确定带电粒子运动轨迹的方法。

合集下载

带电粒子在有界磁场中的轨迹确定的几种方法 人教

带电粒子在有界磁场中的轨迹确定的几种方法 人教

2、物理和几何方法
例2:如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B。一带正电的粒子以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ。若粒子射出磁场的位置与O点的距离为L,求该粒子的电量和质量之比q/m。
解:
由几何知识:
粒子的运动半径:r=L/2sinθ
2、如图所示,虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B、方向垂直纸面向外的匀强磁场。O是MN上的一点,从O点可以向磁场区域发射电荷量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向,已知先后射入的两
个粒子恰好在磁场中给定的P点相遇,P到O的距离为L,不计重力和粒子间的相互作用。 (1)求所考察的粒子在磁场中的轨道半径; (2)求这两个粒子从O点射入磁场的时间间隔。
过a、b两点分别作平行x轴
和y轴的平行线且交于P点;
P
二、确定带电粒子在磁场中运动轨迹的方法
一、带电粒子在匀强磁场中的运动规律
1、物理方法:
3、几何方法:
2、物理和几何方法:
作出带电粒子在磁场中两个位置所受洛仑兹力,沿其方向延长线的交点确定圆心,从而确定其运动轨迹。
作出带电粒子在磁场中某个位置所受洛仑兹力,沿其方向的延长线与圆周上两点连线的中垂线的交点确定圆心,从而确定其运动轨迹。
△t=t1 -t2=2Tθ/π=
4m
Bq
.arccos( )
LBq
2mv
OMP、ONP
周期为:T=2πm/qB
思 考 题
思 考 题
3、如图所示,在xoy平面内有垂直坐标平面且范围足够大的匀强磁场,磁感应强度为B,一带正电荷量q的粒子,质量为m,从O点以某一初速度射入磁场,其轨迹与x、y轴的交点A、B到O点的距离分别为a、b,试求:粒子的初速度。

专题确定带电粒子在磁场中运动轨迹的方法

专题确定带电粒子在磁场中运动轨迹的方法

确定带电粒子在磁场中运动轨迹的方法带电粒子在匀强磁场中作圆周运动的问题是近几年高考的热点,这些考题不但涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。

但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。

只要确定了带电粒子的运动轨迹,问题便迎刃而解。

下面举几种确定带电粒子运动轨迹的方法。

一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。

利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。

例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。

正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。

所以两个射出点相距s=2r=2mvBe,由图还看出经历时间相差∆t=2T3=4πm3Be,所以解此题的关键是找圆心、找半径和用对称。

例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。

一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。

当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。

解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。

由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=rtan30=√3r又带电粒子的轨道半径可表示为:R=mv0qB 故带电粒子运动周期:T=2πmqB=2√3πv0r带电粒子在磁场区域中运动的时间t=60360T=√3πr3v0二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。

带电粒子在有界磁场中的运动轨迹

带电粒子在有界磁场中的运动轨迹
Q P B
S
P
Q
Q
v
S
v
圆心在过入射点跟边 界垂直的直线上
圆心在磁场原边界上
v
圆心在过入射点跟速 度方向垂直的直线上
S
①v较小时,作半圆从原边出; ①v较小时,作整圆过射入点; ②v为某临界值时,作部分圆 ②v为某临界值时,粒子作整圆 轨迹与另一边界相切; 轨迹与边界相切; ③v较大时,作部分圆从另一 ③v较大时,作部分圆从另一边 边界出 界出
(边界的切线圆)
带电粒子在圆形边界磁场中的运动 带电粒子在圆形磁场中的运动 从几何角度看,是轨迹圆与磁场圆的相交问题。
O'
径 向 r 射 v 入
r

轨迹圆
v
O
B
磁 场 圆
结论1:径向射入必径向射出。 结论2:径向射入,速度大圆心角小时间短。
带电粒子在圆形边界磁场中的运动 带电粒子在圆形磁场中的运动 从几何角度看,是轨迹圆与磁场圆的相交问题。
d
o B θ 圆心在磁场原边界上 v a b ①速度较小时粒子作半 圆运动后从原边界飞出; ①速度较小时粒子作部分圆周 ②速度在某一范围内时 运动后从原边界飞出;②速度 从侧面边界飞出;③速 在某一范围内从侧面边界飞; 度较大时粒子作部分圆 ③速度较大时粒子作部分圆周 周运动从对面边界飞出。 运动从另一侧面边界飞出。
O1 +q
v
粒子擦着上板从左边穿出时,圆 心在O1点,有 r L
1
O2
r2
r2
O1 +q
v2 qvB m r
4
v
qBr1 qBL v1 m 4穿出时,圆心在O2点,有
L 2 r L (r ) 2

高中物理确定带电粒子在磁场中运动轨迹圆心的方法学法指导

高中物理确定带电粒子在磁场中运动轨迹圆心的方法学法指导

高中物理确定带电粒子在磁场中运动轨迹圆心的方法学法指导李树学带电粒子垂直进入磁场,在洛仑兹力的作用下,做匀速圆周运动,找到圆心,画出轨迹,是解这类题的关键。

下在举例说明圆心的确定方法。

一、由两速度的垂线定圆心例1. 电视机的显像管中,电子(质量为m,带电量为e)束的偏转是用磁偏转技术实现的。

电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图1所示,磁场方向垂直于圆面,磁场区的中心为O,半径为r。

当不加磁场时,电子束将通过O点打到屏幕的中心M点。

为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B应为多少?图1解析:如图2所示,电子在匀强磁场中做圆周运动,圆周上的两点a、b分别为进入和射出的点。

做a、b点速度的垂线,交点O1即为轨迹圆的圆心。

图2设电子进入磁场时的速度为v,对电子在电场中的运动过程有=22/eU mv对电子在磁场中的运动(设轨道半径为R)有=2/evB mv R由图可知,偏转角θ与r、R的关系为θ2=r Rtan(/)/联立以上三式解得θ122B r mU e=(/)/tan(/)二、由两条弦的垂直平分线定圆心例2. 如图3所示,有垂直坐标平面的范围足够大的匀强磁场,磁感应强度为B ,方向向里。

一带正电荷量为q 的粒子,质量为m ,从O 点以某一初速度垂直射入磁场,其轨迹与x 、y 轴的交点A 、C 到O 点的距离分别为a 、b 。

试求:(1)初速度方向与x 轴夹角;(2)初速度的大小。

图3解析:(1)粒子垂直射入磁场,在xOy 平面内做匀速圆周运动,如图4所示,OA 、OC 是圆周上的两条弦。

做两条弦的垂直平分线,交点O 1即为圆轨迹的圆心,以O 1为圆心,1=R 为半径画圆。

正电荷在O 点所受的洛仑兹力F 的方向(与初速度垂直)和粒子的初速度v 的方向(与1垂直斜向上),也在图上标出。

图4设初速度方向与x 轴的夹角为θ,由几何关系可知,∠O 1OC =θ。

带电粒子在匀强磁场中运动轨迹

带电粒子在匀强磁场中运动轨迹

带电粒子在匀强磁场中运动轨迹带电粒子在匀强磁场中运动轨迹一、带电粒子在匀强磁场中运动轨迹带电粒子只受洛伦兹力作用的条件下,在匀强磁场中的运动有:1.粒子初速度方向平行磁场方向(V ∥B ):运动轨迹:匀速直线运动2.粒子初速度方向垂直磁场方向(V ⊥B ):(1)动力学角度:洛伦兹力提供了带电粒子做匀速圆周运动所需的向心力(2)运动学角度:加速度方向始终和运动方向垂直,而且加速度大小不变。

运动轨迹:匀速圆周运动二、轨道半径和运动周期1.轨道半径r :qBm v r = 在匀强磁场中做匀速圆周运动的带电粒子,轨道半径跟运动速率成正比。

2.运动周期T :qBm T π2= (1)周期跟轨道半径和运动速率均无关(2)粒子运动不满一个圆周的运动时间:qB m t θ=,θ为带电粒子运动所通过的圆弧所对的圆心角三、有界磁场专题:(三个确定)1、圆心的确定已知进出磁场速度方向已知进出磁场位置和一个速度方向2. 半径的确定:半径一般都在确定圆心的基础上用平面几何知识求解,常常要解三角形带电粒子在匀强磁场中运动轨迹3、时间的确定(由圆心角确定时间)粒子速度的偏转角(?)等于回旋角(α),并等于AB 弦与切线的夹角(弦切角θ)的2倍即.θα?2==粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:T t πα2= (1)直界磁场区: 如图,虚线上方存在无穷大的磁场B ,一带正电的粒子质量m 、电量q 、若它以速度v 沿与虚线成o o o o o o*****6030、、、、、角分别射入,请你作出上述几种情况下粒子的轨迹、并求其在磁场中运动的半径和时间。

粒子在直界磁场(足够大)的对称规律:从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等。

(2)、圆界磁场带电粒子在匀强磁场中运动轨迹偏转角:rR =2tan θR :磁场半径r:圆周运动半径经历时间:qBmt θ= 圆运动的半径:qBm v r = 圆界磁场对称规律:在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。

带电粒子在磁场中运动问题的解题思路.

带电粒子在磁场中运动问题的解题思路.

s=2r=
例2.如图5所示,在半径为r的圆形区域内,有一 个匀强磁场。一带电粒子以速度v0从M点沿半径方 向射入磁场区,并由N点射出,O点为圆心。当 ∠MON=120°时,求:带电粒子在磁场区的偏转 半径R及在磁场区中的运动时间。
例2.如图5所示,在半径为r的圆形区域内,有一 个匀强磁场。一带电粒子以速度v0从M点沿半径方 向射入磁场区,并由N点射出,O点为圆心。当 ∠MON=120°时,求:带电粒子在磁场区的偏转 半径R及在磁场区中的运动时间。
如图所示,一个带负电的粒子以速度v由坐标原点射入磁感应强度 为B的匀强磁场中,速度方向与x轴、y轴均成45°。已知该粒子电 量为-q,质量为m,则该粒子通过x轴和y轴的坐标分别是多少?
45
45
O
(二)利用互余或互补和关系
如图所示,一束电子流以一定速率通过一个处于矩形空间的磁感应 强度为B匀强磁场,速度方向与磁感线垂直。且平行于矩形空间的其 中一边,矩形空间边长为 3 a和a电子刚好从矩形的相对的两个顶 点间通过,求电子入射速度V和在磁场中的飞行时Байду номын сангаас。
60
30
60
O
例1.如图3所示,直线MN上方有磁感应强度为B 的匀强磁场。正、负电子同时从同一点O以与MN成 30°角的同样速度v射入磁场(电子质量为m,电 荷为e),它们从磁场中射出时相距多远?
例1.如图3所示,直线MN上方有磁感应强度为B 的匀强磁场。正、负电子同时从同一点O以与MN成 30°角的同样速度v射入磁场(电子质量为m,电 荷为e),它们从磁场中射出时相距多远?
熟记 于心
mv r qB
互推
灵活 应用
直角三角形 三角函数 勾股定理
T t 2 T

确定带电粒子在磁场中运动轨迹的三种巧妙方法

确定带电粒子在磁场中运动轨迹的三种巧妙方法

确定带电粒子在磁场中运动轨迹的三种巧妙方法(一)对称法1.如图8­2­20所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。

现将带电粒子的速度变为v 3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( )A.12Δt B .2Δt C.13Δt D .3Δt解析:选B(二)旋转圆法2. (多选)如图8­2­21所示,扇形区域AOC 内有垂直纸面向里的匀强磁场,边界OA 上有一粒子源S 。

某一时刻,从S 平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间有部分粒子从边界OC 射出磁场。

已知∠AOC =60°,从边界OC 射出的粒子在磁场中运动的最长时间等于T 2(T 为粒子在磁场中运动的周期),则从边界OC 射出的粒子在磁场中运动的时间不可能为( )A.T 12B.T 8C.T 4D.T 3 解析:选AB 粒子在磁场中做匀速圆周运动,粒子在磁场中出射点和入射点的连线即为轨迹的弦。

初速度大小相同,轨迹半径R =m v qB 相同。

设OS =d ,以S 为圆心,将轨迹圆逆时针旋转。

当出射点D 与S 点的连线垂直于OA 时,DS 弦最长,轨迹所对的圆心角最大,周期一定,则粒子在磁场中运动的时间最长。

由此得到:轨迹半径为:R =32d ,当出射点E 与S 点的连线垂直于OC 时,弦ES 最短,轨迹所对的圆心角最小,则粒子在磁场中运动的时间最短。

则:SE =32d ,由几何知识,得θ=60°,最短时间:t min =T 6。

所以,粒子在磁场中运动时间范围为16T ≤t ≤T 2,故不可能的是A 、B 。

(三)放缩圆法3.如图8­2­22所示,一足够长的矩形区域abcd 内充满磁感应强度为B ,方向垂直纸面向里的匀强磁场,现从矩形区域ad 边中点O 射出与Od 边夹角为30°,大小为v 0的带电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力忽略不计,求:(1)试求粒子能从ab 边上射出磁场的v 0的大小范围;(2)粒子在磁场中运动的最长时间和在这种情况下粒子从磁场中射出所在边上位置的范围。

2022-2023年高考物理一轮复习 带电粒子在有界磁场中的运动轨迹五种方法制图后最新

2022-2023年高考物理一轮复习 带电粒子在有界磁场中的运动轨迹五种方法制图后最新
边界上有磁场).已知O点为坐标原点,N点在y轴上坐标为
(0,d),OP与x轴的夹角为30°,不计重力.
P
N
O
60 0 D
30°
情境四
方法四:空间信息定圆心
如图所示,在半径为R的圆形区域内存在匀强磁场,磁感应强度为B,方向垂
直于圆平面向里.一群比荷为
q
的负离子(不计重力)以相同速率
m
,qBR
m
由P点在纸平面内向不同方向射入磁场中,发生偏转后又飞出磁场,请你任
方法二:弦作中垂线
如图,在直角三角形OPN区域内存在匀强磁场,磁感应强度大小
为B、方向垂直于纸面向外.一带正电的粒子从静止开始经电
压U加速后,从N点沿NP方向进入磁场;一段时间后,该粒子从
OP 边的中点D射出,从N到D的过程中速度方向偏转了60°.已
知O 点为坐标原点,N点在y轴上坐标为(0,d),OP与x轴的夹角
距离为d,不计重力.求
(1)带电粒子的比荷;
(2)带电粒子从射入磁场到运动至x轴的时间.
如图所示,在平面内,有一电子源持续不断地沿x正方向每秒发射出N个速率均为v的电
子,形成宽为2b,在y轴方向均匀分布且关于x轴对称的电子流.电子流沿x方向射入一
个半径为R,中心位于原点o的圆形匀强磁场区域,磁场方向垂直xoy平面向里,电子经
(0,d),OP与x轴的夹角为30°,不计重力.
P
N
60 0
O
30°
方法三:速度方向延长线夹角作角平分线
方法三:速度方向延长线夹角作角平分线
如图,在直角三角形OPN区域内存在匀强磁场,磁感应强度大小
为B,方向垂直于纸面向外.一带正电的粒子从静止开始经电压
U加速后,从N点沿NP方向进入磁场;刚好不从OP边飞出(OP
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

确定带电粒子运动轨迹的方法。

一、对称法
带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。

利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。

例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。

正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?
解析:正、负电子的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。

所以两个射出点相距s=2r=,由
图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。

例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。

一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。

当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。

解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。

由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°=,带电粒子的
轨道半径可表示为:故带电粒子运动周期:,带电粒子在磁场区域中
运动的时间
二、旋转圆法
在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。

例3.如图8所示,S为电子源,它在纸面360°度范围内发射速度大小为v0,质量为m,电量为q 的电子(q<0),MN是一块足够大的竖直挡板,与S的水平距离为L,挡板左侧充满垂直纸面向外的匀强磁场,磁感应强度大小为mv0/qL,求挡板被电子击中的范围为多大?
解析:由于粒子从同一点向各个方向发射,粒子的轨迹为绕S点旋转的动态圆,且动态圆的每一个圆都是逆时针旋转,这样可以作出打到最高点与最低点的轨迹,如图9所示,最高点为动态圆与MN的相切时的交点P,最低点为动态圆与MN相割,且SQ为直径时Q为最低点,带电粒子在磁
场中作圆周运动,由洛仑兹力提供向心力,由得:,Q为直径,则:SQ=2L,SO=L ,由几何关系得:
P为切点,所以OP=L,所以粒子能击中的范围为。

例4.(2010全国新课程卷)如图10所示,在0≤x≤A.0≤y≤范围内有垂直于xy平面向外的匀强磁场,磁感应强度大小为B。

坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0~
90°范围内。

己知粒子在磁场中做圆周运动的半径介于到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。

求最后离开磁场的粒子从粒子源射出时的:(1)速度大小;(2)速度方向与y轴正方向夹角正弦。

解析:设粒子的发射速度为v,粒子做圆周运动的半径为R,由牛顿第二定律和洛仑兹力公式得:
,解得:。

从O点以半径R(<R<a)作“动态圆”,如图11所示,由图不难看出,在磁场中运动时间最
长的粒子,其轨迹是圆心为C的圆弧,圆弧与磁场的边界相切。

设该粒子在磁场中的运动时间为t,
依题意,所以∠OCA=。

设最后离开磁场的粒子的发射方向与y轴正方向的夹角为α,由几何关系得:
,,再加上,
解得:,,
三、缩放圆法
带电粒子以大小不同,方向相同的速度垂直射入匀强磁场中,作圆周运动的半径随着速度的变化而变化,因此其轨迹为半径缩放的动态圆(如图12),利用缩放的动态圆,可以探索出临界点的轨迹,使问题得到解决。

例5.如图13所示,匀强磁场中磁感应强度为B,宽度为d,一电子从左边界垂直匀强磁场射入,入射方向与边界的夹角为θ,已知电子的质量为m,电量为e,要使电子能从轨道的另一侧射出,求电子速度大小的范围。

解析:如图14所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,设此时的速率为v0,带电粒子在磁场中作圆周运动,由几何关系得:r+r cosθ=d ①
电子在磁场中运动时洛伦兹力提供向心力:,所以:②
联立①②解得:,所以电子从另一侧射出的条件是速度大于。

例6.(2010全国II卷)如图15所示,左边有一对平行金属板,两板的距离为d,电压为U,两板间有匀强磁场,磁感应强度为B0,方面平行于板面并垂直纸面朝里。

图中右边有一边长为a的正
三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直纸面向里。

假设一系列电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板间的区域,并经EF边中点H射入磁场区域。

不计重力。

1)已知这些离子中的离子甲到达边界EG后,从边界EF穿出磁场,求离子甲的质量;
2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为3a/4,求离子乙的质量;
3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达?
解析:由题意知,所有离子在平行金属板之间做匀速直线运动,则有:qvB0=qU/d,解得离子的速度为:v=U/B0d(为一定数值)。

虽然离子速度大小不变,但质量m改变,结合带电离子在磁场中做匀速圆周运动的半径公式
R=mv/qB分析,可画出不同质量的带电离子在磁场中的运动轨迹,如图16中的动态圆。

1)由题意知,离子甲的运动轨迹是图17中的半圆,半圆与EG边相切于A点,与EF边垂直相交于B点,由几何关系可得半径:R甲=a cos30°tan15°=()a,
从而求得离子甲的质量m甲=。

2)离子乙的运动轨迹如图18所示,在ΔEIO2中,由余弦定理得:
=a/4,从而求得乙离子的质量
,解得R

m
=。


(3)由半径公式R=mv/qB可知R∝m,结合(1)(2)问分析可得:
①若离子的质量满足m甲/2≤m≤m甲,则所有离子都垂直EH边离开磁场,离开磁场的位置到H
的距离介于R甲到2R甲之间,即~;
②若离子的质量满足m甲<m≤m乙,则所有离子都从EG边离开磁场,离开磁场的位置介于A到I
之间,其中AE的距离AE=,IE距离IE=。

四、临界法
以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径r和速度v以及磁场B 之间的约束关系进行动态轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,画出临界点的轨迹是解题的关键。

例7.长为L的水平极板间,有垂直纸面向内的匀强磁场,如图19所示,磁感应强度为B,板间距离也为L,两极板不带电,现有质量为m电量为q的带负电粒子(不计重力)从左边极板间中点处垂直磁感线以水平速度v射入磁场,欲使粒子打到极板上,求初速度的范围。

解:由左手定则判定受力向下,所以向下偏转,恰好打到下板右边界和左边界为两个临界状态,分别作出两个状态的轨迹图,如图20、图21所示,打到右边界时,在直角三角形OAB中,由几何
关系得:解得轨道半径
电子在磁场中运动时洛伦兹力提供向心力因此
打在左侧边界时,如图21所示,由几何关系得轨迹半径
电子在磁场中运动时洛伦兹力提供向心力,所以
所以打在板上时速度的范围为≤v≤
例8.如图22,一足够长的矩形区域abcd内充满磁感应强度为B,方向垂直纸面向里的匀强磁场,现从矩形区域ad边中点O射出与Od边夹角为30°,大小为v0的带电粒子,已知粒子质量为m,
电量为q,ad边长为L,ab边足够长,粒子重力忽略不计。

求:
1)试求粒子能从ab边上射出磁场的v0的大小范围;
2)粒子在磁场中运动的最长时间和在这种情况下粒子从磁场中射出所在边上位置的范围。

解(1)画出从O点射入磁场的粒子运动轨迹的动态圆,能够从ab边射出的粒子的临界轨迹如图23所示,轨迹与dc边相切时,射到ab边上的A点,此时轨迹圆心为O1,则轨道半径r1=L,由
得最大速度。

轨迹与ab边相切时,射到ab边上的B点,此时轨迹圆心为O2,则轨道半径r2=L/3,由
得最小速度。

所以粒子能够从ab边射出的速度范围为:<v0<。

(2)当粒子从ad边射出时,时间均相等,且为最长时间,因转过的圆心角为300°,所以最长时
间:,射出的范围为:OC=r2=L/3。

通过以上分析不难发现,对于带电粒子在磁场中的运动问题,解题的关键是画出带电粒子在匀强磁场中的运动轨迹,如果能够熟练掌握带电粒子在磁场中运动轨迹的上述四种画法,很多问题都可以迎刃而解。

相关文档
最新文档