二次根式单元测试题

合集下载

二次根式单元测试附答案

二次根式单元测试附答案

二次根式单元测试一、填空题(3×10=30)1.数5的平方根是 ,算术平方根是 ;2的平方根是 ,a 2的算数平方根是 ;3.若二次根式有意义,则的取值范围是___________.4.已知,则.5.比较大小:. 6.在实数范围内因式分解:. 7.若,则__________.8.=成立的条件是 ;9.a = ,的值为 ;10.在一个半径为2m 的圆形纸片上截出一个面积最大的正方形,则这个正方形的边长是 .二.选择题(3×8=24)11. )A .0B .2CD .不存在4.若x<0,则xx x 2-的结果是( ) A .0 B .—2 C .0或—2 D .25.下列二次根式中属于最简二次根式的是( )A .14B .48C .b a D .44+a6. 已知y =2xy 的值为( )A .15-B .15C .152- D . 152 7.化简6151+的结果为( ) A .3011 B .33030 C .30330 D .1130 8.小明的作业本上有以下四题:①24416a a =; ②a a a 25105=⨯; ③a aa a a =∙=112;④a a a =-23。

做错的题是( )A .①B .②C .③D .④9.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( )A .43-=a B .34=a C .a=1 D .a= —1 10. 计算221-631+8的结果是( ) A .32-23 B .5-2C .5-3D .22 三.解答题(共66分)19.(16分)计算:(1)21437⎪⎪⎭⎫ ⎝⎛- (2) )459(43332-⨯(3)2484554+-+(4)2332326--20.(5分)化简求值:2a (a+b )-(a+b )2,其中ab;21.(24分)化最简二次根式:(1(2(3 (4(5)-(622.(10分)计算:(1)(2)222)(2-23.(61x x =-24.(5分)若8a ,小数部分是b ,求2ab -b 2的值.25.(5分)在矩形ABCD 中,,,AB a BC b M ==是BC 的中点,DE AM ⊥,垂足为E 。

(完整版)二次根式经典单元测试题(含答案)

(完整版)二次根式经典单元测试题(含答案)

d for some o 24.计算题:
go (1)

g are (2)

in
ir be 25.计算:( ﹣ )2 the
in 26.计算:

ll things
A 27.计算:12

d
time an 28.(2010•鄂尔多斯)(1)计算﹣22+
﹣( )﹣1×(π﹣ )0;
y one thing at a (2)先化简,再求值:
go A.
B.(﹣3)﹣2=﹣
C.a0=1
D.3 D.
are 4.(2011•泸州)设实数 a,b 在数轴上对应的位置如图所示,化简 g 是( )
的结果
10.(2002•鄂州)若 x<0,且常数 m 满足条件
,则化简
所得的结果是( )
A.x
B.﹣x
二.填空题(共 12 小题)
11.(2013•盘锦)若式子
d 14.计算: 12 27 18
; (3 48 4 27 2 3)

ir being are goo 选择题(共 10 小题) e 1.B 2.D 3.A 4.D 5.A
th 11. x≥﹣1 且 x≠0 .
in 12. x≤2 且 x≠1 . s 13. 1 . ing 14. n= 3 .
b
A.a,b 均为非负数 C.a≥0,b>0
B.a,b 同号
D. a 0 b
g and S 5.已知 a<b,化简二次根式 a3b 的正确结果是( )
thin A. a ab
B. a ab
me C.a ab
D. a ab
r so 6.把 m 1 根号外的因式移到根号内,得( ) fo m

(完整版)二次根式单元测试题

(完整版)二次根式单元测试题

二次根式单元测试题班级:姓名: 成绩:一、选择题〔每题 3 分,共 30 分〕1.假设 3 m 为二次根式,那么 m 的取值为〔 〕A .m ≤ 3B .m <3C .m ≥ 3D .m > 32.假设式子x 2有意义,那么 x 的取值范围是〔 〕x 3A 、x ≥2B 、x ≠3C 、x >2 且 x ≠3D 、 x ≥ 2 且 x ≠3 3.假设8 n 是整数,那么正整数 n 的最大值是〔〕A 、4 B、 6 C、7D 、84.化简二次根式 ( 5) 2 3 得〔〕A . 53B .5 3C . 53D .305.以下二次根式中,最简二次根式是〔 〕A . 3a2B .1 C . 153D . 14336.计算:a ab1 等于〔 〕babA .1abB .1abC . ab 2ab7.化简:x 2 y xy =〔〕x1abD . b abbA 、xyB 、yC 、xD 、 x y8.直角三角形的两直角边长分别是 4 和 6,那么其斜边长是〔〕A 、4B 、6C 、10D 、2 139.以下各式与 3 不是同类二次根式的是〔 〕A 、 12B 、 27C 、 8D 、751二、填空题〔每题 3 分,共 30 分〕11.当 x___________时,34x 在实数范围内有意义.12.计算:①(3)2=;② ( 25)2=13.比较大小: 3 2 ______ 2 3.14.化简:① 11721082=;② (96150)6 =15.在实数范围内分解因式x2 5 =16.当 x时,2x1212x17.要切一块面积为 6400 cm2的正方形大理石地板砖,那么它的边长要切成㎝18.:x2x y 20,那么 x2xy19.若是x225 ,那么 x;若是 x 3 29 ,那么 xv 220.:在公式中g v为速度,那么vr三、解答题〔共60 分〕21.化简〔每题 4 分,共 8 分〕〔 1〕 ( 144) ( 169)〔2〕m2 n18 22.计算:〔每题 4 分,共 16 分〕〔1〕12838414.〔2〕112213.22335〔3〕45458 4 2〔4〕(56)( 56)23.假设最简二次根式222 与n212是同类二次根式,求m、n 的值.〔 7 分〕33m4m 1024.化简求值:x22x x,其中 x 3 2〔7分〕x 1 1 x x125.假设二次根式2x 3 和x 1 都有意义,求x 的取值范围〔 7 分〕26.实数a, b在数轴上的对应点以以下图,化简:(a b) 2a2〔7分〕27. Rt△ABC 中,∠ ACB=90 °, AC= 2 2,BC=10 ,求AB上的高CD的长〔8 分〕CB D A。

二次根式单元测试题及答案doc

二次根式单元测试题及答案doc

二次根式单元测试题及答案doc一、选择题1. 下列哪个选项不是二次根式?A. √3B. 2√2C. √xD. 3x2. 二次根式的乘法法则是什么?A. √a × √b = √abB. √a × √b = √a + bC. √a × √b = a + bD. √a × √b = √(a + b)3. 如果√a = √b,那么a和b的关系是什么?A. a = bB. a = b^2C. a^2 = bD. a^2 = b^24. 以下哪个表达式不能简化为一个更简单的二次根式?A. √(2x^2)B. √(3x)C. √(4y^2)D. √(5z)5. 计算√(1/4)的结果是什么?A. 1/2B. 1/4C. 2D. 4二、填空题6. √(9x^2) 可以简化为 __________。

7. 如果√(2y) = √8,那么y的值是 __________。

8. 根据二次根式的除法法则,√(a/b) = __________。

9. √(25) + √(4) 的结果是 __________。

10. 计算(√3 + √2)^2 的结果,不展开,直接写出答案 __________。

三、解答题11. 计算下列表达式的值:(a) √(81x^4)(b) (√2 + √3)(√2 - √3)12. 简化下列二次根式,并合并同类项:√(18a^2b) + √(2a^2b) - 3√(2a^2b)四、应用题13. 一个正方形的面积是50平方厘米,求这个正方形的边长。

如果边长是一个整数,求出所有可能的边长。

答案:一、选择题1. D2. A3. D4. D5. A二、填空题6. 3x7. 48. √(ab) / √b9. 710. 7三、解答题11. (a) 9|x|^2(b) 2 - 312. √(18a^2b) + √(2a^2b) - 3√(2a^2b) = 3√(2a^2b) -2√(2a^2b) = √(2a^2b)四、应用题13. 边长为√50,即边长为5√2厘米。

二次根式 单元测试题(含答案)

二次根式 单元测试题(含答案)

二次根式单元测试题(含答案) 九年级上学期数学测试题(二次根式)一、选择题1.已知 x^3+3x^2=-x(x-3),则 x 的取值范围是()A。

x≤0.B。

x≤-3.C。

x≥-3.D。

-3≤x≤02.化简(√a-√b)/(√a+√b) 得()A。

-√a。

B。

-a。

C。

√a。

D。

a3.当 a<0,b<0 时,-a+2ab-b 可变形为()A。

(a+b)。

B。

-(a-b)。

C。

(-a-b)。

D。

(-a+b)4.在根式√a^2+b^2、√x、√x^2-xy、3√abc 中,最简二次根式是()A。

√a^2+b^2、√x。

B。

√x、√x^2-xy。

C。

√a^2+b^2、√x^2-xy。

D。

√a^2+b^2、3√abc5.下列二次根式中,可以合并的是()A。

√a/a 和√13a^2.B。

2√a 和 3a^2.C。

3√a^2 和 a。

D。

3a^4 和 2a^26.如果 a+a^2-2a+1=1,那么 a 的取值范围是()A。

a=0.B。

a=1.C。

a≤1.D。

a=0 或 a=17.能使 x/(x-2)=1 成立的 x 的取值范围是()A。

x≠2.B。

x≥2.C。

x≥0.D。

x>28.若化简 |1-x|-x^2-8x+16 的结果是 2x-5,则 x 的取值范围是()A。

x 为任意实数。

B。

1≤x≤4.C。

x≥1.D。

x<49.已知三角形三边为 a、b、c,其中 a、b 两边满足 a^2-12a+36+b-8=0,那么这个三角形的最大边c 的取值范围是()A。

c>8.B。

8<c<14.C。

6<c<8.D。

2<c<1410.XXX的作业本上有以下四题:①16a^4=4a^2;②5a×10a=5a^2;③a^(1/2)×a^(1/2)=a;④3a-2a=a。

其中做错误的是()A。

①。

B。

②。

C。

③。

D。

④二、填空题:11.(√1/2)^2 的值是 1/2,36 的算术平方根是 6.12.(7-5√2)^2008×(-7-5√2)^2009=-2.13.x,y 分别为 8-11 的整数部分和小数部分,则 2xy-y^2=-0.19.14.若 x=2/3,则 x^2-2x+3 的值为 5/9.15.已知 xy<0,化简 x^2y^4=|xy^3|。

《二次根式》单元测试卷3套(含答案解析)

《二次根式》单元测试卷3套(含答案解析)
92
(2)(4 分) 5 6 3 5 6 3
22.(1)(6 分) x y y x x y (x≥0,y≥0);
(2)(6 分)(a-b) 1 b a a2 2ab b2 (b>a).
ba
23.(6 分)已知 a=
2
-1,求
2a a 1
1
a
a
a
的值.
24.(8 分)已知
A. 2 3 -1
B.1+ 3
C.2+ 3
D.2 3 -1
7.已知两条线段的长分别为 3 cm、 5 cm,那么能与它们组成直角三角形的第三条线段
的长是 ( )
A. 2 cm
B.2 2 cm
C. 2 cm 或 2 2 cm D. 15 cm
二、填空题(每题 3 分,共 21 分)
8.当 x 满足_______时, 2x 4 4 x 在实数范围内有意义.
3.计算 8 2 的结果是 ( )
A.6
B. 6
C.2
D. 2
4.下列四个数中,与 11 最接近的数是 ( )
A.2
B.3
C.4
5.若 a、b 为实数,且满足 a 2 b2 0 ,则 b-a 的值为
A.2
B.0
C.-2
D.5 ()
D.以上都不对
6.如图,数轴上 A、B 两点对应的实数分别是 1 和 3 ,若点 A 关于点 B 的对称点为点 C, 则点 C 所对应的实数为 ( )
1 x=
2
,求
1 x
1 x x2 2x 1
x 1 x 12 x 12
的值.
25.(8 分)已知实数 x,y,a 满足: x y 8 8 x y 3x y a x 2y a 3 ,

二次根式单元测试题(卷)经典3套

二次根式单元测试题(卷)经典3套

二次根式单元测试题(卷)经典3套二次根式单元测试题一一、填空题(每题2分,共20分)1、当a=0时,有意义1-a=12、计算:(-3/2)^2=9/432)^2=10241-1/2)×(1+1/2)=3/43、计算:(1)×(-27)=-272)8a^3b^2c=8abc^2×a^2b4、计算:(a>0,b>0,c>0)5、计算:(1)=1/42)=3a/86、如果xy>0,化简-xy^2=-y^2x7、32+42=25,332+442=221,3332+4442= 则33×(32+44)×(42+25)=8、(2-1)2005×(2+1)2006=3×(3^2005)9、观察以下各式:1=2-1。

1/2=3-2。

1/3=4-3利用以上规律计算:1+1/2+1/3+…+1/2007)/[(2+1)+(3+2)+(4+3)+…+(2006+2005 )]=2007/401310、已知x=3+√2,y=3-√2,则(y/x+1)/(x/y+1)=1二、选择题(每题3分,共30分)11、若2x+3有意义,则x≤-3或x≥212、化简(2-a)^2+a^-2的结果是4+2a13、能使等式x/(x-3)=x/x成立的条件是x≠0且x≠314、下列各式中,是最简二次根式的是y/215、已知x+1/x=5那么x-1/x的值是2或-216、如果a^2-2ab+b^2=-1,则a≠b17、已知xy>0,化简二次根式√(x-y^2/x^2)的正确结果为(y/|x|)√(x-y^2)18、如图,Rt△AMC中,∠C=90°,∠AMC=30°,AM∥BN,MN=23cm,XXX=1cm,则AC的长度为3cm。

19、下列说法正确的个数是()①2的平方根是同类二次根式;②2-1与2+1互为倒数;③2^3/2与(2/3)^-2互为倒数;④3√2是同类三次根式。

二次根式单元测试题及答案word

二次根式单元测试题及答案word

二次根式单元测试题及答案word一、选择题1. 计算下列二次根式的结果:A. √16 = 4B. √25 = 5C. √36 = 6D. √49 = 7答案:A2. 以下哪个表达式是正确的?A. √(-4) = 2iB. √(-9) = 3iC. √(-16) = 4iD. √(-25) = 5i答案:C3. 根据二次根式的乘法法则,下列哪个等式是正确的?A. √2 * √8 = √16B. √3 * √3 = √9C. √5 * √5 = √20D. √7 * √7 = √49答案:D二、填空题4. 计算√(2x^2) 的结果,其中 x = 3。

答案:3√25. 如果√(a^2) = a,那么 a 的取值范围是:答案:a ≥ 06. 将下列二次根式化为最简形式:√(48) = √(16 * 3) = 4√3答案:4√3三、计算题7. 计算下列表达式的值:(5√2 + 3√3)^2答案:79 + 30√68. 简化下列二次根式:√(2/9) * √(18/4)答案:√(2 * 2) = 2四、解答题9. 证明:√(a^2 + b^2) = √a^2 + √b^2 只有在 a = b = 0 时成立。

答案:略(根据二次根式的性质进行证明)10. 解下列方程:x^2 - 4√3x + 12 = 0答案:x = 2√3五、综合题11. 已知 a, b 是正整数,且√a + √b = 9,求 a 和 b 的值。

答案:a = 1, b = 64 或 a = 4, b = 4912. 一个直角三角形的两条直角边分别是3√2 和 6,求斜边的长度。

答案:斜边长度为 9六、附加题13. 如果√(2x + 1) + √(2 - 2x) = 2,求 x 的值。

答案:x = 0注意:本试题及答案仅供参考,具体题目和答案可能会根据教学大纲和教材内容有所变动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.下列计算正确的是( ) A .()25-=﹣5 B .4y =2y C .822aaa=D .235+=2.下列计算,正确的是( ) A . 235+=B . 2323+=C . 8220-=D . 510-=3.下列计算正确的是( ) A .42=±B .()233-=- C .()255-= D .()233-=-4.下列计算正确的是( ) A .2×3=6B .2+3=5C .8=42D .4﹣2=25.已知x 1=3+2,x 2=3-2,则x₁²+x₂²等于( ) A .8B .9C .10D .11 6.下列计算正确的是( )A .325+=B .2222+=C .2651-=D .822-=7.在实数范围内,若22xx +有意义,则x 的取值范围是( ) A .x≠2 B .x >-2 C .x <-2 D .x≠-28.化简x 1x-,正确的是( ) A .x -B .xC .﹣x -D .﹣x9.如图直线a ,b 都与直线m 垂直,垂足分别为M 、N ,MN =1,等腰直角△ABC 的斜边,AB 在直线m 上,AB =2,且点B 位于点M 处,将等腰直角△ABC 沿直线m 向右平移,直到点A 与点N 重合为止,记点B 平移平移的距离为x ,等腰直角△ABC 的边位于直线a ,b 之间部分的长度和为y ,则y 关于x 的函数图象大致为( )A .B .C .D .10.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积为()()()S p p a p b p c =---如图,在ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .66B .3C .18D .192二、填空题11.把31a-根号外的因式移入根号内,得________ 12.120654010144152118+++235a b c +的形式(,,a b c 为正整数),则abc =______. 13.把1m m-_____________. 14.14(1)(1)(2)(8)(9)x x x x x x +⋅⋅⋅=+++++的解是______.15.若613x ,小数部分为y ,则(213)x y 的值是___. 16.(623÷=________________ .17.x y 53xy 153,则x+y=_______. 18.若0xy >,则二次根式2yx -________. 19.3x-x 的取值范围是______. 20.若a 、b 都是有理数,且2222480a ab b a -+++=ab .三、解答题21.若x ,y 为实数,且y12.求x y y x ++2-xy y x +-2的值.【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x ≥0且4x ﹣1≥0,解得x =14,此时y =12.即可代入求解. 【详解】解:要使y 有意义,必须140410x x -≥⎧⎨-≤⎩,即1414x x ⎧≤⎪⎪⎨⎪≥⎪⎩∴ x =14.当x =14时,y =12.又∵x y y x ++2-x yy x +-2=-| ∵x =14,y =12,∴ x y <y x.∴+当x =14,y =12时,原式=.【点睛】(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.22.(112=3=4=;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想. 【答案】(12=5==;(2=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,6,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n .n.故答案为5=25n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可. 【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.24.计算下列各题(1)⎛÷⎝(2)2-【答案】(1)1;(2).【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.【详解】(1)原式=1;(2)原式+2).【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.25.一样的式子,其实我3==3==,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2)12. 【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)===== (2)原式2n +++=. 考点:分母有理化.26.计算:(1(2|a ﹣1|,其中1<a 【答案】(1)1;(2)1 【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1(2)∵1<a ,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.27.2020(1)- 【答案】1 【分析】先计算乘方,再化简二次根式求解即可. 【详解】2020(1)-=1 =1. 【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.28.计算:(1)()22131)()2---+(2【答案】(1)12;(2) 【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可; (2)根据二次根式的加减乘除运算法则计算即可. 【详解】(1)解:原式= 9-1+4=12(2) 【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二次根式的性质对A 、B 进行判断;利用分母有理化对C 进行判断;利用二次根式的加减法对D 进行判断. 【详解】解:A 、原式=5,所以A 选项错误;B 、原式=,所以B 选项错误;Ca =,所以C 选项正确;D D 选项错误. 故选:C .本题主要考查了二次根式的性质以及合并同类项法则,正确化简各式是解题的关键.2.C解析:C【分析】A、B、C、根据合并同类二次根式的法则即可判定;D、利用根式的运算法则计算即可判定.【详解】解:A、B、D不是同类二次根式,不能合并,故选项不符合题意;C=,故选项正确.故选:C.【点睛】此题主要考查二次根式的运算,应熟练掌握各种运算法则,且准确计算.3.C解析:C【分析】直接利用二次根式的性质分别求解,即可得出答案.【详解】解:A,故A选项错误;B,故B选项错误;C选项:2=5,故C选项正确;D选项:2=3,故D选项错误,故选:C.【点睛】此题主要考查了二次根式的性质,正确求解二次根式是解题的关键.4.A解析:A【解析】分析:根据二次根式的加、减、乘、除的法则计算逐一验证即可.详解: , 此选项正确;≠此选项错误;, 此选项错误;,此选项错误.故选A.点睛:本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键. 5.C解析:C12x x +==12321x x ==-=,所以()2221212122x x x x x x +=+-=(22112210-⨯=-=,故选:C . 【点睛】对于形如2212x x +的式子,改变其中两个字母的位置后,并不改变代数式的值,通常将具有这个特点的代数式称为轮换对称式,如1211+x x ,1221x x x x +,12x x -等,轮换对称式都可以用12x x +,12x x 来表示,所以求轮换对称式的值,一般是先将式子用12x x +,12x x 来表示,然后再整体代入计算.6.D解析:D 【分析】直接利用二次根式的加减运算法则计算得出答案. 【详解】解:AB 、无法计算,故此选项错误; C 、D,正确. 故选:D . 【点睛】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.7.B解析:B 【分析】根据二次根式的被开方数是非负数,且分母不能为零,可得答案. 【详解】有意义,得:20x +>,解得:2x >-. 故选:B . 【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是8.C解析:C 【解析】根据二次根式有意义的条件可知﹣1x>0,求得x <0,然后根据二次根式的化简,可得x 1x -=﹣2x •1x-=﹣x -. 故选C .9.D解析:D 【解析】 【分析】根据等腰直角△ABC 被直线a 和b 所截的图形分为三种情况讨论:①当0≤x ≤1时,y 是BM +BD ;②当1<x ≤2时,y 是CP +CQ +MN ;当2<x ≤3时,y =AN +AF ,分别用x 表示出这三种情况下y 的函数式,然后对照选项进行选择. 【详解】①当0≤x ≤1时,如图1所示.此时BM =x ,则DM =x ,在Rt △BMD 中,利用勾股定理得BD =2 x ,所以等腰直角△ABC 的边位于直线a ,b 之间部分的长度和为y =BM +BD =(2+1)x ,是一次函数,当x =1时,B 点到达N 点,y =2+1;②当1<x ≤2时,如图2所示, △CPQ 是直角三角形, 此时y =CP +CQ +MN 2+1. 即当1<x ≤2时,y 2+1.③当2<x ≤3时,如图3所示,此时△AFN 是等腰直角三角形,AN =3﹣x ,则AF =2(3﹣x ),y =AN +AF =(﹣1﹣2)x +3+32,是一次函数,当x =3时,y =0.综上所述只有D 答案符合要求.故选:D . 【点睛】本题主要考查动点问题的函数图象,解题的方法是动中找静,在不同的情况下找到y 与x 的函数式.10.A解析:A【分析】利用阅读材料,先计算出p 的值,然后根据海伦公式计算ABC ∆的面积;【详解】7a =,5b =,6c =.∴56792p ++==, ∴ABC ∆的面积()()()995969766S =-⨯-⨯-=故选A .【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.二、填空题11.【分析】根据被开方数大于等于零,可得出,再根据二次根式的性质进行计算即可.【详解】解:∵,∴,∴.故答案为:.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质【分析】根据被开方数大于等于零,可得出0a <,再根据二次根式的性质进行计算即可.【详解】 解:∵310a-≥, ∴0a <,∴a ===.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质是解此题的关键.12.【解析】【分析】根据题意,可得到=,利用平方关系把根号去掉,根据、、的系数相等的关系得到关于a ,b ,c 的三元方程组,解方程组即可.【详解】∵=∴,即.解得.【点睛】本题考查了解析:【解析】【分析】a ,b ,c 的三元方程组,解方程组即可.【详解】∴(22118=,即2222118235a b c =+++++. 2222352118,2120,2540,2144,a b c ab ac bc ⎧++=⎪=⎪∴⎨=⎪⎪=⎩ 解得15,4,18.a b c =⎧⎪=⎨⎪=⎩154181080abc ∴=⨯⨯=.【点睛】本题考查了二次根式的加减,解本题的关键是将等式平方去根号,利用等量关系中等式左、.13.-【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得: ,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:10m ,即0m ∴11m m m m m m m故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m 的取值范围.14.9【解析】【分析】设y=,由可将原方程进行化简,解化简后的方程即可求得答案.【详解】设y=,则原方程变形为,∴,即,∴4y+36-4y=y(y+9), 即y2+9y-36=0,∴ 解析:9【解析】【分析】设()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设则原方程变形为 ()()()()()1111112894y y y y y y ++=+++++, ∴1111111112894y y y y y y -+-++-=+++++, 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3,∵,∴,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用. 15.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2,y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2, y=4然后再代入计算即可求解.【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2, y=4-,所以(2x y =(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 16.【解析】=,故答案为.解析:【解析】÷=()()2232===--, 故答案为17.8+2【解析】根据配方法,由完全平方公式可知x+y==()2-2,然后把+=+,=-整体代入可得原式=(+)2-2(-)=5+3+2-2+2=8+2.故答案为:8+2.解析:【解析】根据配方法,由完全平方公式可知x+y=2222+=+-)2整体代入可得原式=2-2)故答案为:18.-【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵,且有意义,∴,∴.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是 解析:【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵0xy > ∴00x y <,<,∴x ==.故答案为.【点睛】 此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.即(0)(0)a a a a a ≥⎧==⎨-<⎩=(a ≥0,b >0). 19.且 【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:,解得且,故答案为:且.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.20.【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵∴∴∴∵∴解得:a=-4,b=-2∴=故答案为:.【点睛解析:【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵2222480a ab b a -+++=∴222448160a ab b a -+++=∴()()222448160a ab ba a -+++=+ ∴()()22240ab a +-+=∵()()2220,40a b a +-≥≥∴20,40a b a +-==解得:a=-4,b=-2=故答案为:【点睛】此题考查的是配方法、非负性的应用和化简二次根式,掌握完全平方公式、平方的非负性和二次根式的乘法公式是解决此题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

相关文档
最新文档