机械系统动力学仿真

合集下载

机械系统的动力学建模与仿真分析

机械系统的动力学建模与仿真分析

机械系统的动力学建模与仿真分析一、引言机械系统是由多个相互作用的部件组成的复杂系统,其动力学行为是研究的核心问题之一。

动力学建模与仿真分析可以帮助工程师深入理解机械系统的运动规律,预测系统的性能,并优化设计。

本文将介绍机械系统的动力学建模方法以及仿真分析技术。

二、动力学建模1. 基本原理机械系统的动力学建模是基于牛顿力学的基本原理进行的。

通过分析受力、受力矩以及质量、惯性等因素,可以建立机械系统的运动方程。

在建立方程时,需要考虑系统的自由度、刚体或者弹性体的运动特性以及约束条件等因素。

2. 运动学建模运动学建模是机械系统动力学建模的前提。

通过研究机械系统的几何结构和运动规律,可以得到系统的等效长度、转动角度等信息。

基于运动学建模,可以计算系统的速度、加速度以及运动的轨迹等。

3. 动力学建模动力学建模是机械系统分析的核心部分。

基于受力和受力矩的平衡条件,可以建立机械系统的运动方程。

通常采用牛顿第二定律和力矩平衡条件,可以得到刚体的平动和旋转方程。

对于复杂的非线性系统,也可以采用拉格朗日方程或者哈密顿原理进行建模。

三、仿真分析1. 数值解算方法为了求解机械系统的运动方程,需要采用适当的数值解算方法。

常见的方法包括欧拉法、龙格-库塔法、变步长积分法等。

这些方法可以将微分方程离散化,然后通过迭代计算求解系统的状态变量。

2. 动力学仿真动力学仿真是建立在动力学模型的基础上。

通过将模型转化成计算机程序,可以在计算机上模拟机械系统的运动行为。

通过仿真分析,可以研究系统的稳定性、动态响应以及力学性能等。

3. 优化设计动力学仿真还可以应用于优化设计。

通过改变系统参数、构型和控制策略等,可以研究不同设计方案的性能差异,并选择最佳方案。

通过仿真分析,可以避免实际试验的成本和时间消耗。

四、案例分析以汽车悬挂系统为例,进行动力学建模与仿真分析。

汽车悬挂系统是一个典型的机械系统,包含减震器、弹簧、悬挂臂等部件。

首先进行运动学建模,分析车轮的运动状态和轨迹。

机械系统动力学仿真分析

机械系统动力学仿真分析

机械系统动力学仿真分析机械系统动力学仿真分析是一种利用计算机技术对机械系统进行模拟的方法。

它通过对机械系统中各个部件的运动学、力学、动力学特性进行分析,来模拟机械系统的运动状态和性能。

同时,它也是一种非常重要的工程分析方法,可以用来验证机械系统的设计和优化。

机械系统动力学仿真分析需要依靠一些理论和模型来支撑,其中最基本的是牛顿运动定律。

牛顿运动定律描述了受力物体的运动状态,以及力和运动之间的关系。

然而,在实际应用中,机械系统的运动状态和性能往往比较复杂,需要通过更加复杂的力学模型进行分析。

在机械系统动力学仿真分析中,常用的力学模型包括单自由度系统、多自由度系统、连续系统等等。

其中,单自由度系统指的是只有一个自由度的系统,例如弹簧振子和单摆系统;多自由度系统指的是有多个自由度的系统,例如机械臂和机床;连续系统则指的是由无数个质点组成的连续体,例如弹性杆和弹性板。

在进行机械系统动力学仿真分析时,通常需要先进行模型的建立和求解。

模型的建立包括几何模型和力学模型两部分。

几何模型指的是对机械系统进行几何建模,包括各个部件的形状和位置关系。

力学模型则是对机械系统进行力学建模,包括各个部件之间的约束关系、受力关系等等。

建立好模型后,就可以进行求解了。

求解的过程中,需要解决的主要问题包括:如何准确地描述机械系统的运动状态、如何计算机械系统各部件的受力情况等等。

机械系统动力学仿真分析可以用来预测机械系统的运动状态和性能,同时还可以用来验证机械系统的设计和优化。

例如,在汽车工业中,可以用机械系统动力学仿真分析来预测汽车的性能和行驶状态,进而优化汽车的设计,提高车辆的安全性和性能。

在机床制造业中,可以用机械系统动力学仿真分析来验证机床的设计是否合理、寿命是否符合预期等等。

在机械系统动力学仿真分析中,还涉及一些软件和工具的使用。

例如,有许多商业软件可以用于机械系统动力学仿真分析,例如ADAMS、ANSYS等等。

同时,也有许多自由软件供大众使用,例如OpenFOAM、FEMM等等。

基于动力学分析的机械系统仿真技术

基于动力学分析的机械系统仿真技术

基于动力学分析的机械系统仿真技术在当今科技飞速发展的时代,机械系统的设计和优化变得日益复杂和关键。

为了提高机械系统的性能、可靠性和安全性,基于动力学分析的机械系统仿真技术应运而生,并逐渐成为工程领域中不可或缺的重要工具。

机械系统仿真技术,简单来说,就是在计算机上创建一个虚拟的机械系统模型,通过对这个模型进行各种分析和计算,来预测实际机械系统在不同工作条件下的性能和行为。

而动力学分析则是其中的核心部分,它主要研究机械系统的运动、受力以及能量转换等动态特性。

想象一下,一个复杂的机械系统,比如汽车的发动机、飞机的起落架或者工业机器人的手臂,这些系统由众多的零部件组成,它们之间相互作用、相互影响。

在实际制造和测试之前,如果能够通过仿真技术准确地模拟出它们的工作情况,就可以提前发现潜在的问题,优化设计方案,从而节省大量的时间和成本。

那么,基于动力学分析的机械系统仿真技术到底是如何实现的呢?首先,需要建立一个精确的机械系统模型。

这个模型包括了机械系统的几何形状、材料属性、连接方式以及边界条件等各种信息。

建模的过程就像是搭建一个虚拟的乐高积木,每个零部件都要按照实际的尺寸、形状和物理特性进行构建。

接下来,就是对模型进行动力学分析。

这通常涉及到运用牛顿力学定律、拉格朗日方程或者哈密顿原理等数学理论,来计算系统中各个零部件的运动轨迹、速度、加速度以及所受到的力和力矩。

在这个过程中,还需要考虑各种因素,比如摩擦力、重力、惯性力以及外部载荷等。

为了更加真实地模拟机械系统的工作情况,还需要引入一些高级的特性和现象。

例如,在汽车发动机的仿真中,需要考虑燃烧过程、热传递以及气体流动等;在飞机起落架的仿真中,要考虑减震系统的非线性特性和轮胎与地面的接触力学。

有了动力学分析的结果,就可以对机械系统的性能进行评估和优化。

比如,如果发现某个零部件在工作过程中承受的应力过大,容易发生疲劳破坏,就可以对其结构进行改进;如果系统的振动过大,影响了工作的稳定性和精度,就可以通过调整参数或者添加减震装置来降低振动。

机械系统的动力学仿真

机械系统的动力学仿真

机械系统的动力学仿真近年来,机械系统的动力学仿真在工程领域中扮演着重要的角色。

通过对机械系统进行仿真分析,可以有效地预测系统的动态性能,为设计与优化提供依据。

本文将介绍机械系统的动力学仿真以及其在工程应用中的重要性。

一、机械系统的动力学仿真概述机械系统的动力学仿真是指使用计算机模拟机械系统在特定工况下的运动规律和力学特性。

通过建立数学模型,包括质量、弹性、阻尼等参数,仿真方法可以模拟和预测机械系统的动态行为。

这对于机械系统的设计、优化和故障诊断等方面都具有重要意义。

二、机械系统动力学仿真的应用领域1. 汽车工程:在汽车工程领域,动力学仿真可以用于评估车辆的悬挂系统、转向系统和制动系统等的性能。

通过仿真模拟,可以预测车辆在不同路况下的悬挂系统的响应、车辆的操控性和稳定性等。

2. 航空航天工程:在航空航天工程领域,动力学仿真可以用于模拟飞机的飞行、着陆和滑行过程。

通过仿真模拟,可以评估飞机在各种工况下的动态响应、操纵特性和安全性能,以指导飞机结构的设计和飞行控制系统的优化。

3. 机械制造:在机械制造领域,动力学仿真可以用于评估机械设备的性能和可靠性。

通过仿真模拟,可以预测机械设备在运行时的受力情况、振动特性和故障概率,以指导机械设计的改进和维护策略的制定。

4. 能源工程:在能源工程领域,动力学仿真可以用于模拟和优化能源转换系统的动态性能。

例如,通过仿真模拟燃气轮机的运行过程,可以评估其燃烧效率、传热特性和机械振动等特性,以指导燃气轮机系统的设计和运行优化。

三、机械系统动力学仿真的方法1. 基于建模语言的仿真方法:这种方法基于建模语言,如MATLAB/Simulink 等,通过建立系统的数学模型和参数,进行仿真分析。

它可以有效地模拟机械系统的动态特性,但对于复杂系统的建模和仿真可能存在一定的困难。

2. 基于有限元法的仿真方法:这种方法使用有限元法建立机械系统的数学模型,通过分析和求解系统的运动方程,得到系统的动态响应和力学特性。

机械系统动力学与运动仿真分析

机械系统动力学与运动仿真分析

机械系统动力学与运动仿真分析引言:机械系统动力学与运动仿真分析是一个重要的研究领域,在各个工程应用中都有广泛的应用。

本文将探讨机械系统动力学的基本原理以及运动仿真分析的方法和应用。

一、机械系统动力学基本原理机械系统动力学研究的是力对物体运动的影响及其规律。

它是研究机械系统运动和力学性能的重要分支学科。

在机械系统动力学中最基本的原理是牛顿第二定律,即力等于物体的质量乘以加速度。

而机械系统的动力学行为可以通过运动学和力学的分析得到。

1.1 运动学分析运动学是机械系统动力学研究的基础,它研究的是物体的运动状态和轨迹,主要包括位移、速度和加速度等参数的描述。

通过运动学的分析,可以获取机械系统的运动规律,为后续的力学分析提供基础。

1.2 力学分析力学是机械系统动力学研究的核心,它研究的是物体受力和力的作用下所产生的运动。

力学分析可以通过牛顿定律、动量守恒定律等原理来进行。

通过力学的分析,可以了解物体所受到的外力和力的作用下的运动状态,进而预测物体的运动轨迹和力学性能。

二、运动仿真分析的方法和应用运动仿真分析是通过计算机模拟机械系统的运动行为来实现的。

它可以基于机械系统动力学的原理和运动学、力学的分析结果,通过数值计算的方法进行模拟和预测。

2.1 有限元方法有限元方法是一种常用的运动仿真分析方法,它基于有限元原理,在机械系统中划分离散的有限元单元,并利用节点之间的关系进行运动仿真分析。

这种方法能够较为准确地预测机械系统的运动行为和力学性能。

2.2 多体动力学方法多体动力学方法是一种基于刚体动力学原理的运动仿真分析方法。

它通过建立机械系统的动力学模型,包括物体的质量、惯性矩阵和外力等参数,利用欧拉方程计算系统的加速度和位移等参数。

这种方法适用于复杂的多体系统,在机械设计和运动控制中有广泛的应用。

2.3 运动仿真分析的应用运动仿真分析在机械设计、机械制造和工程优化等领域都有重要的应用。

它可以通过预测机械系统的运动行为和力学响应,来指导设计和制造过程,提高机械系统的性能和可靠性。

机械系统动力学模拟与仿真

机械系统动力学模拟与仿真

机械系统动力学模拟与仿真在现代工程学中,机械系统动力学模拟与仿真是一个被广泛研究和应用的领域。

它可以帮助工程师和科学家更好地理解机械系统的运动特性,并通过模拟和仿真来优化设计和改进系统性能。

一、动力学模拟的基本概念动力学模拟是指通过数学建模和计算机仿真,研究机械系统在各种外部力和运动约束下的运动规律。

它需要考虑到系统的质量、惯性、摩擦、弹性等因素,并建立相应的数学模型来描述系统行为。

例如,在研究机械臂的运动时,我们可以将其抽象为刚性杆件的组合,并根据运动学关系、惯性和动力学定律来建立机械臂的数学模型。

通过数值计算和仿真,可以预测机械臂在给定外部力作用下的运动轨迹、速度和加速度等参数。

二、动力学模拟的应用领域动力学模拟在多个领域都有广泛应用。

其中,机械制造、航空航天和汽车工业是其中的主要应用领域之一。

在机械制造领域,动力学模拟可以用于评估机械系统的性能和稳定性。

例如,在机床设计中,通过模拟机床结构和切削过程,可以预测机床的振动和变形情况,以便减少切削误差并提高精度。

在航空航天领域,动力学模拟被广泛应用于飞行器设计和控制。

通过模拟飞行器的运动和空气动力学特性,可以优化飞行器的设计,提高其操纵性和稳定性。

在汽车工业中,动力学模拟可以用于研究汽车的悬挂系统、转向系统和刹车系统等。

通过模拟和仿真,可以提高汽车的操控性和安全性,并减少对试验样车的依赖。

三、动力学仿真软件的发展为了方便工程师和科学家进行动力学模拟和仿真,许多动力学仿真软件已经开发出来。

这些软件可以提供直观的用户界面和强大的计算功能,使用户能够快速建立模型、设置仿真参数并进行仿真计算。

例如,ADAMS(Automatic Dynamic Analysis of Mechanical Systems)是一种广泛使用的动力学仿真软件,它可以用于模拟机械系统的多体动力学行为。

通过ADAMS,用户可以轻松地建立机械系统模型,并通过各种分析和优化工具来改进系统的性能。

机械系统动力学模型的建立与仿真研究

机械系统动力学模型的建立与仿真研究机械系统动力学模型是研究机械系统运动规律和力学特性的重要工具,它在机械设计、优化和控制等领域起着至关重要的作用。

本文将介绍机械系统动力学模型的建立与仿真研究的基本方法和应用。

一、机械系统动力学模型的建立机械系统动力学模型的建立是研究机械系统运动规律和力学特性的起点。

在建立机械系统动力学模型时,首先要确定系统的自由度和约束条件。

系统的自由度是指系统能够独立变动的最小数目,可以用来描述系统的运动规律。

约束条件是指系统中存在的运动约束,可以通过等式或不等式来表示。

其次,需要确定系统的动力学方程。

动力学方程是描述系统运动规律和力学特性的方程,可以通过应用Newton第二定律、能量守恒定律和动量守恒定律等原理推导得到。

根据系统的自由度和约束条件的不同,动力学方程可以是常微分方程、偏微分方程或积分方程等形式。

最后,需要确定系统的边界条件和初始条件。

边界条件是指系统受到的外界限制,比如边界上的约束和施加的外力等。

初始条件是指系统在初始时刻的状态,包括位置、速度和加速度等。

二、机械系统动力学模型的仿真研究机械系统动力学模型的仿真研究是通过计算机模拟来研究机械系统的运动规律和力学特性。

仿真研究可以通过数值方法或符号计算方法来实现。

在仿真研究中,首先需要将机械系统的动力学模型转换为计算机可以处理的形式,比如差分方程或微分方程组。

这个过程可以通过数值分析软件或符号计算软件来实现。

然后,可以通过数值方法求解得到系统的运动规律和力学特性。

数值方法是一种基于数值计算的求解方法,可以通过数值逼近的方式得到近似解。

常见的数值方法包括欧拉方法、龙格-库塔方法和有限元方法等。

这些方法可以通过迭代计算的方式,逐步逼近系统的真实解。

符号计算方法是一种基于数学符号和代数计算的求解方法,可以通过代数运算和方程求解工具求解系统的精确解。

常见的符号计算软件包括Mathematica、Maple和Matlab等。

机械系统动力学分析与仿真方法

机械系统动力学分析与仿真方法机械系统动力学分析与仿真方法是研究机械系统运动规律和力学特性的重要领域。

通过分析机械系统的动力学特性,可以预测机械系统的运动轨迹、力学响应和能量转换。

同时,通过仿真方法可以模拟和验证机械系统的性能,优化设计和调整参数,提高机械系统的工作效率和可靠性。

在进行机械系统动力学分析和仿真之前,首先要建立机械系统的数学模型。

这一步通常是通过力学原理和方程来描述机械系统的运动和力学特性。

数学模型可以是刚体模型、弹性模型或连续介质模型,根据具体情况选择合适的模型来描述机械系统。

同时,还需要考虑机械系统的边界条件和约束条件,确保模型的准确性和可靠性。

基于建立的数学模型,可以采用数值方法进行机械系统的动力学分析。

最常用的数值方法是有限元法,它将机械系统划分为有限个小单元,通过计算每个小单元的运动规律和力学响应,从而得到整个机械系统的动力学特性。

有限元法广泛应用于结构分析、振动分析和疲劳寿命预测等领域,是一种十分强大和有效的分析方法。

除了有限元法,还有其他数值方法可以用于机械系统的动力学分析。

比如,多体动力学方法可以有效地描述机械系统中多个刚体的运动和相互作用。

多体动力学方法可以用于对车辆、机械手臂和飞行器等动力学问题的研究。

此外,还有基于粒子的方法,如离散元法和分子动力学方法,用于对颗粒物质的运动和相互作用进行分析。

通过动力学分析,可以获取机械系统的运动规律和力学响应。

这些信息对于机械系统的设计和优化至关重要。

通过对机械系统的动力学特性进行分析,可以优化设计参数,减小不稳定性和振动问题,提高机械系统的可靠性和性能。

此外,还可以通过分析运动轨迹和能量转换,寻找机械系统的节能潜力和优化方案。

除了动力学分析,仿真方法也是研究机械系统的重要手段。

仿真方法可以通过模拟机械系统的运动和力学特性,提供对机械系统性能和行为的直观理解。

同时,还可以在仿真环境中对机械系统进行虚拟实验和测试,加快设计和验证的过程。

机械系统动力学建模与仿真分析

机械系统动力学建模与仿真分析引言机械系统是现代工业中的重要组成部分,其动力学行为的建模和仿真分析对于系统设计、性能优化以及故障诊断起着关键作用。

本文将介绍机械系统动力学建模与仿真分析的基本概念和方法,并讨论其在实际工程中的应用。

一、机械系统的动力学建模机械系统的动力学建模是将复杂的物理过程抽象为数学模型的过程。

在建模过程中,我们需要考虑系统的结构、力学特性和工作条件等因素。

一般而言,机械系统的动力学建模可以分为两个层次:单体建模和系统建模。

1. 单体建模单体建模是将机械系统划分为若干个简化的单元,并对每个单元进行建模。

这些单元可以是机械元件(如齿轮、轴承)、机构(如齿轮传动、减速器)或者整个机器人等。

在建立单体模型时,我们需要考虑物体的质量、惯性、刚度和阻尼等因素,并利用牛顿运动定律和能量守恒原理进行建模。

2. 系统建模系统建模是将单体模型组合起来,构建整个机械系统的数学模型。

在系统建模中,我们需要考虑各个单体之间的相互作用,并确保整个系统的动力学特性的一致性。

此外,还需要考虑外部激励(如传感器反馈、控制器输入等)对系统的影响。

二、机械系统的动力学仿真机械系统的动力学仿真是在建立完整的数学模型之后,利用计算机软件对系统进行模拟的过程。

通过仿真分析,我们可以预测系统的运动轨迹、力学响应和能量传递等动力学行为。

常用的机械系统仿真方法包括基于方程求解的解析仿真和基于数值计算的数值仿真。

1. 解析仿真解析仿真是通过求解系统的动力学方程,得到系统在各个时刻的状态变量。

这种方法的优点是能够获得系统的精确解,但在复杂系统中,由于方程求解的复杂性,可能会出现求解困难的情况。

因此,解析仿真一般适用于简单的机械系统或者特定的研究问题。

2. 数值仿真数值仿真是通过将系统的动力学方程转化为差分或者微分方程的形式,并利用计算机进行数值求解。

这种方法的优点是能够处理复杂的非线性和时变系统,并能够模拟系统的长时间行为。

目前,常用的数值仿真软件有MATLAB/Simulink、ADAMS和ANSYS等。

机械系统的动力学特性分析与仿真

机械系统的动力学特性分析与仿真在现代工程领域中,机械系统的动力学特性分析与仿真是一项重要的技术。

它可以帮助工程师们更好地了解和预测机械系统的运动行为,为设计和优化机械系统提供可靠的依据。

本文将从理论与实践两个方面介绍机械系统的动力学特性分析与仿真。

一、动力学特性分析机械系统的动力学特性包括质量、惯性、刚度、阻尼等。

这些特性能直接影响机械系统的运动响应和稳定性。

在动力学特性分析中,常用的方法有质量矩阵法、阻尼矩阵法和刚度矩阵法等。

质量矩阵法利用质量矩阵描述机械系统各个部分的质量分布情况,并通过矩阵运算得到系统的动力学方程。

通过分析质量矩阵可以得知机械系统的质量分布情况,为设计优化提供依据。

阻尼矩阵法则通过对系统进行阻尼特性分析,得到系统的阻尼矩阵。

阻尼矩阵可以反映机械系统的阻尼分布和阻尼能力,对减少系统振动与噪音具有重要作用。

刚度矩阵法通过分析机械系统的刚度分布情况,得到系统的刚度矩阵。

刚度矩阵能反映机械系统的刚度分布和变形特性,为系统的优化设计提供依据。

二、动力学仿真动力学仿真是通过计算机建立机械系统的数学模型,并利用数值计算方法求解动力学方程,从而模拟机械系统的运动行为。

动力学仿真可以有效地预测机械系统的响应和稳定性,为系统的设计和优化提供指导。

在动力学仿真中,常用的方法有多体系统仿真和有限元分析。

多体系统仿真是通过建立各个部件之间的动力学联系,构建机械系统的数学模型。

通过求解模型的动力学方程,可以得到系统的运动轨迹和响应。

多体系统仿真在车辆动力学、机械振动与噪声等领域得到广泛应用。

有限元分析将机械系统分割成有限个单元,每个单元具有特定的材料和几何性质。

通过求解单元之间的力平衡方程,可以得到机械系统的运动行为。

有限元分析在结构强度、疲劳分析等方面具有重要应用。

三、实例分析以汽车悬挂系统为例,介绍动力学特性分析与仿真的应用。

汽车悬挂系统通过减震器和弹簧等组件,为车身提供舒适的行驶环境。

在悬挂系统的设计过程中,需要对系统的动力学特性进行分析与仿真。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

燕山大学
机械系统动力学
题目:基于adams曲柄滑块机构动力学仿真
学院(系):机械学院
年级专业:机械工程
学号: S12085201056
学生姓名:柳婷婷
指导教师:汪飞雪
日期: 2012年12月27号
基于adams曲柄滑块机构动力学仿真
摘要:本文主要介绍了利用adams动力学仿真软件进行曲柄滑块机构运动仿真和动力学分析。

曲柄滑块机构的应用很广泛,不同的结构设计可以应用于不同的领域,所以,研究曲柄滑块机构的运动特性,对于了解它的设计规律与方法,以及在今后学习工作中都是大有裨益的。

另外,对曲柄滑块机构的动力学仿真还旨在加深对于动力学这门课程的融汇贯通,并学习动力学仿真软件adams。

关键词:曲柄滑块机构;adams动力学仿真;动力学分析;运动学分析。

第1章绪论
曲柄滑块机构设计参数不同,其性能会有很大的差别,因而应用领域也就会千差万别。

下面列举几个应用曲柄滑块机构的实例。

图1中翻斗车的斗是通过一个曲柄滑块机构实现了它的提起与放平,驱动力作用在滑块上,斗的一部分作为曲柄。

图1.1 翻斗车
图2中的机械压力机也采用了曲柄滑块机构,通过前面的传动装置运动传动至曲柄轴处,在通过连杆,将运动传动至滑块,从而实现了凸模的上下运动,完成压模工序。

图1.2 机械压力机
实践中采用曲柄滑块机构的实例还有很多,这里不再过多举例。

虚拟样机分析软件adams (Automatic Dynamic Analysis of Mechanical Systems),是对机械系统的运动学和动力学进行仿真计算的商用软件,ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格朗日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。

ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。

利用adams仿真软件建立曲柄滑块机构的运动模型,并进行运动学和动力学仿真,各种运动轨迹都清晰、直观地显示出来,不仅在视觉上带给设计人员更感性的认识,其模型也可以为后续工作所使用,而且由于adams仿真软件的参数化功能,又可以为今后产品的改良改型提供方便。

第2章曲柄滑块机构的建模
在建模过程中,我参考了动力学课上的一个曲柄滑块机构,其模型如下图。

曲柄的摆动最终转化为滑块的上下运动,此机构可以模拟自动擦玻璃机等实用器械。

图2.1 曲柄滑块机构三维模型
对曲柄滑块模型通过施加一定的运动副与约束,该机构的仿真分析模型就建立起来了。

第3章 adams仿真动力学分析3.1. 仿真运动得到的运动视频见相应文件
3.2. 仿真运动得到的运动曲线
图3.2.1 零件2的Y方向运动速度曲线
图3.2.2 零件3的Y方向运动速度曲线
图3.2.3 零件4的Y方向运动速度曲线
图3.2.4 零件5的Y方向运动速度曲线
图3.2.5 零件6的Y方向运动速度曲线
图3.2.6 旋转副1的总力矩曲线
图3.2.7 旋转副2的总力矩曲线
图3.2.8 移动副7的合力曲线
总结
本文通过adams仿真软件对曲柄滑块机构进行了运动分析和仿真运动,得到了各个零件的运动规律,以及各个运动副上作用力情况,在此基础上可继续对个零件的强度进行校核计算,并改进结构,实现优化设计。

这次仿真使我加深了对曲柄滑块机构运动规律的理解,我会继续加强对adams的学习,争取能够实现对该结构的更进一步优化设计。

最后,谢谢汪飞雪老师的指导。

参考文献
[1] 李增刚.adams入门详解与实例.北京:国防工业出版社,2006.4. .。

相关文档
最新文档