精品2019届高三数学第二轮复习测试题五 理(含解析)新人教版 新 版
2019年高三下学期第二次模拟考试数学(理)试题含答案

2019年高三下学期第二次模拟考试数学(理)试题含答案本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。
注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每题选出答案后,用2B铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,在改涂在其他答案标号。
一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知i是虚数单位,复数z满足,则z的模是A. B. C.1 D.2.已知m,n∈R,集合A={2,},B={m,},若={1},m+n=A.5B.6C.7D.83. 甲乙两名运动员的5次测试成绩如图,设分别表示甲、乙两名运动员测试成绩的标准差,分别表示甲、乙两名运动员测试成绩的平均数,则有A.,B.,C.,D. ,4. 将函数=图像上所有的点的横坐标缩短为原来的,纵坐标不变,得到g(x)的图象,则函数g(x)的一个减区间为A.[-,]B.[-,]C.[-,]D.[-,]5.已知,则sin2x=A. B.- C. D. -6. 已知,分别是定义在R上的奇函数和偶函数,若+=,则下列结论正确的是A.=B.g(1)=C.若a>b,则f(a)>f(b)D.若a>b,则g(a)>g(b)7. 已知,若从[0,10]中任取一个数x,则使|x-1|≤a的概率为A. B. C. D.8. 如图,在三棱锥P-ABC中,面PAC⊥面ABC,AB⊥BC,AB=BC=PA=PC=2,M,N为线段PC上的点,若MN=,则三棱锥A-MNB的体积为A. B. C. D.9. 对于同一平面内的单位向量,若的夹角为,则的最大值为A. B.2 C. D.310. 已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y∈[-1,1],使得成立,则实数a的取值范围是A.(1+,e]B.[1+,e]C.(1,e]D.(2+,e]第II卷(非选择题共100分)注意事项:第II卷所有题目的答案考生需用黑色签字笔答在“数学”答题卡指定的位置。
2019-2020年高三数学二轮复习高考小题标准练五理新人教版

2019-2020年高三数学二轮复习高考小题标准练五理新人教版一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U=R,集合A=,则A等于( )A.(-∞,0]B.[2,+∞)C.[0,2]D.(-∞,0]∪[2,+∞)【解析】选D.依题意得A={x|0<x<2},因此A=(-∞,0]∪[2,+∞).2.已知z=1-i(i是虚数单位),则+z2=( )A.2B.2iC.2+4iD.2-4i【解析】选A.由题意可得,+z2=+(1-i)2=-2i=2.3.已知<α<π,sinα=,则tanα=( )A. B.- C.2 D.-2【解析】选D.由题意得cosα=-=-,所以tanα==-2.4.命题p:“a=-2”是命题q:“直线ax+3y-1=0与直线6x+4y-3=0垂直”成立的( ) A.充要条件 B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【解析】选A.直线ax+3y-1=0与直线6x+4y-3=0垂直的充要条件是6a+12=0,即a=-2,因此选A.5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( )A.24里B.12里C.6里D.3里【解析】选C.记每天走的路程里数为{a n},易知{a n}是公比q=的等比数列,s6=378,s6==378,所以a1=192,所以a6=192×=6.6.设n=4sinxdx,则二项式的展开式的常数项是( )A.12B.6C.4D.1【解析】选B.因为n=4sinxdx=-4cosx=-4=4,所以二项式展开式的通项公式为T r+1=·x4-r·=(-1)r··x4-2r;令4-2r=0,解得r=2,所以展开式的常数项是T2+1=(-1)2·=6.7.在△ABC中,D为BC的中点,O在AD上且AO=AD,AB=2,AC=6,则·=( )A.2B.5C.D.4【解析】选D.由题意可知===(+),又=-,所以·=(-)·(+)=(-)=(36-4)=4.8.如图所示的程序框图中,e是自然对数的底数,则输出的i的值为(参考数值:lnxx≈7.609)( )A.5B.6C.7D.8【解析】选D.由e i≥xx得i≥lnxx,而lnxx≈7.609,则输出的i的值为8.9.某几何体的三视图如图所示,则该几何体的体积为( )A. B. C. D.πa3【解析】选 A.由三视图可知该几何体为一个圆锥的,其中圆锥的底面圆的半径为a,高为2a,所以该几何体的体积V=×πa2×2a×=.10.已知椭圆C:+=1,点M(2,1),O为坐标原点,平行于OM的直线l交椭圆C于不同的两点A,B,则△AOB的面积的最大值为( )A.1B.C.2D.2【解析】选C.由直线l∥OM,可设直线l的方程为y=x+m(m≠0),A(x1,y1),B(x2,y2),将直线l的方程代入椭圆C的方程得,x2+2mx+2m2-4=0,则Δ=(2m)2-4(2m2-4)>0,即m∈(-2,2)且m≠0,x1+x2=-2m,x1x2=2m2-4,所以S△AOB=|m|·|x1-x2|=|m|·=|m|=≤=2,当且仅当m2=4-m2,即m=±时,△AOB的面积取得最大值,且最大值为2.11.已知点M(x,y)为平面区域内的动点,则(x+1)2+(y+1)2的最大值是( )A.10B.C.D.13【解析】选D.不等式组对应的平面区域是四边形区域,(x+1)2+(y+1)2的几何意义是点(x,y)到点(-1,-1)的距离的平方,由图可知,当点(x,y)为点(1,2)时,(x+1)2+(y+1)2取得最大值13.12.已知函数f(x)=若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递减数列,则实数a的取值范围是( )A. B.C. D.【解析】选C.由已知可得1-2a<0,0<a<1,且a12=17-24a>a13=1,解得<a<.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知函数f(x)=e x-mx+1的图象为曲线C,若曲线C存在与直线y=x垂直的切线,则实数m的取值范围是__________.【解析】由题意可知f′(x)=e x-m,存在x使得e x-m=-2有解,则m=e x+2有解,e x+2>2,知m>2成立.答案:(2,+∞)14.已知圆C:(x-3)2+(y-4)2=1和两点A(-a,1),B(a,-1)且a>0,若圆C上存在点P,使得∠APB=90°,则a的最大值为________.【解析】当∠APB=90°时,点P的轨迹是以AB为直径的圆O,由题意可得圆C与圆O有公共点,O(0,0)为AB的中点,圆O的半径为,所以|CO|=5∈[-1,+1],解得4≤≤6,15≤a2≤35,a>0,则≤a≤,即a的最大值是.答案:15.已知四面体ABCD满足AB=CD=,AC=AD=BC=BD=2,则四面体ABCD的外接球的表面积是__________.【解析】在四面体ABCD中,取线段CD的中点为E,连接AE,BE,AC=AD=BC=BD=2,则AE⊥CD,BE⊥CD,在Rt△AED中CD=,所以AE=,同理BE=,取AB的中点为F,由AE=BE,得EF⊥AB,在Rt△EFA中,AB=,EF=1,取EF的中点为O,则OF=,在Rt△OFA中,OA=,OA=OB=OC=OD,所以该四面体的外接球的半径是,其外接球的表面积是7π.答案:7π16.在△ABC中,角A,B,C的对边分别是a,b,c,若a=,b=2,sinB+cosB=,则角A的大小为________.【解析】由sinB+cosB=,得sin=,sin=1,而B∈(0,π),所以B=.由正弦定理得,sinA==,又A+B+C=π,A∈,所以A=.答案:。
2019届高三数学第二轮复习测试题五 文(含解析)新人教版 新 版

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……2019高三第二轮复习测试试卷文科数学(五)一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知为实数集,集合,,则集合为A. B.C. D.【答案】D【解析】【分析】先解一元二次不等式得集合B,再根据集合并集以及补集概念求结果.【详解】由,,所以,所以,故选D.【点睛】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.2.在复平面内,复数的对应点坐标为,则复数为A. B. C. D.【答案】B【解析】【分析】先根据复数几何意义得,再根据复数乘法法则求结果.【详解】易知,,故选B.【点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为3.函数的零点是A. 或B. 或C.D. 或【答案】D【解析】【分析】先解二次方程得值,再根据对数方程得结果.【详解】,由得或,而函数零点指的是曲线与坐标横轴交点的横坐标,故选D.【点睛】本题考查函数零点概念,考查基本求解能力.4.已知实数、,满足,则的取值范围是A. B.C. D.【答案】D【解析】【分析】根据基本不等式得范围,再根据绝对值定义得结果.【详解】由,知,故选D.【点睛】本题考查基本不等式应用,考查基本求解能力.5.执行如图所示的程序框图,输出的值为A. B.C. D.【答案】B【解析】【分析】执行循环,根据条件对应计算S,直至时结束循环,输出结果.【详解】进入循环,当时,,为奇数,;当时,,为偶数,;当时,,为奇数,;当时,,为偶数,;当时,,结束循环,输出.故选B.【点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.6.已知实数、满足线性约束条件,则其表示的平面区域的面积为A. B. C. D.【答案】B【解析】【分析】先作可行域,再根据三角形面积公式求结果.【详解】满足约束条件,如图所示:可知范围扩大,实际只有,其平面区域表示阴影部分一个三角形,其面积为故选B.【点睛】本题考查平面区域含义,考查基本求解能力.7.“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】等价于,作判断.【详解】由,得,得,,,但反之是,即或,故“”是“”的充分不必要条件,选A.【点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.8.如图,椭圆的上顶点、左顶点、左焦点分别为、、,中心为,其离心率为,则A. B.C. D.【答案】B【解析】【分析】将转化为,再根据离心率求比值.【详解】由,得而,所以,故选B.【点睛】本题考查椭圆离心率,考查基本求解能力.9.、、、四位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆车只能带一大人和一小孩,其中孩子们表示都不坐自己妈妈的车,则的小孩坐妈妈或妈妈的车概率是A. B. C. D.【答案】D【解析】【分析】先利用枚举法确定总事件数,再从中确定的小孩坐妈妈或妈妈的车事件数,最后根据古典概型概率公式求结果.【详解】设、、、的小孩分别是、、、,共有坐车方式有、、、、、、、、,则的小孩坐妈妈或妈妈的车有六种情况,其概率为;另解,的小孩等概率坐妈妈或妈妈或妈妈车,故选D.【点睛】古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.10.已知数列中第项,数列满足,且,则A. B. C. D.【答案】C【解析】【分析】根据对数加法法则得,根据关系式得,联立方程解得.【详解】由,得,又,即,有,故.选C.【点睛】本题考查对数四则运算法则,考查基本求解能力.11.如图,的一内角,, ,边上中垂线交、分别于、两点,则值为A. B.C. D.【答案】C【解析】【分析】建立平面直角坐标系,根据向量垂直确定E坐标,再根据向量数量积坐标表示得结果.【详解】如图,以为坐标原点,所在直线为轴建立平面直角坐标系,由条件知、、,,设,得,由垂直知,得,即,,故选C.【点睛】平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式;二是坐标公式;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.12.已知函数,若存在实数,使得,则A. 2B. 3C. 4D. 5【答案】A【解析】【分析】先化简方程,分组研究以及最小值,确定等于号取法,解得.【详解】由已知即而,故,设,容易求得当时的最小值为2,当“=”成立的时候,故选A.【点睛】本题考查利用基本不等式求最值以及利用导数求函数最值,考查基本分析与求解能力.二.填空题:本大题共4小题,每小题5分,共20分.13.已知函数,则__________.【答案】4【解析】【分析】根据分段函数对应性,根据自变量大小对应代入解析式,即得结果.【详解】.【点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.14.已知过抛物线的焦点,且斜率为的直线与抛物线交于、两点,则__________.【答案】【解析】【分析】根据抛物线焦点弦性质得,对照比较与所求式子之间关系,即得结果.【详解】由知,由焦点弦性质,而.【点睛】本题考查抛物线焦点弦性质,考查基本求解能力.15.网格纸上小正方形的边长为1,粗虚、实线画出的是某个长方体挖去一个几何体得到的几何图形的三视图,则该被挖去的几何体的体积为__________.【答案】2【解析】【分析】先确定几何体,再根据长方体以及四棱柱体积公式求结果.【详解】根据三视图知长方体挖去部分是一个底面为等腰梯形(上底为2,下底为4,高为2)高为2的直四棱柱,所以.【点睛】先根据熟悉的柱、锥、台、球的图形,明确几何体的展开对应关系,结合空间想象将展开图还原为实物图,再在具体几何体中求体积.16.数列是公差为的等差数列,其前和为,存在非零实数,对任意恒有成立,则的值为__________.【答案】或【解析】【分析】先根据和项与通项关系得,再根据等差数列公差与零关系分类讨论,最后解得的值.【详解】设的公差为,当时,所以,当时,对有①,当时,②,由①-②得:,得,即对、恒成立.当,此时,,舍去当时,,赋值可得,此时,是以为首项,为公差的等差数列.综上或.【点睛】本题考查等差数列基本量以及通项与和项关系,考查基本求解能力.三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.17.已知(),其图象在取得最大值.(Ⅰ)求函数的解析式;(Ⅱ)当,且,求值.【答案】(1);(2).【解析】【分析】(1)先根据两角和正弦公式展开,再根据最值取法得a,最后根据配角公式化为基本三角函数,(2)先根据条件得,再根据两角和正弦公式求值.【详解】(Ⅰ)由在取得最大值,,即,经检验符合题意.(Ⅱ)由,,又,,得,.【点睛】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.18.如图:直线平面,直线平行四边形,四棱锥的顶点在平面上,,,,,,,、分别是与的中点.(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积.【答案】(1)见解析;(2).【解析】【分析】(1)先根据三角形中位线性质得,,再根据线面平行判定定理以及面面平行判定定理得平面平面,最后根据面面平行性质得结论,(2)先根据线面垂直得面面垂直:平面平面,,再根据面面垂直性质定理得平面,最后根据等体积法以及锥体体积公式求结果.【详解】(Ⅰ)连接,底面为平行四边形∵是的中点,是的中点,∵是的中点,是的中点,而,,平面平面平面,平面;(Ⅱ)由平面,平行四边形平面底面,,,底面四边形为矩形,即四边形为直角梯形,平面平面,过作交于,平面,即平面由,,,知,,得.【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.19.中国海军,正在以不可阻挡的气魄向深蓝进军。
2019届高考数学二轮复习 专题五 立 体 几 何 (讲义训练):第3讲 立体几何中的计算 课时训练(含答案)

第3讲 立体几何中的计算 课时训练1. 已知正四棱锥底面边长为42,体积为32,则此四棱锥的侧棱长为________.答案:5解析:由正四棱锥底面边长为42,则底面正方形对角线的一半长为4,再由体积公式得四棱锥的高为3,则此四棱锥的侧棱长为5.2. (2017·镇江期末)若圆锥底面半径为2,高为5,则其侧面积为________.答案:6π解析:因为圆锥的母线长为l =22+(5)2=3,所以其侧面积为π×2×3=6π.3. (2017·常州期末)以一个圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,若所得的圆锥底面半径等于圆锥的高,则圆锥的侧面积与圆柱的侧面积之比为________.答案:2∶2解析:如图,由题意可得圆柱的侧面积为S 1=2πrh =2πr 2.圆锥的母线l =h 2+r 2=2r ,故圆锥的侧面积为S 2=12×2πr ×l =2πr 2,所以S 2∶S 1=2∶2.4. (2018·启东调研)高为63的正四面体的表面积为________.答案:3解析:由正四面体的高为63,得正四面体的棱长为1,表面积为4×34=3.5. (2017·南通一调)如图,在正四棱柱ABCD A 1B 1C 1D 1中,AB =3 cm ,AA 1=1 cm ,则三棱锥D 1A 1BD 的体积为________cm 3.答案:32解析:VD 1A 1BD =VBA 1DD 1=13×3×12×3×1=32(cm 3).6. 将半径为5的圆分割成面积之比为1∶2∶3的三个扇形作为三个圆锥的侧面,设这三个圆锥的底面半径依次为r 1,r 2,r 3,则r 1+r 2+r 3=________.答案:5解析:三个圆锥的底面周长分别为53π,103π,5π,则它们的半径r 1,r 2,r 3依次为56,53,52,则r 1+r 2+r 3=5. 7. 已知圆锥的母线长为10 cm ,侧面积为60π cm 2,则此圆锥的体积为________cm 3. 答案:96π解析:设圆锥的底面半径为r ,侧面积=12×母线长×底面圆周长=60π,得r =6 cm ,此圆锥的高为8 cm ,则此圆锥的体积为13×36π×8=96π(cm 3).8. (2018·南通中学练习)如图,在正三棱柱ABC A 1B 1C 1中,若各条棱长均为2,且M 为A 1C 1的中点,则三棱锥M AB 1C 的体积是________.答案:233解析:在正三棱柱中,AA 1⊥平面A 1B 1C 1,则AA 1⊥B 1M .因为B 1M 是正三角形的中线,所以B 1M ⊥A 1C 1.所以B 1M ⊥平面ACC 1A 1,则VMAB 1C =VB 1ACM =13×⎝ ⎛⎭⎪⎫12×AC ×AA 1×B 1M =13×12×2×2×3=233.9. (2018·常熟期中)已知正三棱锥的体积为9 3 cm 3,高为3 cm ,则它的侧面积为________cm 2.答案:183解析:设正三棱锥底面三角形的边长为a ,则V =13×34a 2×3=93,a =6(cm),底面等边三角形的高为32×6=33(cm),底面中心到一边的距离为13×33=3(cm),侧面的斜高为32+(3)2=23(cm), S 侧=3×12×6×23=183(cm 2).10. (2018·南通一调)如图,铜质六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知正六棱柱的底面边长、高都为4 cm ,圆柱的底面积为9 3 cm 2.若将该螺帽熔化后铸成一个高为6 cm 的正三棱柱零件,则该正三棱柱的底面边长为________cm.(不计损耗)答案:210解析:由题意,六角螺帽毛坯体积为正六棱柱的体积减去圆柱的体积,即V 正六棱柱-V圆柱=(S 正六边形-S 圆)h =⎝ ⎛⎭⎪⎪⎫6×34×42-93×4=603(cm 3),因为正三棱柱的体积与六角螺帽毛坯的体积相等,设正三棱柱的底面边长为a ,所以34a 2·6=603,解得a =210(cm).11. 已知等边圆柱(轴截面是正方形的圆柱)的表面积为S ,求其内接正四棱柱的体积. 解:设等边圆柱的底面半径为r ,则高h =2r . 因为S =S 侧+2S 底=2πrh +2πr 2=6πr 2, 所以r =S6π, 所以内接正四棱柱的底面边长a =2r sin45°=2r ,所以V =S 底·h =(2r )2·2r =4r 3=S 6πS9π2.12. 如图,四边形ABCD 为菱形,四边形ACFE 为平行四边形,BD 与AC 相交于点G ,AB =BD =2,AE =3,∠EAD =∠EAB .(1) 求证:平面ACFE ⊥平面ABCD ;(2) 若∠EAG =60°,求三棱锥F BDE 的体积.(1) 证明:连结EG . ∵ 四边形ABCD 为菱形, ∴ AD =AB ,BD ⊥AC ,DG =GB . 在△EAD 和△EAB 中,AD =AB ,AE =AE ,∠EAD =∠EAB ,∴ △EAD ≌△EAB , ∴ ED =EB ,∴ BD ⊥EG . ∵ BD ⊥AC ,AC ∩EG =G , ∴ BD ⊥平面ACFE . ∵ BD ⊂平面ABCD , ∴ 平面ACFE ⊥平面ABCD .(2) 解:连结FG ,∵ BD ⊥平面ACFE ,FG ⊂平面ACFE ,∴ FG ⊥BD . 在△EAG 中,AE =AG =3,且∠EAG =60°, ∴ △EAG 为正三角形, ∴ ∠EGA =60°. 在△FCG 中,CG =FC =3,∠GCF =120°, ∴ ∠FGC =30°,∴ ∠EGF =90°,即FG ⊥EG . 又BD ∩EG =G , ∴ FG ⊥平面BDE ,∴ 点F 到平面BDE 的距离为FG =3. ∵ S △BDE =12×BD ·EG=12×2×3=3,∴ 三棱锥FBDE 的体积为13×3×3=3.13. 在矩形ABCD 中,将△ABC 沿其对角线AC 折起来得到△AB 1C ,且顶点B 1在平面ACD 上的射影O 恰好落在边AD 上,如图所示.(1) 求证:AB 1⊥平面B 1CD ; (2) 若AB =1,BC =3,求三棱锥B 1ABC 的体积.(1) 证明:因为B 1O ⊥平面ABCD ,CD ⊂平面ABCD ,所以B 1O ⊥CD . 又CD ⊥AD ,AD ∩B 1O =O , 所以CD ⊥平面AB 1D .因为AB 1⊂平面AB 1D ,所以AB 1⊥CD . 因为AB 1⊥B 1C ,且B 1C ∩CD =C , 所以AB 1⊥平面B 1CD .(2) 解:因为AB 1⊥平面B 1CD ,B 1D ⊂平面B 1CD , 所以AB 1⊥B 1D . 在Rt △AB 1D 中,B 1D =AD 2-AB 21=2. 由B 1O ·AD =AB 1·B 1D , 得B 1O =AB 1·B 1D AD=63,所以VB 1ABC =13S △ABC ·B 1O =13×12×1×3×63=26.。
2019届高三数学第二次(12月)联考理试题(含解析)人教新目标版

“皖南八校”2019届高三第二次联考数学(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则等于A. B. C. D.【答案】D【解析】因为集合,,则,故选D.2. 已知是虚数单位,若是纯虚数,则实数A. 1B. -1C. 2D. -2【答案】A【解析】化简,由是纯虚数可得,解得,故选A.3. 已知向量满足,,,则A. B. 3 C. 5 D. 9【答案】B【解析】因为,所以,故选B.........................4. 已知直线平分圆的周长,且直线不经过第三象限,则直线的倾斜角的取值范围为A. B. C. D.【答案】A【解析】圆的标准方程为,故直线过圆的圆心,因为直线不经过第三象限,结合图象可知,,,故选A.5. 将函数的图象上各点的横坐标伸长到原来的2倍,再向左平移个单位,所得图象的一条对称轴的方程是A. B. C. D.【答案】C【解析】函数的图象上各点的横坐标伸长到原来的2倍可得的图象,再向左平移个单位,所得的图象,由,,时图象的一条对称轴的方程是,故选C.6. 函数的图象大致是A. B.C. D.【答案】C【解析】由可得函数,为奇函数,图象关于原点对称,可排除选项;又由可排除选项,故选C.7. 若,展开式中,的系数为-20,则等于A. -1B.C. -2D.【答案】A【解析】由,可得将选项中的数值代入验证可得,符合题意,故选A.8. 当时,执行如图所示的程序框图,输出的值为()A. 28B. 36C. 68D. 196【答案】D【解析】执行程序框图,;;;,退出循环,输出,故选D.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9. 榫卯()是我国古代工匠极为精巧的发明,它是在两个构件上采用凹凸部位相结合的一种连接方式. 我国的北京紫禁城,山西悬空寺,福建宁德的廊桥等建筑都用到了榫卯结构. 图中网格小正方形的边长为1,粗实线画出的是一种榫卯构件中榫的三视图,则其体积与表面积分别为A. B.C. D.【答案】C【解析】由三视图可知,这榫卯构件中榫由一个长方体和一个圆柱拼接而成,故其体积,表面积,故选C.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.10. 已知椭圆的左、右焦点分别为,若在直线上存在点使线段的中垂线过点,则椭圆离心率的取值范围是A. B. C. D.【答案】B【解析】因为直线上存在点使线段的中垂线过点,所以,根据种垂涎的性质以及直角三角形的性质可得,,,又因为,椭圆离心率的取值范围是,故选B.11. 已知,且,则A. B. C. D.【答案】D【解析】依题意,,令,则原式化为,解得舍去),故,则,即,即,,解得或,则,故选D.12. 已知函数若关于的方程至少有两个不同的实数解,则实数的取值范围为()A. B.C. D.【答案】A【解析】令,关于的方程至少有两个不同的实数解等价于,至少有两个不同的实数解,即函数的图象与直线至少有两个交点,作出函数的图象如图所示,直线过定点,故可以寻找出临界状态下虚线所示,联立,故,即,令,解得,,故,结合图象知,实数的取值范围为,故选A.【方法点睛】已知函数有零点(方程根)的个数求参数取值范围的三种常用的方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题 .二、填空题:本小题4小题,每小题5分,共20分.13. 在1,2,3,4,5,6,7,8中任取三个不同的数,取到3的概率为_________.【答案】【解析】在、中任取三个不同的数,共有种取法,其中一定取到的方法有种,在、中任取三个不同的数取到的概率为,故答案为.14. 已知的面积为,角的对边分别为,若,,,则___________.【答案】【解析】,,,可得,所以得,由余弦定理可得,,故答案为.15. 已知函数是偶函数,定义域为,且时,,则曲线在点处的切线方程为____________.【答案】【解析】曲线在点处的切线方程为,又是偶函数,曲线在点处的切线方程与曲线在点处的切线方程故意轴对称,为,故答案为.【方法点晴】本题主要考查函数的奇偶性以及利用导数求曲线切线题,属于中档题. 求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.16. 已知正方体的体积为1,点在线段上(点异于点),点为线段的中点,若平面截正方体所得的截面为四边形,则线段长的取值范围为__________ .【答案】【解析】依题意,正方体的棱长为,如图所示,当点线段的中点时,由题意可知,截面为四边形,从而当时,截面为四边形,当时,平面与平面也有交线,故截面为五边形,平面截正方体所得的截面为四边形,线段的取值范围为,故答案为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17∽21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17. 已知是等比数列,满足,且.(Ⅰ)求的通项公式和前项和;(Ⅱ)求的通项公式.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(I)由,令可解得,,从而可得的通项公式和前项和;(II)结合(I)的结论,可得,从而得时,,两式相减、化简即可得的通项公式.试题解析:(Ⅰ),,,,,,是等比数列,,的通项公式为,的前项和.(Ⅱ)由及得,时,,,,,的通项公式为.,18. 随着网络时代的进步,流量成为手机的附带品,人们可以利用手机随时随地的浏览网页,聊天,看视频,因此,社会上产生了很多低头族.某研究人员对该地区18∽50岁的5000名居民在月流量的使用情况上做出调查,所得结果统计如下图所示:(Ⅰ)以频率估计概率,若在该地区任取3位居民,其中恰有位居民的月流量的使用情况在300M∽400M之间,求的期望;(Ⅱ)求被抽查的居民使用流量的平均值;(Ⅲ)经过数据分析,在一定的范围内,流量套餐的打折情况与其日销售份数成线性相关关系,该研究人员将流量套餐的打折情况与其日销售份数的结果统计如下表所示:折扣销售份数试建立关于的的回归方程.附注:回归方程中斜率和截距的最小二乘估计公式分别为:,【答案】(Ⅰ)0.75;(Ⅱ)369M;(Ⅲ).【解析】试题分析:(I)直接根据二项分布的期望公式求解即可;(II)根据频率分布直方图中数据,每组数据中间值与纵坐标的乘积之和即是被抽查的居民使用流量的平均值;(Ⅲ)先根据平均值公式求出样本中心点的坐标,利用公式求出,样本中心点坐标代入回归方程可得,从而可得结果.试题解析:(Ⅰ)依题意,∽,故;(Ⅱ)依题意,所求平均数为故所用流量的平均值为;(Ⅲ)由题意可知,,,所以,关于的回归方程为: .【方法点晴】本题主要考查二项分布的期望公式、直方图的应用和线性回归方程的求法,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.19. 在四棱锥中,底面是矩形,平面,是等腰三角形,,是的一个三等分点(靠近点),与的延长线交于点,连接.(Ⅰ)求证:平面平面;(Ⅱ)求二面角的正切值【答案】(1)证明见解析;(2).【解析】试题分析:(I)由线面垂直的性质可得,由矩形的性质可得,从而由线面垂直的判定定理可得平面,进而由面面垂直的判定定理可得结论;(II)以,,分别为,,轴建立如图所示的空间直角坐标系,分别求出平面与平面的一个法向量,根据空间向量夹角余弦公式,可得夹角余弦值,利用同角三角函数之间的关系可得正切值.试题解析:(Ⅰ)证明:因为平面,所以又因为底面是矩形,所以又因为,所以平面.又因为平面,所以平面平面.(Ⅱ)解:方法一:(几何法)过点作,垂足为点,连接.不妨设,则.因为平面,所以.又因为底面是矩形,所以.又因为,所以平面,所以A.又因为,所以平面,所以所以就是二面角的平面角.在中,由勾股定理得,由等面积法,得,又由平行线分线段成比例定理,得.所以.所以.所以.所以二面角的正切值为.方法二:(向量法)以,,分别为,,轴建立如图所示的空间直角坐标系:不妨设,则由(Ⅱ)可得,.又由平行线分线段成比例定理,得,所以,所以.所以点,,.则,.设平面的法向量为,则由得得令,得平面的一个法向量为;又易知平面的一个法向量为;设二面角的大小为,则.所以.所以二面角的正切值为.【方法点晴】本题主要考查线面垂直的判定定理及面面垂直的判定定理、利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20. 过抛物线的焦点作直线与抛物线交于两点,当点的纵坐标为1时,. (Ⅰ)求抛物线的方程;(Ⅱ)若抛物线上存在点,使得,求直线的方程.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(I)利用拋物线的定义,结合即可得,,从而抛物线的方程为;(II)方程为,由得,令,,,利用韦达定理及,建立关于的方程,解方程即可求直线的方程.试题解析:(Ⅰ)的准线方程为,当点纵坐标为1时,,,势物线的方程为.(Ⅱ)在上,,又,设方程为,由得,令,,则,,,,,,或0,当时,过点(舍),,方程为.21. 已知函数.(Ⅰ)若,证明:函数在上单调递减;(Ⅱ)是否存在实数,使得函数在内存在两个极值点?若存在,求实数的取值范围;若不存在,请说明理由. (参考数据:,)【答案】(Ⅰ)证明见解析;(Ⅱ).【解析】试题分析:(I);求导得,只需利用导数研究函数的单调性,求出最大值,从而证明即可得结论;(II)讨论时,时两种情况,分别利用导数研究函数的单调性,排除不合题意的情况,从而可得使得函数在内存在两个极值点的实数的取值范围.试题解析:(Ⅰ)函数的定义域是.求导得.设,则与同号.所以,若,则对任意恒成立.所以函数在上单调递减.又,所以当时,满足.即当时,满足.所以函数在上单调递减.(Ⅱ)①当时,函数在上单调递减.由,又,时,,取,则,所以一定存在某个实数,使得.故在上,;在上,.即在上,;在上,.所以函数在上单调递增,在上单调递减.此时函数只有1个极值点,不合题意,舍去;②当时,令,得;令,得,所以函数在上单调递减,在上单调递增.故函数的单调情况如下表:要使函数在内存在两个极值点,则需满足,即,解得又,,所以.此时,,又,;综上,存在实数,使得函数在内存在两个极值点.选考题:共10分,请考生在第22、23题中任选一题作答. 如果多做,则按所做的第一题计分.22. 平面直角坐标系中,已知直线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(Ⅰ)求直线的极坐标方程;(Ⅱ)若直线与曲线相交于两点,求.【答案】(Ⅰ);(Ⅱ)3.【解析】试题分析:(I)利用代入法消去参数,将直线的参数方程化成普通方程,可得它是经过原点且倾斜角为的直线,再利用互化公式可得到直线的极坐标方程;(II)将直线的极坐标方程代入曲线的极坐标方程,可得关于的一元二次方程,然后根据韦达定理以及极径的几何意义,可以得到的值.试题解析:(Ⅰ)由得,的极坐标方程为即,.(Ⅱ)由得,设,,则,.23. 已知函数.(Ⅰ)若,解不等式;(Ⅱ)若不等式对任意恒成立,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(I)对分三种情况讨论,分别求解不等式组,然后求并集即可得不等式的解集;(II)利用基本不等式求得的最小值为,不等式对任意恒成立,等价于,平方后利用一元二次不等式的解法求解即可求得实数的取值范围.试题解析:(Ⅰ)时,,由得,不等式的解集为.(Ⅱ)对成立,又对成立,,,即.。
浙江省2019届高三第二次考试五校联考数学(理)试题Word版含解析

浙江省2019届高三第二次考试五校联考数学(理)试题第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“存在0x ∈R ,02x ≤0”的否定是( ) A .不存在0x ∈R, 02x >0B .存在0x ∈R, 02x ≥0C .对任意的x ∈R, 2x ≤0D .对任意的x ∈R, 2x >0【答案】D考点:含有量词命题的否定. 2.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是 ( )A . ①和②B . ②和③C . ③和④D . ②和④ 【答案】D 【解析】试题分析:对于①没有说明两条相交直线,不对;对于②根据平面与平面垂直的判定定理正确;对于③垂直于同一直线的两条直线可能平行、相交、异面,不对;对于④根据平面与平面平行的性质定理正确,故答案为D. 考点:空间中直线、平面的位置关系.3.为得到函数()cos f x x x =,只需将函数y x x = ( )A . 向左平移512πB .向右平移512πC .向左平移712πD .向右平移712π 【答案】C考点:1、三角函数的化简;2、函数图象的平移.4.已知A 、B 、C 为直线l 上不同的三点,点O ∉直线l ,实数x 满足关系式220x OA xOB OC ++=,有下列结论中正确的个数有 ( )① 20OB OC OA -⋅≥; ② 20OB OC OA -⋅<;③ x 的值有且只有一个; ④x 的值有两个; ⑤ 点B 是线段AC 的中点.A .1个B .2个C .3个D .4个 【答案】C 【解析】试题分析:由题意得OB x OA x OC --=2,C B A ,, 为直线l 上不同的三点,点l O ∉,因此0122=++x x ,解得1-=x ,()+=∴21,=⋅-∴2()⋅-+241()0412≥-=又由于1-=x ,()OC OA OB +=21,因此x 的值只有一个,点B 是线段AC 的中点,故答案为C.考点:平面向量及应用.5.已知映射():(,)0,0f P m n P m n '→≥≥.设点()3,1A ,()2,2B ,点M 是线段AB 上一动点,:f M M '→.当点M 在线段AB 上从点A 开始运动到点B 结束时,点M 的对应点M '所经过的路线长度为 ( ) A .12π B .6π C . 4π D . 3π【答案】B 【解析】试题分析:设点()y x M ,'从A '开始运动,直到点B '结束,AB 的方程()214≤≤=+x y x ,由于()y x M ,',则()22,y x M ,由点M 在线段AB 可得422-+y x ,按照映射得,()()3,13,1A A '→,()()1,31,3B B '→,3tan ='∠∴OX A ,3π='∠∴OX A ,122tan =='∠OX B ,4π='∠∴OX B ,故OX B OX A B O A '∠-'∠=''∠12π=,点M 对应的点M '所经过的路线长度为弧长6212ππ=⨯=⨯''∠r B O A .考点:映射的概念和函数的性质.6.如图,已知椭圆C 1:112x +y 2=1,双曲线C 2:22ax —22b y =1(a >0,b >0),若以C 1的长轴为直径的圆与C 2的一条渐近线交于A 、B 两点,且C 1与该渐近线的两交点将线段AB 三等分,则C 2的离心率为 ( )A .5B .5C .17D .7142 【答案】A 【解析】试题分析:双曲线12222=-b y a x 的一条渐近线方程x a b y =,代入椭圆11122=+y x ,可得221111ba a x +±=,渐近线与椭圆相交的弦长2222111121ba aa b +⋅+,1C 与渐近线的两交点将线段AB 三等分,∴2222111121b a aa b +⋅+11231⋅⋅=,整理得a b 2=,a b a c 522=+=∴,离心率5=e ,故答案为A.考点:1、双曲线的简单几何性质;2、椭圆的应用.7.半径为R 的球内部装有4个半径相同的小球,则小球半径r 的可能最大值为( ). AR B.R CR DR 【答案】C 【解析】试题分析:四个小球两两相切并且四个小球都与大球相切时,这些小球的半径最大,以四个小球球心为顶点的正四面体棱长为r 2,该正四面体的中心(外接球球心)就是大球的球心,该正四面体的高为r r r 362332422=⎪⎪⎭⎫ ⎝⎛-,该正四面体的外接球半径为x ,则222332362⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=r x x , 解得r x 26=,r r R +=∴26,R r 636+=∴,故答案为C. 考点:内切球的半径.8.某学生对一些对数进行运算,如下图表格所示:现在发觉学生计算中恰好有两次地方出错,那么出错的数据是 ( ) A .(3),(8) B .()4,(11) C .()1,(3) D .(1),(4) 【答案】A 【解析】试题分析:对于数据(4)(11)5lg 8.2lg +c a c b a ++-+-=221b a 21+-14lg =,数据正确,对于数据(1)(3),232100lg 021.0lg +-++=+c b a 12-++=c b a 1.2lg =,10114lg 4.1lg g -=b a 2+-= ==4.11.2lg5.1lg 134.1lg 1.2lg -+-=-c b a 与(3)对应不起来,(1)(3)其中有错误,对于(1)(4)=-1.2lg 8.2lg ()()12221-++--+-c b a c b a c b a 242-+-=,结合图中的数据 1.2lg 8.2lg -3lg 2lg 234lg-==()3lg 5lg 12--=c b a 242-+-=正好对应出来,(1)(4)正确,故错误的为(3),结合选项,答案为A. 考点:对数的运算.第Ⅱ卷(共110分)二、填空题(每题4分,满分28分,将答案填在答题纸上) 9.设全集U R =,集合2{|340}A x x x =--<,2{|log (1)2}B x x =-<, 则A B = ,A B = ,R C A = . 【答案】()4,1,()5,1-,(][)+∞-∞-,41, 【解析】试题分析:{}{}41|043|2<<-=<--=x x x x x A ,由()21log 2<-x 得⎩⎨⎧<->-4101x x ,得51<<x , {}51|<<=x x B ,()4,1=∴B A ,()5,1-=B A ,{}41|≥-≤=x x x A C R 或(][)+∞-∞-=,41, .考点:集合的基本运算.10.若某多面体的三视图如右图所示,则此多面体的体积为___,外接球的表面积为 .【答案】32;π3. 【解析】试题分析:该几何体的正方体内接正四面体,如图中红色,此四面体的所有棱长为2,因此底面积为()232432==S ,顶点在底面上射影是底面的中心,高()3322632222=⎪⎪⎭⎫ ⎝⎛⋅-=h , 多面体的体积31332233131=⋅⋅==Sh V ; 多面体的外接球的直径是正方体的对角线3,表面积ππ32342=⎪⎪⎭⎫⎝⎛.考点:由三视图求表面积和体积.11.若{}max ,a b 表示,a b 两数中的最大值,若{}2()max ,x x f x e e -=,则()f x 的最小值为 ,若{}()max ,x x t f x e e -=关于2015x =对称,则t = .【答案】e ;4030. 【解析】试题分析:画出函数x e y =,2-=x e y 的图象,取两者较大的部分,由2-=x x ee ,交点横坐标20<<x 得xxee -=2,1=x ,当1=x 时,()e xf =min ;对于函数xe y =,tx ey -=交点⎪⎪⎭⎫⎝⎛2,2te t ,图象关于2t x =对称,故20152=t,得4030=t.考点:函数图象的应用.12.{}N m m x x x A n n n ∈=<<=+,3,22|1,若n A 表示集合n A 中元素的个数,则5A = ,则12310...A A A A ++++= . 【答案】11;682.【解析】试题分析:当5=n 时,65232<<m ,364332<<∴m ,即2111≤≤m ,115=∴A , 由于n2不能整除3,从12到102,326823211=,3的倍数,共有682个, 6821021=+++∴A A A 考点:集合中元素的个数.13.直角ABC ∆的三个顶点都在给定的抛物线22y x =上,且斜边AB 和y 轴平行, 则RT ABC ∆斜边上的高的长度为 . 【答案】2. 【解析】试题分析:由题意知,斜边垂直于x 轴,设点⎪⎪⎭⎫ ⎝⎛c c C ,22,点⎪⎪⎭⎫ ⎝⎛b b B ,22,则点⎪⎪⎭⎫⎝⎛-b b A ,22, ⎪⎪⎭⎫ ⎝⎛+-=∴b c b c ,222,⎪⎪⎭⎫⎝⎛--=c b c b ,222,由于CB AC ⊥, 0=⋅∴CB AC ,整理得422=-c b ,斜边上的高为点C 到AB 的距离2222=-c b.考点:抛物线的简单几何性质.14.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【答案】()π222+.【解析】试题分析:圆的半径1=r ,正方形ABCD 的边长1=a ,正方形的边为弦时所对的圆心角3π, 正方形在圆上滚动了三圈,点的顺序依次为如图,第一次滚动,点A 的路程661ππ=⨯=AB A ,第二次滚动时,点A 的路程ππ6262=⨯=AC A ,第三次滚动时,点A 的路程ππ6163=⨯=DA A , 第四次滚动时,点A 的路程04=A ,点A 所走过的路径长度为()()22234321π+=+++A A A A .考点:弧长的计算.15.已知动点(,)P x y 满足220(1x y x x y ⎧+≤⎪⎪≥⎨⎪+≥⎪⎩,则222x y y ++的最小值为【答案】21-【解析】试题分析:由()()11122≥++++y y x x ,得y y x x -+≥++1122,1122+-+≥+∴x y y x()()1122+++-+≥+∴x y x y x y y x ,化简得()⎪⎪⎭⎫⎝⎛+++-+++++11112222y x y y x x y x 0≥,0≥+∴y x ,不等组等价⎪⎩⎪⎨⎧≥+≥≤+0022y x x y x ,不等组表示的平面区域如图所示,()1122222-++=++y x y y x ,其中()221++y x 表示()y x ,到()1,0-的距离的平方,由图可知,点A 到直线x y -=的距离的平方就是()221++y x 的最小值,由点到直线的距离公式得()221++y x 的最小值21212=⎪⎪⎭⎫ ⎝⎛,因此()1122222-++=++y x y y x 的最小值21121-=-.考点:线性规划的应用.三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16.(本小题满分15分)已知ABC ∆的面积为S ,且S 2=⋅. (1)求cos A ;(2)求a =求ABC ∆周长的最大值. 【答案】(1)33;(2)18366++.【解析】试题分析:(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角形中,注意隐含条件π=++C B A ;(3)解决三角形问题时,根据边角关系灵活的选用定理和公式;(4)平方关系和商数关系式中的角都是同一个角,且商数关系式中Z k k ∈+≠,2ππα;利用平方关系解决问题时,要注意开方运算结果的符号,需要根据角α的范围确定.试题解析:(1)∵△ABC 的面积为S ,且2AB AC S ⋅=,∴1cos sin 2bc A bc A ,∴sin A A =,∴A 为锐角,且2222213sin cos sin sin sin 122A A A A A +=+==,∴sin A ,所以cos A =. (2)3sin sin sin c a bC A B===所以周长为3sin 3sin 6sin cos22B C B Ca b c B C +-+++=6sincos22AB C π--6cos cos 6cos 222A B C A-≤sin A ,所以cos A =,2cos 2cos 12A A =-,所以cos 2A =考点:1、三角形的面积公式;2、正弦定理的应用;3、三角形的周长.17.(本小题满分15分)在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,AB BC ⊥侧面PAB ⊥底面ABCD ,2PA AD AB ===,4BC =. (1)若PB 中点为E .求证://AE PCD 平面;(2)若060PAB ∠=,求直线BD 与平面PCD 所成角的正弦值.【答案】(1)证明略;(2)510. 【解析】试题分析:(1)解决立体几何的有关问题,空间想象能力是非常重要的,但新旧知识的迁移融合也很重要,在平面几何的基础上,把某些空间问题转化为平面问题来解决,有时很方便;(2)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质;(3)证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化;(4)在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算.试题解析:(1)取PC 的中点F ,连结DF ,EF 由于F E ,分别是PC PB ,的中点,BC EF //∴,BC EF 21= 又由于BC AD //,BC AD 21=//AD EF ,且AD EF =,所以ADFE 为平行四边形. //AE DF ∴,且AE 不在平面PCD 内,DF 在平面PCD 内,所以//AE PCD 平面 (2)等体积法令点B 到平面PCD 的距离为hP BCD V -=B PCD V -P BCD V -=,13B PCD PCD V S h -∆=又PCD S ∆=h ∴=直线BD 与平面PCD 所成角θ的正弦值sin h BD θ===. 考点:1、直线与平面平行的判定;2、直线与平面所成的角. 18.(本小题满分15分)函数()1f x mx x a x =--+, (1)若1,0m a ==,试讨论函数()f x 的单调性; (2)若1a =,试讨论()f x 的零点的个数;【答案】(1)()f x 在(,0]-∞和[0.5,)+∞上为增函数,在[0,0.5]上为减函数;(2)当13m -≤<-()11f x mx x x =--+有且仅有一个零点1x =;当3m =-+1m <-或1m ≥或0m =时,函数()11f x mx x x =--+有两个零点;当30m -+<<或01m <<时,()11f x mx x x =--+有三个零点. 【解析】试题分析:把0,1==a m 代入函数()x f ,根据绝对值不等式的几何意义去掉绝对值的符号,根据函数的解析式作出函数的图象,根据函数图象讨论函数的单调性;(2)把函数()11+--=x x mx x f 的零点转化为方程11x mx x -=-的根,作图11x y x -=-和y mx =的图象,直线移动过程中注意在什么范围内有一个零点,在什么范围内有两个零点,三个零点,通过数形结合解决有关问题.试题解析:(1)221(0)()11(0)x x x f x x x x x x x ⎧-+≥⎪=-+=⎨-++<⎪⎩图像如下:所以()f x 在(,0]-∞和[0.5,)+∞上为增函数,在[0,0.5]上为减函数; (2)()110f x mx x x =--+=的零点,除了零点1x =以外的零点即方程11x mx x -=-的根作图11x y x -=-和y mx =,如图可知:当直线y mx =的斜率m : 当0m =时有一根; 当01m <<时有两根; 当1m ≥时,有一根;当1m <-时,有一根;当13m -≤<-+y mx =和1(0)1x y x x -=<-相切时)没有实数根;当3m =-+y mx =和1(0)1x y x x -=<-相切时)有一根;当30m -+<<时有两根. 综上所述:当13m -≤<-+()11f x mx x x =--+有且仅有一个零点1x =;当3m =-+1m <-或1m ≥或0m =时,函数()11f x mx x x =--+有两个零点;当30m -+<<或01m <<时,()11f x mx x x =--+有三个零点. 考点:1、函数的单调性;2、函数零点的个数.19.(本小题满分15分)如图,在平面直角坐标系xOy 中,离心率为的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ斜率为2时,PQ =(1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.【答案】(1)12422=+y x ;(2)过定点()0,2±.【解析】试题分析:(1)设椭圆的方程,若焦点明确,设椭圆的标准方程,结合条件用待定系数法求出22,b a 的值,若不明确,需分焦点在x 轴和y 轴上两种情况讨论;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式∆:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论. 试题解析:(1)设00(,)2P x x , ∵直线PQ斜率为2时,PQ =2200()32x x +=,∴202x = ∴22211a b +=,∵2c e a ===,∴224,2a b ==. ∴椭圆C 的标准方程为22142x y +=. (2)以MN为直径的圆过定点(F .设00(,)P x y ,则00(,)Q x y --,且2200142x y +=,即220024x y +=,∵(2,0)A -,∴直线PA 方程为:00(2)2y y x x =++ ,∴002(0,)2y M x + , 直线QA 方程为:00(2)2y y x x =+- ,∴002(0,)2y N x -, 以MN 为直径的圆为000022(0)(0)()()022y y x x y y x x --+--=+- 即222000220044044x y y x y y x x +-+=--,∵220042x y -=-,∴220220x x y y y ++-=, 令0y =,2220x y +-=,解得x =∴过定点:(.考点:1、椭圆的标准方程;2、直线与椭圆的综合问题.20.(本小题满分14分)已知数列{}n a (*N n ∈,146n ≤≤)满足1a a =, 1,115,1,1630,1,3145,n n d n a a n n d+⎧⎪⎪-=⎨⎪⎪⎩≤≤≤≤≤≤其中0d ≠,*N n ∈.(1)当1a =时,求46a 关于d 的表达式,并求46a 的取值范围; (2)设集合{|,,,,116}i j k M b b a a a i j k i j k *==++∈<<N ≤≤.①若13a =,14d =,求证:2M ∈; ②是否存在实数a ,d ,使18,1,5340都属于M ?若存在,请求出实数a ,d ;若不存在,请说明理由.【答案】(1)(][)+∞-∞-,4614, ;(2)①证明略;②不存在实数d a ,. 【解析】试题分析:(1)等差数列基本量的求解是等差数列的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用,对于xbax +的形式求最值,利用基本不等式,注意讨论0>x 及0<x 两种形式;(2)与数列有关的探索问题:第一步:假设符合条件的结论存在;第二步:从假设出发,利用题中关系求解;第三步,确定符合要求的结论存在或不存在;第四步:给出明确结果;第五步:反思回顾,查看关键点. 试题解析:(1)当1a =时,16115a d =+,311615a d =+,4611615()a d d=++.因为0d ≠,21d d +≥,或21d d-+≤, 所以46(,14][46,)a ∈-∞-+∞. (2)①由题意1134n n a -=+,116n ≤≤,314i j k b ++-=+. 令3124i j k ++-+=,得7i j k ++=. 因为,,i j k *∈N ,116i j k <<≤≤,所以令1,2,4i j k ===,则2M ∈.②不存在实数a ,d ,使18,1,5340同时属于M . 假设存在实数a ,d ,使18,1,5340同时属于M . (1)n a a n d =+-,∴3(3)b a i j k d =+++-,从而{|3,342,}M b b a md m m Z ==+∈≤≤. 因为18,1,5340同时属于M ,所以存在三个不同的整数,,x y z ([],,3,42x y z ∈), 使得13,831,533,40a xd a yd a zd ⎧+=⎪⎪+=⎨⎪⎪+=⎩从而7(),86(),5y x d z x d ⎧-=⎪⎪⎨⎪-=⎪⎩则3548y x z x -=-. 因为35与48互质,且y x -与z x -为整数, 所以||35,||48y x z x --≥≥,但||39z x -≤,矛盾. 所以不存在实数a ,d ,使18,1,5340都属于M . 考点:1、等差数列的通项公式;2、与数列有关的探究问题.。
2019届高考数学二轮复习仿真冲刺卷五理(含答案)
仿真冲刺卷(五)(时间:120分钟满分:150分)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2018·成都二诊)i是虚数单位,则复数的虚部为( )(A)3 (B)-3 (C)3i (D)-4i2.已知函数f(x)为偶函数,且函数f(x)与g(x)的图象关于直线y=x对称.若g(3)=2,则f(-2)等于( )(A)-2 (B)2 (C)-3 (D)33.命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是( )(A)∀x∈R,∃n∈N*,使得n<x2(B)∀x∈R,∀n∈N*,使得n<x2(C)∃x∈R,∃n∈N*,使得n<x2(D)∃x∈R,∀n∈N*,使得n<x24.(2017·江西上饶市二模)《算法统宗》是中国古代数学名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“竹筒容米”就是其中一首:家有八節竹一莖,为因盛米不均平;下頭三節三生九,上梢三節貯三升;唯有中間二節竹,要将米数次第盛;若是先生能算法,也教算得到天明!大意是:用一根8节长的竹子盛米,每节竹筒盛米的容积是不均匀的.下端3节可盛米3.9升,上端3节可盛米3升,要按依次盛米容积相差同一数量的方式盛米,中间两节可盛米多少升.由以上条件,要求计算出这根八节竹筒盛米的容积总共为( )(A)9.0升(B)9.1升(C)9.2升(D)9.3升5.(2017·黑龙江哈尔滨模拟)一个五面体的三视图如图,正视图是等腰直角三角形,侧视图是直角三角形,则此五面体的体积为( )第5题图(A)1 (B)2 (C)3 (D)46.(x+)(2x-)5的展开式中各项系数的和为2,则该展开式中的常数项为( )(A)-40 (B)-20 (C)20 (D)407.富华中学的一个文学兴趣小组中,三位同学张博源、高家铭和刘雨恒分别从莎士比亚、雨果和曹雪芹三位名家中选择了一位进行性格研究,并且他们选择的名家各不相同.三位同学一起来找图书管理员刘老师,让刘老师猜猜他们三人各自的研究对象.刘老师猜了三句话:“①张博源研究的是莎士比亚;②刘雨恒研究的肯定不是曹雪芹;③高家铭自然不会研究莎士比亚.”很可惜,刘老师的这种猜法,只猜对了一句,据此可以推知张博源、高家铭和刘雨恒分别研究的是( )(A)曹雪芹、莎士比亚、雨果 (B)雨果、莎士比亚、曹雪芹(C)莎士比亚、雨果、曹雪芹 (D)曹雪芹、雨果、莎士比亚8.(2017·山东济宁一模)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为( )第8题图(A)0 (B)1 (C)2 (D)39.(2018·开封模拟)如图,在一个正方体内放入两个半径不相等的球O1,O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是( )10.如图,F1,F2是双曲线C:-=1(a>0,b>0)的左、右焦点,过F2的直线与双曲线C交于A,B两点.若|AB|∶|BF1|∶|AF1|=3∶4∶5.则双曲线的离心率为( )第10题图(A) (B)2(C)3 (D)11.(2017·宁夏银川二模)设函数f′(x)是定义在(0,π)上的函数f(x)的导函数,有f(x)sin x-f′(x)cosx<0,a=f(),b=0,c=-f(),则( )(A)a<b<c (B)b<c<a(C)c<b<a (D)c<a<b12.已知函数f(x)=sin(ωx+ϕ)(ω>0,|ϕ|<),f(0)=,f(x)在A(x0,y0)处取得极大值,B(x0-,0),C(x0,-y0),△ABC是锐角三角形,则下列结论正确的是( )(A)存在x∈(0,),使得f(x)=1成立(B)若存在x>0,使得f(x)=1,则必有x>(C)存在m>0,使得f(x)在(0,m)内单调递减(D)存在x∈(0,),使得f(x)=0成立第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须作答.第22,23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2017·辽宁抚顺市高考一模改编)在一次马拉松比赛中,30名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编号为1~30号,再用系统抽样方法从中抽取6人,则其中成绩在区间[130,151]上的运动员人数是.14.(2018·广东模拟)设x,y满足约束条件则z=x+y的最大值为.15.(2017·云南省大理州高考一模)若数列{a n}的首项a1=2,且a n+1= 3a n+2(n∈N*),令b n=log3(a n+1),则b1+b2+b3+…+b100= .16.(2017·福建省莆田市高考一模)设F为抛物线C:y2=4x的焦点,过F的直线l与C相交于A,B两点,线段AB 的垂直平分线交x轴于点M,若|AB|=6,则|FM|= .三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)如图所示,在△ABC中,B=,=λ(0<λ<1),AD=BD=,AC=.(1)求证:△ABD是等腰三角形;(2)求λ的值以及△ABC的面积.18.(本小题满分12分)(2018·湖南百所重点中学诊断)已知某企业近3年的前7个月的月利润(单位:百万元)如下面的折线图所示.(1)试问这3年的前7个月中哪个月的月平均利润较高?(2)通过计算判断这3年的前7个月的总利润的发展趋势;(3)月份 1 2 3 4利润y(单位:百万元) 4 4 6 6相关公式:==,=-.19.(本小题满分12分)如图所示,AB是半圆O的直径,C是半圆O上除了A,B外的一个动点,DC垂直于半圆O所在的平面,DC=EB,DC∥EB,AB=4,tan∠EAB=.(1)证明:平面ADE⊥平面ACD;(2)当AC=BC时,求二面角D AE B的余弦值.20.(本小题满分12分)(2017·河南商丘三模)已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为,曲线C在点P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.(1)求线段OQ的长;(2)设不经过点P和Q的动直线l2:x=my+b交曲线C于点A和B,交l1于点E,若直线PA,PE,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.21.(本小题满分12分)已知函数f(x)=+ax+2ln x(a∈R)在x=2处取得极值.(1)求实数a的值及函数f(x)的单调区间;(2)已知方程f(x)=m有三个实根x1,x2,x3(x1<x2<x3),求证:x3-x1<2.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修44:坐标系与参数方程在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的参数方程为(t为参数),曲线C1的方程为ρ(ρ-4sin θ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于M,N两点,若|MN|≥2,求实数a的取值范围.23.(本小题满分10分)选修45:不等式选讲已知不等式|x|+|x-3|<x+6的解集为(m,n).(1)求m,n的值;(2)若x>0,y>0,nx+y+m=0,求证:x+y≥16xy.1.A ==-3+3i,所以虚部为3.故选A.2.D 因为函数f(x)与g(x)的图象关于直线y=x对称,且g(3)=2,所以f(2)=3.因为函数f(x)为偶函数,所以f(-2)=f(2)=3.故选D.3.D 由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x∈R,∃n∈N*,使得n≥x2”的否定形式为“∃x∈R,∀n∈N*,使得n<x2”.4.C 由题意要按依次盛米容积相差同一数量的方式盛米,设相差的同一数量为d升,下端第一节盛米a1升,由题意得解得a1=1.36,d=-0.06,所以中间两节可盛米的容积为a4+a5=(a1+3d)+(a1+4d)=2a1+7d=2.3.这根八节竹筒盛米的容积总共为2.3+3.9+3=9.2(升).故选C.5.B 由三视图可得,该几何体是一个四棱锥,且底面是一个上、下底分别为1和2,高为2的直角梯形,棱锥高为2,所以该四棱锥的体积是V=××(1+2)×2×2=2.故选B.6.D在(x+)(2x-)5中,令x=1,得(1+a)(2-1)5=2,即a=1.原式=x·(2x-)5+(2x-)5,故常数项为x·(2x)2(-)3+·(2x)3·=-40+80=40.故选D.7.A 假设“张博源研究的是莎士比亚”正确,那么“高家铭自然不会研究莎士比亚”也是正确的,这不符合“刘老师只猜对了一句”这一条件,所以假设错误;假设“高家铭自然不会研究莎士比亚”正确,故①不正确,即张博源研究的不是莎士比亚,②不正确,即刘雨恒研究的肯定是曹雪芹.这样的话莎士比亚没人研究了,所以此假设错误;前两次假设都是错误的,那么“刘雨恒研究的肯定不是曹雪芹”就是老师猜对了的那句,那么其他两句话是猜错的,即高家铭研究莎士比亚,那么张博源只能研究曹雪芹,刘雨恒研究雨果.故顺序为曹雪芹、莎士比亚、雨果,故选A.8.C 由程序框图知,算法的功能是求可行域内,目标函数S=2x+y的最大值,画出可行域,如图中阴影所示.当x=1,y=0时,S=2x+y的值最大,且最大值为2.故选C.9.B 由题意可以判断出两球在正方体的面AA1C1C上的正投影与正方形相切,排除C,D,把其中一个球扩大为与正方体相切,则另一个球被挡住一部分,由于两球半径不等,所以排除A;B正确.故选B.10.A 因为|AB|∶|BF1|∶|AF1|=3∶4∶5,所以设|AB|=3x,|BF1|=4x,|AF1|=5x,所以△ABF1为直角三角形.又点B在双曲线左支上,则|BF2|-|BF1|=2a,故|BF2|=|BF1|+2a=4x+2a,从而可知|AF2|=x+2a,又|AF1|-|AF2|=2a,则5x-x-2a=2a,因此x=a.Rt△F1BF2中,|BF2|2+|BF1|2=4c2,即(4x+2a)2+(4x)2=4c2,所以(4a+2a)2+(4a)2=4c2.整理得52a2=4c2,即=13,因此=,即e=.11.A 令g(x)=f(x)cos x,则g′(x)=f′(x)cos x-f(x)sin x>0,当0<x<π时,g(x)在(0,π)上单调递增,因为0<<<<π,所以cos f()<cos f()<cos f(),化为f()<0<-f(),即a<b<c,故选A.12.B 由f(0)=,得sin ϕ=,又|ϕ|<,所以ϕ=,即f(x)=sin(ωx+),当ωx+=+2kπ,k∈Z,即x=+,k∈Z时,f(x)取得极大值1,即A(+,1),又△ABC是锐角三角形,BC=BA,因而∠ABC<,则<1,∈(,+∞),则x=+>+4k,k∈Z,若x>0,则k≥0,得x>,因而A错误,B正确,由-+2kπ≤ωx+≤+2kπ得-+≤x≤+,则对m>0,使得f(x)在(0,m)内单调递增或有增有减,C错误,若f(x)=0,则ωx+=kπ,k∈Z,即x=-,k∈Z,当k>0时,x>2k-≥,x>,当k≤0时,x<2k-≤-,则x∉(0,),D错误.故选B.13.解析:将运动员按成绩由好到差分成6组,则第1组为(130,130, 133,134,135),第2组为(136,136,138,138,138),第3组为(141,141, 141,142,142),第4组为(142,143,143,144,144),第5组为(145,145, 145,150,151),第6组为(152,152,153,153,153),故成绩在区间[130, 151]内的恰有5组,共25人,故应抽取6×=5(人).答案:514.解析:作可行域如图阴影部分所示,其中A(-1,2),B(4,-2),C(3,-3),当直线y=-x+z过点B(4,-2)时,z=x+y取得最大值,最大值为2.答案:215.解析:因为数列{a n}的首项a1=2,且a n+1=3a n+2(n∈N*),所以+1=3(a n+1),a1+1=3,所以{a n+1}是首项为3,公比为3的等比数列,所以a n+1=3n,所以b n=log3(a n+1)=log33n=n,所以b1+b2+b3+…+b100=1+2+3+…+100==5 050.答案:5 05016.解析:因为抛物线y2=4x,所以p=2,设直线l的方程为y=k(x-1),A(x1,y1),B(x2,y2),直线y=k(x-1)代入y2=4x,整理可得k2x2-(2k2+4)x+k2=0,所以x1+x2=2+,利用抛物线定义,x1+x2=|AB|-p=6-2=4.所以AB中点横坐标为2,所以2+=4,所以k=±,AB中点纵坐标为k,AB的垂直平分线方程为y-k=-(x-2),令y=0,可得x=4,所以|FM|=3.答案:317.(1)证明:在△ABD中,AD=,BD=1,所以由正弦定理=,得sin∠BAD==,所以∠BAD=,所以∠ADB=π--=,所以△ABD是等腰三角形.(2)解:由(1)知∠BAD=∠BDA=,所以AB=BD=1,∠ADC=.在△ACD中,由余弦定理AC2=AD2+CD2-2AD·CD·cos∠ADC,得13=3+CD2-2××CD×(-). 整理得CD2+3CD-10=0,解得CD=-5(舍去),CD=2,所以BC=BD+CD=3,所以λ=.所以S△ABC=AB·BC·sin B=×1×3×=.18.解:(1)由折线图可知5月和6月的月平均利润最高.(2)第1年前7个月的总利润为1+2+3+5+6+7+4=28(百万元),第2年前7个月的总利润为2+5+5+4+5+5+5=31(百万元),第3年前7个月的总利润为4+4+6+6+7+6+8=41(百万元),所以这3年的前7个月的总利润呈上升趋势.(3)因为=2.5,=5,=12+22+32+42=30,x i y i=1×4+2×4+3×6+4×6=54,所以==0.8,所以=5-2.5×0.8=3,所以=0.8x+3,当x=8时,=0.8×8+3=9.4.所以估计第3年8月份的利润为9.4百万元.19.(1)证明:因为AB是半圆O的直径,所以BC⊥AC.因为CD⊥平面ABC,所以CD⊥CB.所以BC⊥平面ACD.因为CD=EB,CD∥EB,所以BCDE是平行四边形.所以BC∥DE,所以DE⊥平面ACD.因为DE⊂平面ADE,所以平面ADE⊥平面ACD.(2)解:依题意,EB=AB·tan∠EAB=4×=1,AC=BC=2.如图所示,建立空间直角坐标系C xyz,则D(0,0,1),E(0,2,1),A(2,0,0),B(0,2,0). 所以=(-2,2,0),=(0,0,1),=(0,2,0),=(2,0,-1).设平面DAE的法向量为n1=(x1,y1,z1),则即令x1=1,得z1=2,所以n1=(1,0,2).设平面ABE的法向量为n2=(x2,y2,z2),则即令x2=1,得y2=1,所以n2=(1,1,0).所以cos<n1,n2>===.由图知,二面角D EA B的平面角为钝角,所以二面角D EA B的余弦值为-.20.解:(1)由抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为得2+=,所以n=2,故抛物线方程为y2=2x,P(2,2).所以曲线C在第一象限的图象对应的函数解析式为y=,则y′=.故曲线C在点P处的切线斜率k==,切线方程为y-2=(x-2),即x-2y+2=0.令y=0得x=-2,所以点Q(-2,0),故线段OQ的长为2.(2)由题意知l1:x=-2,因为l2与l1相交,所以m≠0,将x=-2代入x=my+b,得y=-,故E(-2,-), 设A(x1,y1),B(x2,y2),由消去x得y2-2my-2b=0,则y1+y2=2m,y1y2=-2b,直线PA的斜率为==,同理直线PB的斜率为,直线PE的斜率为.因为直线PA,PE,PB的斜率依次成等差数列,所以+=2×,即=.因为l2不经过点Q,所以b≠-2.所以2m-b+2=2m,即b=2.故l2:x=my+2,即l2恒过定点(2,0).21.(1)解:由已知得f′(x)=x+a+(x>0),f′(2)=2+a+=0,所以a=-3,所以f′(x)=x-3+==(x>0),令f′(x)>0,得0<x<1或x>2;令f′(x)<0,得1<x<2,所以函数f(x)的单调递增区间是(0,1),(2,+∞),单调递减区间是(1,2).(2)证明:由(1)可知函数f(x)的极小值为f(2)=2ln 2-4,极大值为f(1)=-,可知方程f(x)=m三个实根满足0<x1<1<x2<2<x3,设h(x)=f(x)-f(2-x),x∈(0,1),则h′(x)=f′(x)+f′(2-x)=>0,则h(x)在(0,1)上单调递增,故h(x)<h(1)=f(1)-f(2-1)=0,即f(x)<f(2-x),x∈(0,1),所以f(x2)=f(x1)<f(2-x1),由(1)知函数f(x)在(1,2)上单调递减,所以x2>2-x1,即x1+x2>2,①同理设g(x)=f(x)-f(4-x),x∈(1,2),则g′(x)=f′(x)+f′(4-x)=>0,则g(x)在(1,2)上单调递增,故g(x)<g(2)=f(2)-f(4-2)=0,即f(x)<f(4-x),x∈(1,2),f(x3)=f(x2)<f(4-x2),由(1)知函数f(x)在(2,+∞)上单调递增,所以x3<4-x2,即x3+x2<4,②由①②可得x3-x1<2.22.解:(1)根据题意,由x=ρcos θ,y=ρsin θ,x2+y2=ρ2, 曲线C1的极坐标方程ρ(ρ-4sin θ)=12,可得曲线C1的直角坐标方程为x2+y2-4y=12,设点P(x′,y′),Q(x,y),根据中点坐标公式,得代入x2+y2-4y=12,得点Q的轨迹C2的直角坐标方程为(x-3)2+(y-1)2=4.(2)直线l的普通方程为y=ax,设圆心到直线的距离为d,由弦长公式可得|MN|=2≥2,可得圆心(3,1)到直线l的距离为d=≤,即4a2-3a≤0,解得0≤a≤,即实数a的取值范围为[0,].23.(1)解:由|x|+|x-3|<x+6,得或或解得-1<x<9,所以m=-1,n=9.(2)证明:由(1)知9x+y=1,又x>0,y>0,所以(+)(9x+y)=10++≥10+2=16,当且仅当=,即x=,y=时取等号,所以+≥16,即x+y≥16xy.。
2019届高三数学(理)二轮复习精品同步:第1部分 基础送分题:教师用书:题型专题(4) 不等式(通用版)
题型专题(四) 不等式(1)一元二次不等式ax 2+bx +c >0(或<0)(a ≠0,Δ=b 2-4ac >0),如果a 与ax 2+bx +c 同号,则其解集在两根之外;如果a 与ax 2+bx +c 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.(2)解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.[题组练透]1.(2019·河北五校联考)如图,已知R 是实数集,集合A ={x |log 12(x -1)>0},B =⎩⎨⎧⎭⎬⎫x |2x -3x <0,则阴影部分表示的集合是( )A .[0,1]B .[0,1)C .(0,1)D .(0,1]解析:选D 由题意可知A ={x |1<x <2},B =⎩⎨⎧⎭⎬⎫x |0<x <32,且图中阴影部分表示的是B ∩(∁R A )={x |0<x ≤1},故选D.2.已知函数f (x )=(ax -1)(x +b ),若不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( )A.⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫12,+∞B.⎝⎛⎭⎫-32,12C.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫32,+∞D.⎝⎛⎭⎫-12,32 解析:选A 由f (x )>0,得ax 2+(ab -1)x -b >0,又其解集是(-1,3), ∴a <0,且⎩⎨⎧1-aba =2,-ba =-3,解得a =-1或13(舍去),∴a =-1,b =-3, ∴f (x )=-x 2+2x +3, ∴f (-2x )=-4x 2-4x +3,由-4x 2-4x +3<0,得4x 2+4x -3>0, 解得x >12或x <-32,故选A.3.(2019·泉州质检)设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,则使得f (x )≤1成立的x 的取值范围是________.解析:由⎩⎨⎧x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎨⎧x <0,-x 3≤1得-1≤x <0,故f (x )≤1的解集为[-1,9].答案:[-1,9] [技法融会]1.求解一元二次不等式的3步:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集.2.(易错提醒)解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.基本不等式:a +b2≥ab(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)应用:两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.[题组练透]1.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( ) A .1 B.32 C .2 D.52解析:选B 2x +2x -a =2(x -a )+2x -a+2a ≥22(x -a )·2x -a+2a =4+2a ,由题意可知4+2a ≥7,解得a ≥32,即实数a 的最小值为32,故选B.2.(2019·湖北七市联考)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是( )A .9 B.92 C .4 D.52解析:选B 将圆的一般方程化为标准方程为(x -1)2+(y -2)2=5,圆心坐标为(1,2),半径r =5,故直线过圆心,即a +2b =6,∴a +2b =6≥2a ·2b ,可得ab ≤92,当且仅当a =2b=3时等号成立,即ab 的最大值是92,故选B.3.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元解析:选C 设该容器的总造价为y 元,长方体的底面矩形的长为x m ,因为无盖长方体的容积为4 m 3,高为1 m ,所以长方体的底面矩形的宽为4xm ,依题意,得y =20×4+10⎝⎛⎭⎫2x +2×4x=80+20⎝⎛⎭⎫x +4x ≥80+20×2 x ·4x=160⎝⎛⎭⎫当且仅当x =4x ,即x =2时取等号. 所以该容器的最低总造价为160元.4.(2019·江西两市联考)已知x ,y ∈R +,且x +y +1x +1y =5,则x +y 的最大值是( )A .3 B.72 C .4 D.92解析:选C 由x +y +1x +1y =5,得5=x +y +x +y xy ,∵x >0,y >0,∴5≥x +y +x +y ⎝⎛⎭⎫x +y 22=x+y +4x +y,∴(x +y )2-5(x +y )+4≤0,解得1≤x +y ≤4,∴x +y 的最大值是4.[技法融会]1.利用不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值.2.(易错提醒)利用基本不等式求最值时要注意“一正、二定、三相等”,三个条件缺一不可.解决线性规划问题的一般步骤(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平面直线系中的任意一条直线l .(2)平移——将l 平行移动,以确定最优解所对应的点的位置.有时需要对目标函数l 和可行域边界的斜率的大小进行比较.(3)求值——解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. [题组练透]1.(2019·河南六市联考)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =( )A .6B .5C .4D .3解析:选B 画出不等式组所表示的可行域如图中阴影部分所示,作直线l :y =x ,平移l可知,当直线l 经过A 时,z =x -y 取得最小值-1,联立⎩⎨⎧y =2x -1,x -y =-1,得⎩⎨⎧x =2,y =3,即A (2,3),又A (2,3)在直线x +y =m 上,∴m =5,故选B.2.(2019·福建质检)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,y +2≥0,x +y +2≥0,则(x +2)2+(y +3)2的最小值为( )A .1 B.92C .5D .9解析:选B 不等式组表示的可行域为如图所示的阴影部分,由题意可知点P (-2, -3)到直线x +y +2=0的距离为|-2-3+2|2=32,所以(x +2)2+(y +3)2的最小值为⎝⎛⎭⎫322=92,故选B.3.(2019·全国甲卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析:不等式组⎩⎨⎧x -y +1≥0,x +y -3≥0,x -3≤0表示的可行域如图中阴影部分所示.由z =x -2y 得y =12x -12z .平移直线y =12x ,易知经过点A (3,4)时,z 有最小值,最小值为z =3-2×4=-5.答案:-54.(2019·山西质检)设实数x ,y 满足⎩⎪⎨⎪⎧2x +y -2≤0,x -y +1≥0,x -2y -1≤0,则y -1x -1的最小值是________.解析:画出不等式组所表示的可行域,如图所示,而y -1x -1表示区域内一点(x ,y )与点D (1,1)连线的斜率,∴当x =13,y =43时,y -1x -1有最小值为-12.答案:-125.(2019·全国乙卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900 元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设生产产品A x 件,产品B y 件,由已知可得约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N . 目标函数为z =2 100x +900y ,由约束条件作出不等式组表示的可行域如图中阴影部分.作直线2 100x +900y =0,即7x +3y =0,当直线经过点B 时,z 取得最大值,联立⎩⎨⎧10x +3y =900,5x +3y =600,解得B (60,100). 则z max =2 100×60+900×100=216 000(元). 答案:216 000 [技法融会]1.线性目标函数z =ax +by 最值的确定方法线性目标函数z =ax +by 中的z 不是直线ax +by =z 在y 轴上的截距,把目标函数化为y =-a b x +z b ,可知zb 是直线ax +by =z 在y 轴上的截距,要根据b 的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.2.(易错提醒)解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.1.不等式的可乘性(1)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (2)a >b >0,c >d >0⇒ac >bd .2.不等式的性质在近几年高考中未单独考查,但在一些题的某一点可能考查,在今后复习中应引起关注.[题组练透]1.(2019·河南六市联考)若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |解析:选D 由题可知b <a <0,所以A ,B ,C 正确,而|a |+|b |=-a -b =|a +b |,故D 错误,选D.2.已知a ,b ,c ∈R ,那么下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2 B .若a c >bc,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b解析:选C 当c =0时,可知A 不正确;当c <0时,可知B 不正确;对于C ,由a 3>b 3且ab <0知a >0且b <0,所以1a >1b成立,C 正确;当a <0且b <0时,可知D 不正确.[技法融会]1.判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除.2.利用不等式性质解决问题的注意事项(1)不等式两边都乘以一个代数式时,考察所乘的代数式是正数、负数或0;(2)不等式左边是正数,右边是负数,当两边同时平方后不等号方向不一定保持不变; (3)不等式左边是正数,右边是负数,当两边同时取倒数后不等号方向不变等.一、选择题1.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( ) A .2 B .-2 C .-12 D.12解析:选B 根据不等式与对应方程的关系知-1,-12是一元二次方程ax 2+x (a -1)-1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a,所以a =-2,故选B. 2.(2019·北京高考)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( )A .-1B .3C .7D .8解析:选C 作出线段AB ,如图所示.作直线2x -y =0并将其向下平移至直线过点B(4,1)时,2x -y 取最大值为2×4-1=7. 3.(2019·福建四地六校联考)已知函数f (x )=x +ax +2的值域为(-∞,0]∪[4,+∞),则a的值是( )A.12B.32C .1D .2 解析:选C 由题意可得a >0,①当x >0时,f (x )=x +ax +2≥2a +2,当且仅当x =a 时取等号;②当x <0时,f (x )=x +ax+2≤-2a +2,当且仅当x =-a 时取等号.所以⎩⎨⎧2-2a =0,2a +2=4,解得a =1,故选C. 4.已知函数f (x )=(x -2)(ax +b)为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( )A .{ x | x >2或x <-2}B .{ x |-2< x <2}C .{ x | x <0或x >4}D .{ x |0< x <4}解析:选C 由题意可知f (-x )=f (x ),即(-x -2)·(-ax +b )=(x -2)(ax +b ),(2a -b )x =0恒成立,故2a -b =0,即b =2a ,则f (x )=a (x -2)( x +2).又函数在(0,+∞)单调递增,所以a >0.f (2-x )>0即ax (x -4)>0,解得x <0或x >4.故选C. 5.(2019·赣中南五校联考)对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,且c ≠0,则a >b ; ②若a > b ,c>d ,则a +c >b +d ; ③若a > b ,c> d ,则ac >bd ; ④若a > b ,则1a >1b .其中正确的有( )A .1个B .2个C .3个D .4个解析:选B ①ac 2>bc 2,且c ≠0,则a >b ,①正确;②由不等式的同向可加性可知②正确;③需满足a ,b ,c ,d 均为正数才成立;④错误,比如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B.6.(2019·安徽江南十校联考)若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎡⎦⎤-12,2 C .[-1,2] D.⎣⎡⎦⎤-12,1 解析:选B 作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2 x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.7.(2019·河北五校联考)若对任意正实数x ,不等式1x 2+1≤ax 恒成立,则实数a 的最小值为( )A .1 B. 2 C.12 D.22解析:选C 因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x ≤12(当且仅当x =1时取等号),所以a ≥12.故选C.8.(2019·河南八市联考)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =3x +2y 的最小值为1,则a =( )A.14B.12C.34D .1 解析:选B 根据约束条件作出可行域(如图中阴影部分所示),把z =3x +2y 变形为y =-32x +z 2,得到斜率为-32,在y 轴上的截距为z2,随z 变化的一族平行直线,当直线z =3x +2y 经过点B 时,截距z2最小,即z 最小,又B 点坐标为(1,-2a ),代入3x +2y =1,得3-4a =1,得a =12,故选B.9.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元B .C .17万元D .18万元解析:选D 设该企业每天生产甲产品x 吨,乙产品y 吨,每天获得的利润为z 万元, 则有z =3x +4y ,由题意得x ,y 满足⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出可行域如图中阴影部分所示,根据线性规划的有关知识,知当直线3x +4y -z =0过点B (2,3)时,z 取最大值18,故该企业每天可获得最大利润为18万元.故选D.10.(2019·湖北七市联考)设向量a =(1,k ),b =(x ,y ),记a 与b 的夹角为θ.若对所有满足不等式|x -2|≤y ≤1的x ,y ,都有θ∈⎝⎛⎭⎫0,π2,则实数k 的取值范围是( )A .(-1,+∞)B .(-1,0)∪(0,+∞)C .(1,+∞)D .(-1,0)∪(1,+∞)解析:选D 首先画出不等式|x -2|≤y ≤1所表示的区域,如图中阴影部分所示,令z =a ·b =x +ky ,∴问题等价于当可行域为△ABC 时,z >0恒成立,且a 与b 方向不相同,将△ABC 的三个端点值代入,即⎩⎨⎧k +1>0,k +3>0,2+0·k >0,解得k >-1,当a 与b 方向相同时,1·y =x ·k ,则k =y x∈[0,1],∴实数k 的取值范围是(-1,0)∪(1,+∞),故选D. 11.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)解析:选B 由题可知,1=1x +4y ≥24xy =4xy,即xy ≥4,于是有m 2-3m >x +y 4≥xy ≥4,故m 2-3m >4,化简得(m +1)(m -4)>0,即实数m 的取值范围为(-∞,-1)∪(4,+∞).12.设二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ).若∀x ∈R ,不等式f (x )≥f ′(x )恒成立,则b 2a 2+2c 2的最大值为( ) A.6+2 B.6-2C .22+2D .22-2解析:选B 由题意得f ′(x )=2ax +b ,由f (x )≥f ′(x )在R 上恒成立,得ax 2+(b -2a )x +c -b ≥0在R 上恒成立,则a >0且Δ≤0,可得b 2≤4ac -4a 2,则b 2a 2+2c 2≤4ac -4a 2a 2+2c 2=4⎝⎛⎭⎫c a -12⎝⎛⎭⎫c a 2+1,又4ac -4a 2≥0,∴4·c a -4≥0,∴c a -1≥0,令t =c a -1,则t ≥0.当t >0时,b 2a 2+2c 2≤4t 2t 2+4t +3=42t +3t+4≤426+4=6-2(当且仅当t =62时等号成立),当t =0时,b 2a 2+2c 2=0,故b 2a 2+2c 2的最大值为6-2,故选B.二、填空题13.(2019·湖北华师一附中联考)若2x +4y =4,则x +2y 的最大值是________.解析:因为4=2x +4y =2x +22y ≥22x ×22y =22x +2y ,所以2x +2y ≤4=22,即x +2y ≤2,当且仅当2x =22y =2,即x =2y =1时,x +2y 取得最大值2.答案:214.(2019·河北三市联考)如果实数x ,y 满足条件⎩⎪⎨⎪⎧x +y -2≥0,x -1≤0,y -2≤0,且z =y x +a 的最小值为12,则正数a 的值为________.解析:根据约束条件画出可行域如图中阴影部分所示,经分析可知当x =1,y =1时,z取最小值12,即11+a =12,所以a =1.答案:115.(2019·江西两市联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是________.解析:设z =x +2y +3x +1=x +1+2(y +1)x +1=1+2·y +1x +1,设z ′=y +1x +1,则z ′的几何意义为动点P (x ,y )到定点D (-1,-1)的斜率.画出可行域如图中阴影部分所示,则易得z ′∈[k DA ,k DB ],易得z ′∈[1,5],∴z =1+2·z ′∈[3,11].答案:[3,11]16.(2019·湖南东部六校联考)对于问题:“已知关于x 的不等式ax 2+bx +c >0的解集为(-1,2),解关于x 的不等式ax 2-bx +c >0”,给出如下一种解法:解:由ax 2+bx +c >0的解集为(-1,2),得a (-x )2+b (-x )+c >0的解集为(-2,1),即关于x 的不等式ax 2-bx +c >0的解集为(-2,1).参考上述解法,若关于x 的不等式k x +a +x +b x +c<0的解集为⎝⎛⎭⎫-1,-13∪⎝⎛⎭⎫12,1,则关于x 的不等式kx ax +1+bx +1cx +1<0的解集为________.解析:不等式kxax+1+bx+1cx+1<0,可化为ka+1x+b+1xc+1x<0,故得-1<1x<-13或12<1x<1,解得-3<x<-1或1<x<2,故kxax+1+bx+1cx+1<0的解集为(-3,-1)∪(1,2).答案:(-3,-1)∪(1,2)。
高三数学第二次模拟考试试题 理 新 人教版
—————————— 新学期 新成绩 新目标 新方向 ——————————2019届高三数学第二次模拟考试试题 理第I 卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A=(){}lg 21x x -<,集合B={}2230x x x --<,则.A ∪B 等于 A .(2,12) B .(-1,3) C .(-1,12)D .(2,3) 2.已知复数z 满足3iz i =-+,z 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.等比数列{}n a 的前n 项和为n S ,已知21342,1S a a a =+=,则4S 的值为A .78B .158C .14D .154.已知l ,m 是空间两条不重合的直线,α是一个平面,则“m α⊥,l 与m 无交点”是“l ∥m ,l α⊥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.某年级的全体学生参加数学测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100],若低于60分的人数是:150,则该年级的学生人数是A .600B .550C .500D .4506.若变量,x y 满足约束条件03020x x y x y ≥⎧⎪+-≤⎨⎪-≤⎩,则z =x +2y 的取值范围是A .[6,+∞)B .[4,+∞)C .[0,4)D .[0,6]7.根据如下程序框图,运行相应程序,则输出S 的值为A.2 BC.D .3 8.设抛物线()220y px p =>的焦点为F ,过F 点且倾斜角为4π的直线l 与抛物线相交于A,B 两点,若以AB 为直径的圆过点(,22p -),则该抛物线的方程为 A .22y x = B .24y x = C .28y x = D .216y x =9.某几何体的三视图如图所示,其中正视图由矩形和等腰直角三角形组成,侧视图由半圆和等腰直角三角形组成,俯视图的实线部分为正方形,则该几何体的表面积为A .3π+B .()41π+C .(4πD .()41π+ 10.设函数()()()sin 0,0f x x ωϕωϕ=+>>的最小正周期为π,且()8f x f π⎛⎫≤⎪⎝⎭,则下列说法不正确的是A .()f x 的一个零点为8π-B .()f x 的一条对称轴为8x π=C .()f x 在区间35,88ππ⎛⎫ ⎪⎝⎭上单调递增D .+8f x π⎛⎫ ⎪⎝⎭是偶函数 11.已知函数()f x 是定义在R 上的偶函数,当0x ≤时,()f x 为减函数,则不等式()()132log 25log 8f x f ⎛⎫-> ⎪⎝⎭的解集为A .541216x x ⎧⎫<<⎨⎬⎩⎭B .132x x ⎧⎫>⎨⎬⎩⎭C .541132162x x x ⎧⎫<<>⎨⎬⎩⎭或D .541132162x x x ⎧⎫<<<⎨⎬⎩⎭或 12.已知F 为双曲线C :()222210,0x y a b a b-=>>的右焦点,过点F 向C 的一条渐近线引垂线,垂足为A ,交另一条渐近线于点B .若OF FB =,则C 的离心率是A B C D .2第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题—第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.如图,在△ABC 中,AD ⊥AB ,2,1DC BD AD ==,则AC AD⋅的值为▲.14.若递增数列{}n a 满足:122,2,2n n a a a a a a +==-=,则实数a的取值范围为▲.15.()()521x a x +-的展开式中含2x 的系数为50,则a 的值为▲. 16.已知函数()ln ,021,0x x f x x x >⎧=⎨+≤⎩若方程()f x ax =有三个不同的实数根,则a 的取值范围是▲,三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)设函数())1sin sin 2f x x x x =+- (I )求函数()f x 的最大值,并求此时的x 值;(II )在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c ,若()1,2sin f A b B =+且2sin c C bc a =+,求的值.18.(本小题满分12分)如图,在三棱柱ABC —A 1B 1C 1中,四边形AA 1B 1B 为菱形,且160,2,BAA AB AC BC F ∠====是AA 1的中点.平面11ABC AA B B ⊥平面.(I)求证:1AB CF ⊥;(Ⅱ)求二面角11A BC B --的余弦值.19.(本小题满分12分)为了解大学生每年旅游消费支出(单位:百元)的情况,随机抽取了某大学的2000名学生进行问卷调查,并把所得数据列成如下所示的频数分布表:(I)根据样本数据,可近似地认为学生的旅游费用支出Z 服从正态分布()2N 5115,,若该所大学共有学生45000人,试估计有多少位同学旅游费用支出在8100元以上(Ⅱ)已知样本数据中旅游费用支出在[80,100)范围内的9名学生中有5名男生,4名女生,现想选其中3名学生回访,记选出的女生人数为Y ,求Y 的分布列与数学期望.附:若()2X~N μσ,,则P ()-x μσμσ<<+=0.6826 P(()-22x μσμσ<<+)=0.9544P(()-33x μσμσ<<+)=0.997320.(本小题满分12分)设F 1,F 2分别是椭圆C :()222210x y a b a b+=>>的左、右焦点,M 是椭圆C 上一点,且MF 2与x 轴垂直,直线MF 1在y 轴上的截距为34,且213MF =MF 5. (I)求椭圆C 的方程; (Ⅱ)已知直线:l y kx t =+与椭圆C 交于E 、F 两点,若OE OF ⊥,(O 为坐标原点)试证明:直线l 与以原点为圆心的定圆相切。
2019届高三理科数学二模试卷.docx
.精品文档 .2019 届高三理科数学二模试卷高三第二轮复习质量检测数学试题 ( 理科 )2019.4一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A.(1 ,2]B. (1,]. [0, 1)D. (1, +∞)2.已知i为虚数单位,若复数的实部与虚部相等,则的值为A.2B..D.3.设等差数列的前n项和为,若A.8B.9.10D.114.为比较甲、乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为:A.①③B.①④.②③D.②④5.根据如下样本数据:得到的回归方程为,则每增加一个单位,y 就A.增加 1.4个单位B.减少 1.4个单位.增加 1.2个单位D.减少 1.2 个单位6.已知 x , y 满足约束条件则的取值范围是A.[2 ,4] B . [4 , 6].[2 ,6]D .( -∞, 2]7.执行如图所示的程序框图,若输入的S=12,则输出的S=A.B.8.已知数列.5D.6的奇数项依次成等差数列,偶数项依次成等比数列,且A. B .19 9.设双曲线.20 D .23的左、右焦点分别为,P 是双曲线上一点,点 P 到坐标原点的距离等于双曲线焦距的一半,且,则双曲线的离心率是A.B..D.10.已知函数恰有1 个零点,则的取值范围是A.B..D.11.如图,在下列四个正方体中,P, R, Q,,N, G, H为所在棱的中点,则在这四个正方体中,阴影平面与 PRQ所在平面平行的是12.若函数上单调递增,则实数的取值范围为A.B..D.二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.如图,已知正方体ABD—的棱长为1,点 P 为棱上任意一点,则四棱锥P—的体积为▲ .14.某外商计划在4 个候选城市中投资 3 个不同的项目,且在同一个城市投资的项目不超过 2 个,则该外商不同的投资方案有▲ 种.15.抛物线的焦点为F,动点 P 在抛物线上,点取得最小值时,直线AP的方程为▲ .16.如图,在△ AB中,为 D 上一点,且满足的面积为,则的最小值为▲ .三、解答题:共70 分,解答应写出字说明,证明过程或演算步骤.第17 题~第21 题为必考题,每个试题考生都必须作答 . 第 22 题 ~第 23 题为选考题,考生根据要求作答.17.( 本小题满分12 分 )3 / 6已知函数 .(1)求函数的单调递增区间;(2) 在△ AB中,内角A, B,的对边分别为,求的值.18.( 本小题满分12 分 )如图,正方形ABD边长为,平面平面ED,.(1)证明:;(2)求二面角的余弦值.19.(本小题满分12 分)某社区为了解居民参加体育锻炼情况,随机抽取18男性居民, 12 名女性居民对他们参加体育锻炼的情况进行问卷调查.现按参加体育锻炼的情况将居民分成 3 类:甲类 (参加体育锻炼 ) ,乙类 ( 参加体育锻炼,但平均每周参加体育名不锻炼的时间不超过 5 个小时 ) ,丙类 ( 参加体育锻炼,且平均每周参加体育锻炼的时间超过 5 个小时 ) ,调查结果如下表:(1)根据表中的统计数据,完成下面列联表,并判断是否有 90%的把握认为参加体育锻炼与否与性别有关?(2)从抽出的女性居民中再随机抽取 3 人进一步了解情况,记 X 为抽取的这 3 名女性居民中甲类和丙类人数差的绝对值,求X 的数学期望.附:20. ( 本小题满分12 分)已知椭圆的右顶点为A,左焦点为,离心率,过点A 的直线与椭圆交于另一个点B,且点 B 在 x 轴上的射影恰好为点,若.(1)求椭圆的标准方程;(2)过圆上任意一点 P 作圆 E 的切线与椭圆交于, N 两点,以 N 为直径的圆是否过定点,如过定点,求出该定点;若不过定点,请说明理由.21.( 本小题满分12 分 )已知函数.(1)若函数存在极小值点,求的取值范围;(2)证明:.请考生在第22~23 题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.( 本小题满分10 分 )在平面直角坐标系xy 中,直线的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程;(2)过点 P(1 ,0) 作直线的垂线交曲线于, N 两点,求的值.23.( 本小题满分10 分 )已知函数.(1)当时,解不等式;(2)若不等式有解,求的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019高三第二轮复习测试试卷理科数学(五)一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.已知为实数集,集合,,则韦恩图中阴影部分表示的集合为()A. B.C. D.【答案】D【解析】【分析】首先确定集合A,B,然后结合Venn图求解阴影部分表示的集合即可.【详解】求解分式不等式可得,求解二次不等式可得,则,韦恩图中阴影部分表示的集合为,即.本题选择D选项.【点睛】本题主要考查集合的表示方法,集合的交并补运算,Venn图及其应用等知识,意在考查学生的转化能力和计算求解能力.2.在复平面内,复数的对应点坐标为,则的共轭复数为()A. B. C. D.【答案】A【解析】【分析】首先确定复数z,然后求解的共轭复数即可.【详解】由题意可得:,则,其共轭复数为.本题选择A选项.【点睛】本题主要考查复数的坐标表示,复数的运算法则,共轭复数的概念等知识,意在考查学生的转化能力和计算求解能力.3.函数关于直线对称,则函数关于()A. 原点对称B. 直线对称C. 直线对称D. 直线对称【答案】D【解析】【分析】由题意结合函数图象的变换规律确定函数的对称性即可.【详解】将函数的图象向左平移个单位长度即可得到函数的图象,结合函数关于直线对称,可知函数关于直线对称.本题选择D选项.【点睛】本题主要考查函数的对称性,函数的平移变换等知识,意在考查学生的转化能力和计算求解能力.4.已知实数、,满足,则的取值范围是A. B.C. D.【答案】D【解析】【分析】根据基本不等式得范围,再根据绝对值定义得结果.【详解】由,知,故选D.【点睛】本题考查基本不等式应用,考查基本求解能力.5.执行如图所示的程序框图,输出的值为()A. B. C. D.【答案】C【解析】【分析】由题意结合流程图运行程序确定输出结果即可.【详解】结合流程图可知流程图运行过程如下:首先初始化数据:,第一次循环,满足,执行,此时不满足为奇数,执行;第二次循环,满足,执行,此时满足为奇数,执行;第三次循环,满足,执行,此时不满足为奇数,执行;第四次循环,满足,执行,此时满足为奇数,执行;第五次循环,不满足,跳出循环,输出的值为.本题选择C选项.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.6.已知实数、满足线性约束条件,则其表示的平面区域的面积为A. B. C. D.【答案】B【解析】【分析】先作可行域,再根据三角形面积公式求结果.【详解】满足约束条件,如图所示:可知范围扩大,实际只有,其平面区域表示阴影部分一个三角形,其面积为故选B.【点睛】本题考查平面区域含义,考查基本求解能力.7.“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】由题意考查充分性和必要性即可确定“”与“”的关系.【详解】当时,,满足,此时不存在,则充分性不成立;若,则,据此可得:,此时,满足,即必要性成立,综上可得:“”是“”的必要不充分条件.本题选择B选项.【点睛】本题主要考查三角函数的性质,充分条件与必要条件的判定等知识,意在考查学生的转化能力和计算求解能力.8.如图,椭圆的上顶点、左顶点、左焦点分别为、、,中心为,其离心率为,则A. B.C. D.【答案】B【解析】【分析】将转化为,再根据离心率求比值.【详解】由,得而,所以,故选B.【点睛】本题考查椭圆离心率,考查基本求解能力.9.甲、乙、丙、丁、戊五位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆电动车只能载两人,其中孩子们表示都不坐自己妈妈的车,甲的小孩一定要坐戊妈妈的车,则她们坐车不同的搭配方式有()A. 种 B. 种 C. 种 D. 种【答案】B【解析】【分析】由题意结合排列组合问题的解法整理计算即可求得最终结果.【详解】解法一:不对号入座的递推公式为:,,,据此可得:,即五个人不对号入座的方法为种,由排列组合的对称性可知:若甲的小孩一定要坐戊妈妈的车,则坐车不同的搭配方式有种.本题选择B选项.解法二:设五位妈妈为,五个小孩为,对五个小孩进行排练后坐五位妈妈的车即可,由于甲的小孩一定要坐戊妈妈的车,故排列的第五个位置一定是,对其余的四个小孩进行排列:;;;.共有24中排列方法,其中满足题意的排列方法为:,,,,共有11种.本题选择B选项.【点睛】(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.10.已知数列中第项,数列满足,且,则A. B. C. D.【答案】C【解析】【分析】根据对数加法法则得,根据关系式得,联立方程解得.【详解】由,得,又,即,有,故.选C.【点睛】本题考查对数四则运算法则,考查基本求解能力.11.杨辉三角,是二项式系数在三角形中的一种几何排列。
在欧洲,这个表叫做帕斯卡三角形。
帕斯卡(1623----1662)是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年。
右图的表在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就出现了,这又是我国数学史上的一个伟大成就。
如图所示,在“杨辉三角”中,从1开始箭头所指的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,…,则此数列前16项和为()A. B. C. D.【答案】C【解析】【分析】分别考查每行第二个数和第三个数组成的数列,然后求和两次即可求得最终结果.【详解】考查每行第二个数组成的数列:,归纳推理可知其通项公式为,其前项和;每行第三个数组成的数列:,归纳推理可知其通项公式为,其前项和,据此可得题中数列前16项和为.本题选择C选项.【点睛】本题主要考查归纳推理的方法,数列通项公式的求解,数列求和的方法等知识,意在考查学生的转化能力和计算求解能力.12.已知的一内角,为所在平面上一点,满足,设,则的最大值为()A. B. C. D.【答案】A【解析】【分析】由题意结合三点共线的充分必要条件讨论的最大值即可.【详解】由题意可知,O为△ABC外接圆的圆心,如图所示,在圆中,所对的圆心角为,,点A,B为定点,点为优弧上的动点,则点满足题中的已知条件,延长交于点,设,由题意可知:,由于三点共线,据此可得:,则,则的最大值即的最大值,由于为定值,故最小时,取得最大值,由几何关系易知当是,取得最小值,此时.本题选择A选项.【点睛】本题主要考查数形结合解题,三点共线的充分必要条件,数形结合的数学思想,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.二.填空题:本大题共4小题,每小题5分,共20分.13.已知函数,则__________.【答案】4【解析】【分析】根据分段函数对应性,根据自变量大小对应代入解析式,即得结果.【详解】.【点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.14.已知过抛物线的焦点,且斜率为的直线与抛物线交于、两点,则__________.【答案】【解析】【分析】根据抛物线焦点弦性质得,对照比较与所求式子之间关系,即得结果.【详解】由知,由焦点弦性质,而.【点睛】本题考查抛物线焦点弦性质,考查基本求解能力.15.网格纸上小正方形的边长为1,粗虚、实线画出的是某个长方体挖去一个几何体得到的几何图形的三视图,则该被挖去的几何体的体积为__________.【答案】2【解析】【分析】先确定几何体,再根据长方体以及四棱柱体积公式求结果.【详解】根据三视图知长方体挖去部分是一个底面为等腰梯形(上底为2,下底为4,高为2)高为2的直四棱柱,所以.【点睛】先根据熟悉的柱、锥、台、球的图形,明确几何体的展开对应关系,结合空间想象将展开图还原为实物图,再在具体几何体中求体积.16.数列是首项,公差为的等差数列,其前和为,存在非零实数,对任意有恒成立,则的值为__________.【答案】或【解析】【分析】分类讨论和两种情况即可求得的值.【详解】当时,恒成立,当时:当数列的公差时,即,据此可得,则,当数列的公差时,由题意有:,,两式作差可得:,整理可得:,即:,①则,②②-①整理可得:恒成立,由于,故,据此可得:,综上可得:的值为或.【点睛】本题主要考查等差数列的定义,数列的前n项和与通项公式的关系,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.17.已知(),其图象的对称轴方程为().(1)求函数的解析式;(2)当,且,求值.【答案】(1);(2)【解析】【分析】(1)由题意可得,结合对称轴方程可知,据此可得,则. (2)由题意可得,,利用两角和的正弦公式可得.【详解】(1),由题意其对称轴方程为(),知是其一条对称轴,,得,即,.(2)由,,又,,得,,,.【点睛】本题主要考查三角函数的性质,三角函数解析式的求解,三角函数在给定区间上求最值的方法等知识,意在考查学生的转化能力和计算求解能力.18.如图:直线平面,直线平行四边形,四棱锥的顶点在平面上,,,,,,,、分别是与的中点.(1)求证:平面;(2)求二面角的余弦值.【答案】(1)见解析;(2)【解析】【分析】(1)连接,由题意可证得平面平面,利用面面平行的性质定理可得平面;(2)过作,以所在直线分别为轴建立空间直角坐标系,由题意可得平面的法向量为,平面的法向量为,据此计算可得二面角的平面角的余弦.【详解】(1)连接,底面为平行四边形,是的中点,是的中点,,是的中点,是的中点,,,,平面平面,平面,平面;(2)由平面,平行四边形,平面底面,,,四边形为矩形,且底面,,过作,以所在直线分别为轴建立空间直角坐标系(如图),由,,,知,、、、、、,、、,设平面的法向量为,则,取,,,即,设平面的法向量为则,取,,,即,二面角的平面角的余弦.【点睛】本题考查了立体几何中的判断定理和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.19.中国海军,正在以不可阻挡的气魄向深蓝进军。