线上的不同三点,且AB连线经过坐标原点,若直线PA,PB的斜率乘积,则该双曲线的离心率e=()A.B. C. D.【考点】双曲线的简单性质.【分析】设出点的坐标,求出斜率,将点的坐标代入方程,两式相减,再结合,即可求得结论.【解答】解:由题意,设A(x1,y1),P(x2,y2),则B(﹣x1,﹣y1)∴k PA•k PB=,A,B代入两式相减可得=,∵,∴=,∴e2=1+=,∴e=.故选:B.12.已知函数,对∀a∈R,∃b∈(0,+∞),使得f(a)=g(b),则b﹣a的最小值为()A.B.C. D.【考点】函数的值域.【分析】f(x)=e2x,g(x)=lnx+,得到f﹣1(x)=lnx,g﹣1(x)=,够造函数h(x)=h(x)=g﹣1(x)﹣f﹣1(x),则b﹣a的最小值,即为h(x)的最小值,利用导数法求出函数的最小值,可得答案.【解答】解:∵f(x)=e2x,g(x)=lnx+,∴f﹣1(x)=lnx,g﹣1(x)=,令h(x)=g﹣1(x)﹣f﹣1(x)=﹣lnx,则b﹣a的最小值,即为h(x)的最小值,∵h′(x)=)=﹣,令h′(x)=0,解得x=,∵当x∈(0,)时,h′(x)<0,当x∈(,+∞)时,h′(x)>0,故当x=时,h(x)取最小值1﹣=1+,故选:A.二、填空题:本大题共4小题,每小题5分.13.设1+x5=a0+a1(x﹣1)+a2(x﹣1)2+…+a5(x﹣1)5,则a1+a2+…+a5= 31 .【考点】二项式定理的应用.【分析】在所给的等式中,令x=1可得a0=2;再令x=2,可得a0+a1+a2+…+a5=33,从而求得a1+a2+…+a5 的值.【解答】解:在1+x5=a0+a1(x﹣1)+a2(x﹣1)2+…+a5(x﹣1)5 中,令x=1可得a0=2.再令x=2,可得a0+a1+a2+…+a5=33,∴a1+a2+…+a5=31,故答案为:31.14.关于x的方程x3﹣px+2=0有三个不同实数解,则实数p的取值范围为(3,+∞).【考点】根的存在性及根的个数判断.【分析】原方程即为p=x2+,设f(x)=x2+,求出导数,判断单调性,可得极小值3,再由图象,即可得到p的范围.【解答】解:x3﹣px+2=0即为p=x2+,设f(x)=x2+,导数f′(x)=2x﹣,当x>1时,f′(x)>0,f(x)在(1,+∞)递增;当x<0,或0<x<1时,f′(x)<0,f(x)在(﹣∞,0),(0,1)递减.可得f(x)在x=1处取得极小值3,作出y=f(x)的图象,由题意可得当p>3时,直线y=p与y=f(x)有3个交点.即有原方程有三个不同实数解,则p的范围是(3,+∞).故答案为:(3,+∞).15.已知△ABC外接圆的圆心为O,且,则∠AOC= π.【考点】数量积表示两个向量的夹角.【分析】设△ABC外接圆的半径等于1,由条件可得,平方求得cos∠AOC=﹣,由此求得∠AOC的值.【解答】解:设△ABC外接圆的半径等于1,∵,∴.平方可得1+4+4••=3,解得=﹣,即1×1×cos∠AOC=﹣.再由0≤∠AOC≤π可得∠AOC=π,故答案为π.16.函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是k A,k B,规定φ(A,B)=叫曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题:(1)函数y=x3﹣x2+1图象上两点A、B的横坐标分别为1,2,则φ(A,B)>;(2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;(3)设点A、B是抛物线,y=x2+1上不同的两点,则φ(A,B)≤2;(4)设曲线y=e x上不同两点A(x1,y1),B(x2,y2),且x1﹣x2=1,若t•φ(A,B)<1恒成立,则实数t的取值范围是(﹣∞,1);以上正确命题的序号为(2)(3)(写出所有正确的)【考点】命题的真假判断与应用.【分析】由新定义,利用导数逐一求出函数y=x3﹣x2+1、y=x2+1在点A与点B之间的“弯曲度”判断(1)、(3);举例说明(2)正确;求出曲线y=e x上不同两点A(x1,y1),B(x2,y2)之间的“弯曲度”,然后结合t•φ(A,B)<1得不等式,举反例说明(4)错误.【解答】解:对于(1),由y=x3﹣x2+1,得y′=3x2﹣2x,则,,y1=1,y2=5,则,φ(A,B)=,(1)错误;对于(2),常数函数y=1满足图象上任意两点之间的“弯曲度”为常数,(2)正确;对于(3),设A(x1,y1),B(x2,y2),y′=2x,则k A﹣k B=2x1﹣2x2,==.∴φ(A,B)==,(3)正确;对于(4),由y=e x,得y′=e x,φ(A,B)==.t•φ(A,B)<1恒成立,即恒成立,t=1时该式成立,∴(4)错误.故答案为:(2)(3).三.解答题:解答应写出文字说明,证明过程或演算步骤.17.甲、乙、丙三人参加某次招聘会,若甲应聘成功的概率为,乙、丙应聘成功的概率均为(0<t<3),且三人是否应聘成功是相互独立的.(Ⅰ)若甲、乙、丙都应聘成功的概率是,求t的值;(Ⅱ)在(Ⅰ)的条件下,设ξ表示甲、乙两人中被聘用的人数,求ξ的数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(I)利用相互独立事件概率计算公式可得:,解出即可;(Ⅱ)由(Ⅰ)得乙应聘成功的概率均为.ξ可取0,1,2.利用相互独立与互斥事件的概率计算公式、数学期望计算公式即可得出.【解答】解:(Ⅰ)依题意,∴t=2.(Ⅱ)由(Ⅰ)得乙应聘成功的概率均为.ξ可取0,1,2.,,,∴.18.已知函数f(x)=,方程f(x)=在(0,+∞)上的解按从小到达的顺序排成数列{a n}(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=,数列{b n}的前n项和为S n,求S n的表达式.【考点】数列的求和;数列递推式.【分析】(1)方程f(x)=化为,可得=0,x∈(0,+∞),于是2x﹣=kπ,解得即可得出;(2)b n=,利用“裂项求和”即可得出.【解答】解:(1)方程f(x)=化为,∴=0,x∈(0,+∞),∴2x﹣=kπ,解得x=,k∈Z.∴a n=.(n∈N*).(2)b n===,∴S n=π==.19.如图,在斜三棱柱ABC﹣A1B1C1中,侧面ACC1A1与侧面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.(Ⅰ)求证:AB1⊥CC1;(Ⅱ)若AB1=,求二面角C﹣AB1﹣A1的余弦值.【考点】用空间向量求平面间的夹角;直线与平面垂直的性质;二面角的平面角及求法.【分析】(Ⅰ)证明:连AC1,CB1,证明CC1⊥OA,CC1⊥OB1,得到CC1⊥平面OAB1,即可证明CC1⊥AB1.(Ⅱ)以OB1,OC1,OA为正方向建立空间直角坐标系,求出C,B1,A,求出平面CAB1的法向量,平面A1AB1的法向量,通过向量的数量积求解二面角C﹣AB1﹣A1的余弦值.【解答】解:(Ⅰ)证明:连AC1,CB1,则△ACC1和△B1CC1皆为正三角形.取CC1中点O,连OA,OB1,则CC1⊥OA,CC1⊥OB1,则CC1⊥平面OAB1,则CC1⊥AB1.…(Ⅱ)解:由(Ⅰ)知,OA=OB1=,又AB1=,所以OA⊥OB1.如图所示,分别以OB1,OC1,OA为正方向建立空间直角坐标系,则C(0,﹣1,0),B1(,0,0),A(0,0,),…设平面CAB1的法向量为=(x1,y1,z1),因为=(,0,﹣),=(0,﹣1,﹣),所以取=(1,﹣,1).…设平面A1AB1的法向量为=(x2,y2,z2),因为=(,0,﹣),=(0,2,0),所以取=(1,0,1).…则cos<>===,因为二面角C﹣AB1﹣A1为钝角,所以二面角C﹣AB1﹣A1的余弦值为﹣.…20.已知椭圆的离心率为,其左顶点A在圆O:x2+y2=16上.(Ⅰ)求椭圆W的方程;(Ⅱ)若点P为椭圆W上不同于点A的点,直线AP与圆O的另一个交点为Q.是否存在点P,使得?若存在,求出点P的坐标;若不存在,说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)由题意求出a,通过离心率求出c,然后求解椭圆的标准方程.(Ⅱ)法一:设点P(x1,y1),Q(x2,y2),设直线AP的方程为y=k(x+4),与椭圆方程联立,利用弦长公式求出|AP|,利用垂径定理求出|oa|,即可得到结果.法二:设点P(x1,y1),Q(x2,y2),设直线AP的方程为x=my﹣4,与椭圆方程联立与椭圆方程联立得求出|AP|,利用垂径定理求出|oa|,即可得到结果.法三:假设存在点P,推出,设直线AP的方程为x=my﹣4,联立直线与椭圆的方程,利用韦达定理,推出,求解即可.【解答】解:(Ⅰ)因为椭圆W的左顶点A在圆O:x2+y2=16上,令y=0,得x=±4,所以a=4.….又离心率为,所以,所以,….所以b2=a2﹣c2=4,….所以W的方程为.….(Ⅱ)法一:设点P(x1,y1),Q(x2,y2),设直线AP的方程为y=k(x+4),….与椭圆方程联立得,化简得到(1+4k2)x2+32k2x+64k2﹣16=0,….因为﹣4为上面方程的一个根,所以,所以.….所以.….因为圆心到直线AP的距离为,….所以,….因为,….代入得到.….显然,所以不存在直线AP,使得.….法二:设点P(x1,y1),Q(x2,y2),设直线AP的方程为x=my﹣4,….与椭圆方程联立得化简得到(m2+4)y2﹣8my=0,由△=64m2>0得m≠0.….显然0是上面方程的一个根,所以另一个根,即.….由,….因为圆心到直线AP的距离为,….所以.….因为,….代入得到,….若,则m=0,与m≠0矛盾,矛盾,所以不存在直线AP,使得.….法三:假设存在点P,使得,则,得.….显然直线AP的斜率不为零,设直线AP的方程为x=my﹣4,….由,得(m2+4)y2﹣8my=0,由△=64m2>0得m≠0,….所以.….同理可得,….所以由得,….则m=0,与m≠0矛盾,所以不存在直线AP,使得.….21.已知函数f(x)=e x(sinx+cosx)+a,g(x)=(a2﹣a+10)e x(a∈R且a为常数).(Ⅰ)若曲线y=f(x)在(0,f(0))处的切线过点(1,2),求实数M的值;(Ⅱ)判断函数φ(x)=+1+lnx(b>1)在(0,+∞)上的零点个数,并说明理由.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数f(x)的导数,求得切线的斜率,由两点的斜率公式,解方程可得a的值;(Ⅱ)φ(x)=0,化简整理可得,令h(x)=1﹣x﹣xlnx,再令,求出单调性,求得最值,即可判断零点个数.【解答】解:(Ⅰ)函数f(x)=e x(sinx+cosx)+a的导数为f'(x)=e x(sinx+cosx)+e x(cosx﹣sinx)=2e x cosx,又曲线y=f(x)在(0,f(0))处的切线过点(1,2),得f'(0)==2﹣(1+a)=2,解得a=﹣1;(Ⅱ)由(x>0),得,化为,令h(x)=1﹣x﹣xlnx,则h'(x)=﹣2﹣lnx,由h'(x)=﹣2﹣lnx=0,得x=e﹣2,故h(x)在上递增,在上递减,.再令,因为b>1,所以函数在(0,+∞)上递增,.知t(x)>h(x)max,由此判断函数φ(x)在(0,+∞)上没有零点,故φ(x)零点个数为0.选考题(请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,答题时用2B铅笔在答题卡上把所选题目的题号涂黑.)[选修4-1:几何证明选讲]22.如图,直线AB经过圆O上的点C,并且OA=OB,CA=CB,圆O交直线OB于点E、D,其中D在线段OB上.连结EC,CD.(Ⅰ)证明:直线AB是圆O的切线;(Ⅱ)若tan∠CED=,圆O的半径为3,求OA的长.【考点】相似三角形的性质.【分析】(Ⅰ)连结OC,推导出OC⊥AB,由此能证明AB是圆O的切线.(Ⅱ)由题意先推导出△BCD∽△BEC,从而得到,由此能求出OA.【解答】证明:(Ⅰ)连结OC,∵OA=OB,CA=CB,∴OC⊥AB,又OC是圆O的半径,∴AB是圆O的切线.解:(Ⅱ)∵直线AB是圆O的切线,∴∠BCD=∠E,又∠CBD=∠EBC,∴△BCD∽△BEC,∴,又tan∠CED==,∴,设BD=x,则BC=2x,又BC2=BD•BE,∴(2x)2=x(x+6),即3x2﹣6x=0,解得x=2,即BD=2,∴OA=OB=OD+DB=3+2=5.[选修4-4:坐标系与参数方程选讲]23.在直角坐标系xoy中,曲线C1的参数方程为(t为参数),以原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设点M(2,﹣1),曲线C1与曲线C2交于A,B,求|MA|•|MB|的值.【考点】简单曲线的极坐标方程;直线的参数方程.【分析】(1)曲线C1的参数方程为(t为参数),两式相加消去参数t即可化为普通方程;由曲线C2的极坐标方程为,平方化为ρ2+3ρ2sin2θ=4,利用即可化为直角坐标方程.(2)将代人C2直角坐标方程得,利用MA|•|MB|=t1•t2即可得出.【解答】解:(1)曲线C1的参数方程为(t为参数),消去参数t化为x+y=1;由曲线C2的极坐标方程为,平方化为ρ2+3ρ2sin2θ=4,∴x2+4y2=4,化为直角坐标方程:=1.(2)将代人C2直角坐标方程得,∴,∴MA|•|MB|=.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣a|.(1)若f(x)≤m的解集为{x|﹣1≤x≤5},求实数a,m的值.(2)当a=2且0≤t<2时,解关于x的不等式f(x)+t≥f(x+2).【考点】其他不等式的解法.【分析】(1)根据绝对值不等式的解法建立条件关系即可求实数a,m的值.(2)根据绝对值的解法,进行分段讨论即可得到不等式的解集.【解答】解:(1)∵f(x)≤m,∴|x﹣a|≤m,即a﹣m≤x≤a+m,∵f(x)≤m的解集为{x|﹣1≤x≤5},∴,解得a=2,m=3.(2)当a=2时,函数f(x)=|x﹣2|,则不等式f(x)+t≥f(x+2)等价为|x﹣2|+t≥|x|.当x≥2时,x﹣2+t≥x,即t≥2与条件0≤t<2矛盾.当0≤x<2时,2﹣x+t≥x,即0,成立.当x<0时,2﹣x+t≥﹣x,即t≥﹣2恒成立.综上不等式的解集为(﹣∞,].2016年6月13日。
2020—2021年高考总复习数学(理)第二次高考模拟试题及参考答案二(精品试题).docx

-学年第二学期第二次模拟高三数学(理)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。
第I卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、集合{}B=,则图中阴影部分表3,4,5,6A=,{}1,2,3,4示的集合为A .φB .{}1,2C .{}3,4D .{}5,6 2、在复平面内,点(2,1)A -,(,)B a b 分别表示复数1z 和2z ,若21z i z =,则a b += A .3- B .1- C .1 D .3 3、α,β, γ为不同平面,a ,b 为不同直线,命题p :若αγ⊥,βγ⊥,且a αβ=I ,则a γ⊥;命题q :若a α⊥,b α⊥,则//a b ,下列命题正确的是A .p ⌝B .q ⌝C .()p q ⌝∧D .()p q ∨⌝ 4、如图是一个样本的频率分布直方图,由图中数据可估计样本的中位数大约等于A .12B .12.5C .13D .13.55、如图,棱长为2的正方体1111ABCD A B C D -,E 为棱AD 的中点,则经过点1B 、1D 和E 三点的截面的左视图的面积为A .1B .2C .3D .46、{}n a 为等差数列,前n 项和为n S ,若1166S =,则3612432a a a ++=A .27B .54C .99D .1087、ABC ∆中,3A π=,3a =,2b =,则cos C =A .366+-B .366+ C .636- D .366- 8、有一个长为10米的木棒斜插..在地面上,点P 是地面内的一个动点,若点P 与木棒的两个端点构成的三角形面积为定值,则点P 的轨迹为A .椭圆B .圆C .两条平等直线D .双曲线9、执行如图所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于 A .[]1,9- B .[]3,6-C .[]3,1--D .(]2,6- 10、如图,网格中的每个小格均为边长是1的正方形,已知向量a r ,b r,若c xa yb =+r r r ,则x 和y 的值分别为A .4和0B .4和 1C .45-和85D .85和45-11、在Rt ABC ∆中,1AB AC ==,若一个椭圆经过A 、B 两点,它的一个焦点为点C ,另一个焦点在边AB 上,则这个椭圆的离心率为 A .2362- B .21- C .632- D .63-12、22()ln f x x x =-,若(0,)απ∈,且(sin )(cos )f f αα>,则α的取值范围为A .3(0,)(,)44πππU B .3(,)(,)4224ππππUC .3(0,)(,)424πππUD .3(,)(,)424ππππU 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题(每小题5分,共20分)13、4(12)x x ⋅-展开式按升幂排列的第4项的系数为 。
2020年江苏高考数学第二轮复习专题训练含解析

高考冲刺训练专题 (一 )
4 1. 中心在原点,一个顶点为 A( -3,0),离心率为 3的双曲线的
x2 y2 方程是 9 - 7 =1 .
解析 :因为双曲线的顶点为 A( -3,0),所以双曲线的焦点在 x
x2 y2
4
轴上,所以设双曲线的方程为 a2-b2=1,则 a=3.又因为 e=3,所以
4. 已知双曲线 xa22-y2=1(a>0)的一条渐近线为 3x+y=0,则 a
3 =3.
解析 :因为双曲线的一条渐近线方程为
y=-
3x,且
a>0,则
b a
= 1a=
3,解得
a=
3 3.
x2 y2 5. 设双曲线 a2-b2=1(a>0,b>0)的右焦点为 F,右准线 l 与两
条渐近线交于 P,Q 两点,如果△ PQF 是直角三角形,那么双曲线的
- y0),M→F2=( 3- x0,-y0),所以 M→F1·M→F 2= x02- 3+ y20.因为点 M 在 双曲线上,所以 x220- y20= 1,代入不等式 M→F 1·M→F 2<0,得 3y02<1,解得
3
3
- 3 <y0< 3 .
9.
设 F1, F2 是双曲线
x2-
y2 24=
1
的两个焦点,
P
是双曲线上的
一点,且 3PF1= 4PF2,则△ PF1F2 的面积为 24 .
解析 :由题意知,双曲线的实轴长为 2,焦距为 F1F2=2×5= 10,
4
1
PF1-PF2= 3PF2- PF2= 3PF2=2,所以
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微专题20
例题1
答案: 5.
解析:设双曲线的右焦点为F 2,连接PF 2,因为OM 为△FPF 2的中位线,所以PF 2=2a ,PF =PF 2+2a =4a ,又因为OM ⊥PF ,所以PF 2⊥PF ,在△FPF 2中,由勾股定理得(2c)2=(2a)2+(4a)2,所以离心率为 5.
例题2
答案:⎝⎛⎦⎤1,53. 解析:PF 1-PF 2=2a ,得PF 2=2
3a ≥c -a ,又因为e >1,
所以双曲线的离心率的取值范围为⎝⎛⎦
⎤1,53. 变式联想
变式1 答案:
53
. 解析:连接PF 1,OQ ,因为OQ 为△F 1PF 2的中位线,所以PF 1=2b.
PF 2=2a -2b ,又因为OQ ⊥PF 2,所以PF 1⊥PF 2,在△F 1PF 2中,由勾股定理得(2b)2+(2a -2b)2=(2c)2,消去c 2得2b 2+a 2-2ab =a 2-b 2,得3b =2a ,所以e =c a =5
3
.
变式2
答案:6- 3.
解析:连接F 1Q.从而有PF 1+PQ +PF 2=4a ,因为PF 1
=PQ 且PF 1⊥PQ ,所以PF 1
=4a 2+2=4a -22a ,PF 2=22a -2a ,因为△PF 1F 2为直角三角形,PF 12+PF 22=F 1F 22,(4a -2
2a)2+(2
2a -2a)2=
4c 2,所以(2a -2a)2+(2a -a)2=c 2,e 2=(2-2)2+(2-1)2,e 2=3(2-1)2,椭圆C 的离心率e =6- 3.
串讲激活
串讲1 答案:⎣⎡
⎭
⎫
33,1.
解析:如图,由题意知,PF 2=F 1F 2=
2c ,又PF 2≥AF 2=a2
c -c ,
2c ≥a2
c -c ,又0<e <1,
所以,
3
3
≤e <1,椭圆E 的离心率e 的取值范围是
⎣⎡⎭
⎫33,1. 串讲2 答案:
6
3
. 解析:F(c ,0),直线y =
b
2与椭圆方程联立可得B ⎝
⎛⎭⎫-
3a 2,b 2,C ⎝⎛⎭
⎫3a 2,b 2,由∠BFC =90°可得CF →·BF →=0,BF →
=⎝⎛⎭⎫c +3a 2,-b 2,CF
→=
⎝
⎛⎭⎫c -3a 2,-b 2,则c 2-34a 2+14b 2
=0,由b 2=a 2-c 2可得,34c 2=12a 2,则e =c a =
2
3
=
63
. 新题在线
答案: 3.
解析:不妨设一条渐近线为y =b a x ,直线PF 2:y =-
a b (x -c),联立解得P(a2c ,ab
c ),
由PF 12=6OP 2得(
a2
c
+c)2+a2b2c2=6a 2,消去b 2得c 2=3a
2
,所以离心率为 3.。