《三角函数的诱导公式》(第二课时) 教案
高中数学 三角函数的诱导公式(第二课时)导学案 苏教版必修4高一

3 ,则 x 的值为_____ 3
cot( ) sin(2 ) 1 _____ ,且 0 ,则 cos( ) tan 3 2
8.化简:
sin 2 (3 ) cos 2 ( ) sin(5 ) cos(3 ) _____ sin(5 ) cos(6 )
师生共用三角函数的诱导公式(第二课时)导学案
年级: 高一 学科: 课时及内容: 三角函数的诱导公式(第二课时) 学习目标:1.借助单位圆,推导出正弦、余弦第五、六组的诱导公式 2.能利用诱导公式求任意角的三角函数值,化简,三角恒等式的证明. 学习重难点:
一.课前准备 姓名
2
角的正弦、余弦诱导公式的推导
3 2
3 2
例 2 已知 sin( 班级
1 x) , 且 0 x ,求 sin( x) 的值. 4 5 2 4
三.当堂检测
1.已知 sin( ) 2.已知 sin
3 ,且 是第三象限的角,则 cos( 2 ) 的值是_____ 5
sin(a 2k ) _______ 公式一: cos(a 2k ) _______ tan(a 2k ) _______ sin( a) _____ 公式三: cos( a) _____ tan( a) _____
sin( a ) _______ 2 cos( a ) _______ 2
2
x) b tan( x) ,若 f (1) 3, 则 f (1) ______ .
5.已知 f ( x)
1 x .若 x ( , ) ,化简 f (cos x) f ( cos x). 2 1 x
三角函数的诱导公式2公开课教案

四、布置作业
tan(nπ+ )=tan
过程精简 自带符号 2.思考 2: 利用角 的三角函数值,你还能得到哪些角的三角的函数值?
公式五:
sin( ) cos 2 cos( ) sin 2 sin( ) cos 2 cos( ) sin 2
教 学 过 程
sin( ) sin cos( ) cos tan( ) tan
公式四:
sin( ) sin cos( ) cos tan( ) tan
它们的记忆口诀是:把 看成锐角,函数名不变,符号看象限。 作业讲评
公开课教案
授课教师: 授课课题 授课时间:2015 年月日 1.3 三角函数的诱导公式(2) 1、 通过对诱导公式一、二的统一,培养学生的观察力、分析归纳能力; 2、 经历诱导公式五、六的推导过程,体会数学知识的“发现”过程。能初 步应用公式解决一些简单的问题; 3、领会数学中转化思想的广泛性,了解诱导公式就是具有一定关系的几何 特征关系的代数表示,从而对诱导公式能够达到属性结合的认识高度。 诱导公式五、六的推导探究,诱导公式的应用 发现终边与角 的终边关于直线 y x 对称的角与 之间的数量关系 一、 回顾旧知 复习:我们已经学习了哪些诱导公式? 师引导学生一起回顾三角函数的诱导公式一到公式四,这几个公式分 别体现了角 与角 、 、 之间的关系: 公式一: 公式二: 公式三:
sin(2 k ) sin cos(2 k ) cos tan(2 k ) tan
授课班级:班
《诱导公式(二)》教案

1.2.4诱导公式(二)一、学习目标1.通过本节内容的教学,使学生掌握α+π1)k +2(,α2π+角的正弦、余弦和正切的诱导公式及其探求思路,并能正确地运用这些公式进行任意角的正弦、余弦和正切值的求解、简单三角函数式的化简与三角恒等式的证明;2.通过公式的应用,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力;二、教学重点、难点重点:四组诱导公式及这四组诱导公式的综合运用.难点:公式(四)的推导和对称变换思想在学生学习过程中的渗透. 三、教学方法先由学生自己看书,在此基础上,可以通过讲授再现概念,通过练习理解概念,完成教学.+-=-=x x9017)cos(9017)sin17 480︒)+cos(-330︒)5.3.2同角三角比的关系(2)诱导公式【教学目标】1.通过本节课的教学,使学生掌握五组诱导公式的推导方法和记忆方法.2.在理解、记忆五组诱导公式的基础上,会运用这些公式求解任意角的三角函数的值,并会进行一般的三角关系式的化简和证明.3.加深理解化归思想,培养学生观察问题、解决问题、抽象概括问题的能力,并注意完善学生的基本数学思想和数学意识.【教学重点】五组诱导公式的记忆、理解、运用。
【教学难点】五组诱导公式的推导教学过程:【情景引入】与6π终边相同角α的集合如何表示?αsin 与6sin π具有怎样的数量关系?与β终边相同角α的集合如何表示?αsin 与βsin 具有怎样的数量关系?βα,其它的五个三角比数量关系又如何呢?【问题探究】诱导公式一:文字叙述:终边相同的角的同一个三角函数的值相等.sin(k·360°+α)=sinα,cos(k·360°+α)=cosα, tan(k·360°+α)=tanα,cot(k·360°+α)=cotα.(k ∈Z )试求出sin 2016°的值.由公式一:sin 2016°=sin(5×360°×216°)=sin 216° 问题二:如何求出进一步sin 216°的值诱导公式二:①同名函数关系;②符号规律:右边符号与180°+α角所在象限(第三象限)角的原三角函数值的符号相同. sin(180°+α)=-sinα, cos(180°+α)=-cosα,tan(180°+α)=tanα, cot(180°+α)=cot α.诱导公式三:①同名函数关系;②符号规律是:右边符号与-α所在的第四象限角的原三角函数值的符号相同.sin(-α)=-sinα,cos(-α)=cosα, tan(-α)=tanα, cot(-α)=-cotα.诱导公式四:sin(180)sin αα-=;cos(180)cos αα-=-. t sin(180)sin αα-=;cos(180)cos αα-=-(1)请学生自行仿上节课的推导方法得出它们的关系。
1.3 三角函数的诱导公式(二) 教案+习题

§1.3 三角函数的诱导公式(二)学习目标 1.掌握诱导公式五、六的推导(难点).2.能够应用三角函数的诱导公式解决简单的求值、化简与证明问题(重点).预习教材P26完成下面问题: 知识点 诱导公式五、六 1.诱导公式五、六2.公式五和公式六的语言概括(1)函数名称:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值.(2)符号:函数值前面加上一个把α看成锐角时原函数值的符号.(3)作用:利用诱导公式五或六,可以实现正弦函数与余弦函数的相互转化. 【预习评价】 (正确的打“√”,错误的打“×”) (1)诱导公式五、六中的角α只能是锐角.( )(2)诱导公式五、六与诱导公式一~四的区别在于函数名称要改变.( ) (3)sin(k π2-α)=±cos α.( )提示 (1)×,诱导公式五、六中的角α是任意角. (2)√,由诱导公式一~六可知其正确.(3)×,当k =2时,sin(k π2-α)=sin(π-α)=sin α.题型一 利用诱导公式化简、求值【例1】 (1)已知cos ⎝⎛⎭⎫α+π6=35,π2≤α≤3π2,求sin ⎝⎛⎭⎫α+2π3的值; 解 ∵α+2π3=⎝⎛⎭⎫α+π6+π2,∴sin(α+2π3)=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6+π2=cos ⎝⎛⎭⎫α+π6=35. (2)化简:sin (2π+α)cos (π-α)cos (π2-α)cos (7π2-α)cos (π-α)sin (3π-α)sin (-π+α)sin (5π2+α).解 原式=sin α·(-cos α)·sin α·(-sin α)(-cos α)·sin α·(-sin α)·cos α=tan α.规律方法 求值问题中角的转化方法 任意负角的三角函数――→用公式一或三任意正角的三角函数――→用公式一0~2π的角的三角函数――→用公式二或四、或五或六锐角三角函数【训练1】 已知cos(π6-α)=23,求下列各式的值:(1)sin(π3+α);(2)sin(α-2π3).解 (1)sin(π3+α)=sin[π2-(π6-α)]=cos(π6-α)=23.(2)sin(α-2π3)=sin[-π2-(π6-α)]=-sin[π2+(π6-α)] =-cos(π6-α)=-23.题型二 利用诱导公式证明恒等式【例2】 求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.证明 左边=tan (-α)·sin (-α)·cos (-α)sin ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α·cos ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α=(-tan α)·(-sin α)·cos αsin ⎣⎡⎦⎤-⎝⎛⎭⎫π2-αcos ⎣⎡⎦⎤-⎝⎛⎭⎫π2-α=sin 2α-sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α=sin 2α-cos α·sin α=-sin αcos α=-tan α=右边.∴原等式成立.规律方法 证明等式的常用方法利用诱导公式证明等式问题,关键在于公式的灵活应用,其证明的常用方法有: (1)从一边开始,使得它等于另一边,一般由繁到简. (2)左右归一法:即证明左右两边都等于同一个式子.(3)针对题设与结论间的差异,有针对性地进行变形,以消除差异. 【训练2】 求证:2sin ⎝⎛⎭⎫θ-3π2cos ⎝⎛⎭⎫θ+π2-11-2sin 2(π+θ)=tan (9π+θ)+1tan (π+θ)-1. 证明 左边=-2sin ⎝⎛⎭⎫3π2-θ·(-sin θ)-11-2sin 2θ=2sin ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2sin ⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2cos θsin θ-1cos 2θ+sin 2θ-2sin 2θ =(sin θ+cos θ)2sin 2θ-cos 2θ=sin θ+cos θsin θ-cos θ. 右边=tan θ+1tan θ-1=sin θ+cos θsin θ-cos θ.∴左边=右边,故原等式成立.【例3】 已知cos α=-45,且α为第三象限角.(1)求sin α的值;(2)求f (α)=tan (π-α)·sin (π-α)·sin (π2-α)cos (π+α)的值.解 (1)因为α为第三象限角,所以sin α=-1-cos 2α=-35.(2)f (α)=(-tan α)·sin α·cos α-cos α=tan α·sin α=sin αcos α·sin α =sin 2αcos α=(-35)2×(-54)=-920. 【迁移1】 本例条件不变,求f (α) =sin (5π-α)cos (7π2-α)tan (-π+α)-tan (-19π-α)sin (-α)的值.解 f (α)=sin α·(-sin α)·tan αtan α·(-sin α)=sin α=-35.【迁移2】 本例条件中“cos α=-45”改为“α的终边与单位圆交于点P (m ,154)”,“第三象限”改为“第二象限”,试求sin (α-π2)sin (π+α)-sin (3π2-α)+1的值.解 由题意知m 2+(154)2=1, 解得m 2=116,因为α为第二象限角,故m <0, 所以m =-14,所以sin α=154,cos α=-14. 原式=-cos α(-sin α)-(-cos α)+1=14-154-14+1=-3+156.规律方法 用诱导公式化简求值的方法(1)对于三角函数式的化简求值问题,一般遵循诱导公式先行的原则,即先用诱导公式化简变形,达到角的统一,再进行切化弦,以保证三角函数名最少.(2)对于π±α和π2±α这两套诱导公式,切记运用前一套公式不变名,而运用后一套公式必须变名.课堂达标1.sin 165°等于( ) A .-sin 15° B .cos 15° C .sin 75°D .cos 75°解析 sin 165°=sin(90°+75°)=cos 75°. 答案 D2.已知sin(α+π4)=13,则cos(π4-α)的值为( )A .223B .-223C .13D .-13解析 cos(π4-α)=cos[π2-(α+π4)]=sin(α+π4)=13.答案 C3.代数式sin 2(A +45°)+sin 2(A -45°)的化简结果是________. 解析 原式=sin 2(A +45°)+sin 2(45°-A ) =sin 2(A +45°)+cos 2(A +45°)=1. 答案 14.若cos α=15,且α是第四象限角,则cos(α+5π2)=________.解析 由题意得sin α=-1-cos 2α=-265,所以cos(α+5π2)=-sin α=265.答案2655.已知sin(5π-θ)+sin ⎝⎛⎭⎫52π-θ=72,求sin 4⎝⎛⎭⎫π2-θ+cos 4⎝⎛⎭⎫32π+θ的值. 解 ∵sin(5π-θ)+sin ⎝⎛⎭⎫52π-θ =sin(π-θ)+sin ⎝⎛⎭⎫π2-θ =sin θ+cos θ=72,∴sin θcos θ=12[(sin θ+cos θ)2-1]=12⎣⎡⎦⎤⎝⎛⎭⎫722-1=38, ∴sin 4⎝⎛⎭⎫π2-θ+cos 4⎝⎛⎭⎫32π+θ=cos 4θ+sin 4θ =(sin 2θ+cos 2θ)2-2sin 2θcos 2θ =1-2×⎝⎛⎭⎫382=2332.课堂小结1.学习了本节知识后,连同前面的诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.当k 为偶数时,得α的同名函数值;当k 为奇数时,得α的异名函数值,然后前面加一个把α看成锐角时原函数值的符号.2.诱导公式反映了各种不同形式的角的三角函数之间的相互关系,并具有一定的规律性,“奇变偶不变,符号看象限”,是记住这些公式的有效方法.3.诱导公式是三角变换的基本公式,其中角α可以是一个单角,也可以是一个复角,应用时要注意整体把握、灵活变通.基础过关1.已知sin α=14,则cos(α+π2)=( )A .14B .-14C .154D .-154解析 cos(α+π2)=-sin α=-14.答案 B2.若sin(180°+α)+cos(90°+α)=-a ,则cos(270°-α)+2sin(360°-α)的值是( ) A .-23aB .-32aC .23aD .32a解析 由条件得-sin α-sin α=-a ,故sin α=a2,原式=-sin α-2sin α=-3sin α=-32a .答案 B3.已知cos(π2+φ)=32,且|φ|<π2,则tan φ等于( )A .-33B .33C .- 3D . 3解析 由cos(π2+φ)=-sin φ=32,得sin φ=-32,又∵|φ|<π2,∴φ=-π3,∴tan φ=-3.答案 C4.若sin(α+π12)=13,则cos(α+7π12)=________.解析 cos(α+7π12)=cos[π2+(α+π12)]=-sin(α+π12)=-13.答案 -135.化简sin ⎝⎛⎭⎫15π2+αcos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫9π2-αcos ⎝⎛⎭⎫3π2+α=________.解析 原式=sin (32π+α)·cos (π2-α)sin (π2-α)sin α=(-cos α)·sin αcos α·sin α=-1.答案 -16.已知sin α是方程5x 2-7x -6=0的根,且α为第三象限角,求 sin ⎝⎛⎭⎫α+3π2·sin ⎝⎛⎭⎫3π2-α·tan 2(2π-α)·tan (π-α)cos ⎝⎛⎭⎫π2-α·cos ⎝⎛⎭⎫π2+α的值.解 因为5x 2-7x -6=0的两根为x =2或x =-35,所以sin α=-35,又因为α为第三象限角,所以cos α=-1-sin 2α=-45.所以tan α=34.故原式=(-cos α)·(-cos α)·tan 2α·(-tan α)sin α·(-sin α)=tan α=34.7.设tan ⎝⎛⎭⎫α+8π7=m . 求证:sin ⎝⎛⎭⎫α+15π7+3cos ⎝⎛⎭⎫α-13π7sin ⎝⎛⎭⎫-α+20π7-cos ⎝⎛⎭⎫α+22π7=m +3m +1.证明 左边=sin ⎣⎡⎦⎤π+⎝⎛⎭⎫α+8π7+3cos ⎣⎡⎦⎤⎝⎛⎭⎫α+8π7-3πsin ⎣⎡⎦⎤4π-⎝⎛⎭⎫α+8π7-cos ⎣⎡⎦⎤2π+⎝⎛⎭⎫α+8π7=-sin ⎝⎛⎭⎫α+8π7-3cos ⎝⎛⎭⎫α+8π7-sin ⎝⎛⎭⎫α+8π7-cos ⎝⎛⎭⎫α+8π7=tan ⎝⎛⎭⎫α+8π7+3tan ⎝⎛⎭⎫α+8π7+1=m +3m +1=右边. ∴原等式成立.能力提升8.若f (sin x )=3-cos 2x ,则f (cos x )等于( ) A .3-cos 2x B .3-sin 2x C .3+cos 2xD .3+sin 2x解析 f (cos x )=f (sin(π2-x ))=3-cos 2(π2-x )=3-cos(π-2x )=3+cos 2x .答案 C9.α为锐角,2tan(π-α)-3cos ⎝⎛⎭⎫π2+β=-5,tan(π+α)+6sin(π+β)=1,则sin α=( ) A .355B .377C .31010D .13解析 由条件可知-2tan α+3sin β=-5①,tan α-6sin β=1②, ①式×2+②式可得tan α=3, 即sin α=3cos α,又sin 2α+cos 2α=1,α为锐角, 故可解得sin α=31010.答案 C10.已知tan(3π+α)=2,则sin (α-3π)+cos (π-α)+sin (π2-α)-2cos (π2+α)-sin (-α)+cos (π+α)=________.解析 ∵tan(3π+α)=2,∴tan α=2, ∴原式=sin αsin α-cos α=tan αtan α-1=22-1=2. 答案 211.定义:角θ与φ都是任意角,若满足θ+φ=90°,则称θ与φ“广义互余”.已知sin(π+α)=-14,下列角β中,可能与角α“广义互余”的是________(填上所有符合的序号).①sin β=154;②cos(π+β)=14;③tan β=15; ④tan β=155. 解析 ∵sin(π+α)=-sin α, ∴sin α=14,若α+β=90°,则β=90°-α,故sin β=sin(90°-α)=cos α=±154,故①满足; ③中tan β=15,即sin β=15cos β,又sin 2β+cos 2β=1,故sin β=±154,即③满足,而②④不满足. 答案 ①③12.是否存在角α,β,α∈⎝⎛⎭⎫-π2,π2,β∈(0,π),使等式 ⎩⎪⎨⎪⎧sin (3π-α)=2cos ⎝⎛⎭⎫π2-β,3cos (-α)=-2cos (π+β)同时成立.若存在,求出α,β的值;若不存在,说明理由.解 由条件,得⎩⎪⎨⎪⎧sin α=2sin β, ①3cos α=2cos β. ②①2+②2,得sin 2α+3cos 2α=2, ③ 又因为sin 2α+cos 2α=1,④由③④得sin 2α=12,即sin α=±22,因为α∈⎝⎛⎭⎫-π2,π2,所以α=π4或α=-π4. 当α=π4时,代入②得cos β=32,又β∈(0,π),所以β=π6,代入①可知符合.当α=-π4时,代入②得cos β=32,又β∈(0,π),所以β=π6,代入①可知不符合.综上所述,存在α=π4,β=π6满足条件.13.(选做题)已知sin ⎝⎛⎭⎫-π2-α·cos ⎝⎛⎭⎫-5π2-α=60169,且π4<α<π2,求sin α与cos α的值. 解 sin ⎝⎛⎭⎫-π2-α=-cos α, cos ⎝⎛⎭⎫-5π2-α=cos ⎝⎛⎭⎫2π+π2+α=-sin α. ∴sin α·cos α=60169,即2sin α·cos α=120169.① 又∵sin 2α+cos 2α=1,②①+②得(sin α+cos α)2=289169,②-①得(sin α-cos α)2=49169.又∵α∈⎝⎛⎭⎫π4,π2,∴sin α>cos α>0, 即sin α+cos α>0,sin α-cos α>0, ∴sin α+cos α=1713,③ sin α-cos α=713,④③+④得sin α=1213,③-④得cos α=513.。
1.3三角函数的诱导公式(二)

课 题:1.3正弦、余弦的诱导公式(二)教学目的:学会关于90︒ k ± α两套诱导公式,并能应用,进行简单的三角函数式的化简及论证。
教学重点:诱导公式教学难点:诱导公式的灵活应用授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、讲解新课:诱导公式5:(课件1.3.7)sin(90︒ -α) = cos α, cos(90︒ -α) = sin α.tan(90︒ -α) = cot α, cot(90︒ -α) = tan α. sec(90︒ -α) = csc α, csc(90︒ -α) = sec α诱导公式6:(课件1.3.8) sin(90︒ +α) = cos α, cos(90︒ +α) = -sin α.tan(90︒ +α) = -cot α, cot(90︒ +α) = -tan α. sec(90︒ +α) = -csc α, csc(90︒+α) = sec α如图所示 sin(90︒ +α) = M’P’ = OM = cos αcos(90︒ +α) = OM’ = PM = -MP = -sin α或由6式:sin(90︒ +α) = sin[180︒- (90︒ -α)] = sin(90︒ -α) = cos αcos(90︒ +α) = cos[180︒- (90︒ -α)] = -sin(90︒ -α) = -cos α二、讲解范例: 例1)2cos()5cos()2sin()4sin()cot()2tan()23cos()2sin(απαπαπαπαπαπαπαπ+-+--=+-+---+k k k 求证: 证:α-ααα=α+α-α+α=sin cos cos sin cot tan sin cos 左边 α-ααα=α+α-αα-=s i n c o s c o s s i n s i n c o s c o s s i n 右边 左边 = 右边 ∴等式成立例2的值。
1.3 三角函数的诱导公式(第2课时) 精品教案

1.1.1 诱导公式(二)
【课题】:诱导公式(二) 【教学三维目标】: 一、知识与技能 1、借助单位圆推导诱导公式,特别是学习从单位圆的对称性鱼任意角终边的对称性中发现问题(任意角α的三角函数值与
2
π
α-,
2
π
α+等三角函数值之间有内在联系),提出研究方法(利用坐标的对称性,从
三角函数定义得出相应的关系式);
2、能正确运用诱导公式求任意角的三角函数值,以及进行简单三角函数式的化简与恒等式证明,并从中体会未知到已知、复杂到简单的转化过程; 二、过程与方法
1、理解诱导公式的推导方法;
2、掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明;
3、培养学生化归、转化的能力; 三、情感态度与价值观
通过诱导公式的应用,使学生认识到转化“矛盾”是解决问题的一条行之有效的途径. 【教学重点】:诱导公式的探究,运用诱导公式进行求值、化简、证明,提高数学内部联系的认识. 【教学难点】:发现圆的几何性质(特别是对称性)与三角函数性质的联系,特别是直角坐标系内关于直线y x =对称的点得性质与(
2
π
α±)的诱导公式的关系。
【课前准备】:三角板、圆规、多媒体. 【教学过程设计】:
2
π。
1.3.2 三角函数的诱导公式(二)教案

湖 南 省 娄 底 市 双 峰 县 第 五 中 学 集 体 备 课 教 案高 一 年 级 数 学 组- 1 -教学环节设计 知识点解析、师生互动 教学后记课题:1.3.2 三角函数的诱导公式(二) 教学目标:1.进一步理解和掌握六组正弦、余弦和正切的诱导公式,并能正确地运用这些公式进行任意角的正弦、余弦和正切值的求解、简单三角函数式的化简与三角恒等式的证明;2.通过公式的应用,培养学生的化归思想,运算推理能力、分析问题和解决问题的能力.教学重点:诱导公式及诱导公式的综合运用.教学难点:公式的推导和对称变换思想在学生学习过程中的渗透. 教学过程:(导入→自学→展示→探讨→展示→讲解点拨→评价小结→练习总结) 一、导入新课 角2π-α与角α终边之间有怎样的对称关系,能否从任意角三角函数的定义出发利用这一对称关系探求角2π-α与角α的三角函数值之间的关系呢? 二、自主学习 自学任务:课本P26—P27,独立完成导学案。
三、展示评价 (学生展示导学案答案、教师评价解析) 四、小组探讨 (分组讨论、解答探究案) 五、展示评价 (分组展示探究案答案、教师评价解析) 六、课堂小结 七、检测反馈 (学生独立完成练习案、教师巡查点拨) 一、导学案答案解析二、探究案答案解析例1 13. 例2 略例3 5716. 三、检测案答案解析1.A 2.A 3.C 4.C 5.-13 6.892 7.2 8.解 原式=-cos θcos θ(-cos θ-1)+cos θ-cos θ·cos θ+cos θ =1cos θ+1+11-cos θ=21-cos 2θ=2sin 2θ. ∵sin θ=33,∴原式=6. 9.解 由条件,得⎩⎨⎧ sin α=2sin β,3cos α=2cos β.①② ①2+②2,得sin 2α+3cos 2α=2,③ 又因为sin 2α+cos 2α=1,④由③④得sin 2α=12,即sin α=±22, 因为α∈⎝⎛⎭⎫-π2,π2,所以α=π4或α=-π4. 当α=π4时,代入②得cos β=32,又β∈(0,π),所以β=π6,代入①可知符合. 当α=-π4时,代入②得cos β=32,又β∈(0,π),所以β=π6,代入①可知不符合. 综上所述,存在α=π4,β=π6满足条件.。
《1.2.3三角函数的诱导公式二》教学案

《1.2.3三角函数的诱导公式(二)》教学案●三维目标1.知识与技能(1)能够推导公式五、六.(2)能够应用公式五、六解决一些三角函数求值、化简和证明问题.2.过程与方法(1)借助于单位圆,利用对称性,推导公式五、六.(2)观察公式五、六的结构特征,统一为“函数名改变,符号看象限”.(3)特别注意公式的使用中,三角函数值的符号变化问题.3.情感、态度与价值观用联系的观点,发现并证明诱导公式,体会把未知问题化归为已知问题的数学思想方法.●重点难点重点:诱导公式五、六的推导.难点:灵活运用诱导公式进行化简、求值、证明.教学方案设计●教学建议关于诱导公式五、六的教学,建议教师注重公式的推导过程,特别突出关于直线y=x对称的两点的坐标关系,这是理解和记忆公式的关键.另外要向学生讲清这组公式与诱导公式一、二、三、四的区别,利用适当的训练题加以巩固这几组诱导公式的关系及应用.●教学流程创设问题情境,引导学生推导出诱导公式五、六.⇒引导学生探究诱导公式五、六的特征以及与诱导公式一~四的区别,并总结诱导公式五、六的记忆口诀“函数名改变,符号看象限”.⇒通过例1及其互动探究,使学生掌握利用诱导公式五、六解决给值求值问题的方法.⇒通过完成例2及其变式训练,使学生掌握利用诱导公式解决化简求值问题的方法.⇒完成例3及其变式训练,总结利用诱导公式证明三角恒等式的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课前自主导学【问题导思】 若α为锐角,sin (π2-α)与cos α,cos (π2-α)与sin α有何关系? 【提示】 sin (π2-α)=cos α,cos (π2-α)=sin α. 终边关于直线y =x 对称的角的诱导公式(公式五) sin (π2-α)=cos _α;cos (π2-α)=sin _α.【问题导思】 利用公式二和公式五,能否确定sin (π2+α)与cos α,cos (π2+α)与sin α的关系?【提示】 sin (π2+α)=sin [π2-(-α)]=cos (-α)=cos α,cos (π2+α)=cos [π2-(-α)]=sin (-α)=-sin α.π2+α型诱导公式(公式六) sin (π2+α)=cos _α; cos (π2+α)=-sin _α. 当堂双基达标例1 (1)已知sin (π+A)=-12,则cos (32π-A)的值是________. (2)已知sin (π3-α)=12,则cos (π6+α)的值是________.【思路探究】 (1)先化简sin (π+A)=-12得sin A =12,再利用诱导公式化简cos (3π2-A)即可.(2)探索已知角π3-α与π6+α之间的关系,根据诱导公式将cos (π6+α)化为π3-α的三角函数求解.【自主解答】 (1)sin (π+A)=-sin A =-12,∴sin A =12,cos (3π2-A)=cos (π+π2-A)=-cos (π2-A)=-sin A =-12. (2)∵(π3-α)+(π6+α)=π2, ∴π6+α=π2-(π3-α),∴cos (π6+α)=cos [π2-(π3-α)]=sin (π3-α)=12. 【答案】 (1)-12 (2)12 规律方法1.给值求值型问题,若已知条件或待求式较复杂,有必要根据诱导公式化到最简,再确定相关的值.2.巧用相关角的关系会简化解题过程.常见的互余关系有π3-α,π6+α;π3+α,π6-α;π4+α,π4-α等.常见的互补关系有π3+θ,2π3-θ;π4+θ,3π4-θ等. 互动探究若本例(2)中条件不变,如何求cos (56π-α)的值? 【解】 ∵(5π6-α)-(π3-α)=π2, ∴5π6-α=π2+(π3-α),∵cos (5π6-α)=cos [π2+(π3-α)]=-sin (π3-α)=-12.化简问题例2 化简: sin3π2-α·cos 3π-α·tan π-αcos -α-π·cos α-π2. 【思路探究】 解决本题的关键是熟练地应用三角函数诱导公式. 【自主解答】 原式=sin[π+π2-α]·cos π-α·-tan αcos π+αcos π2-α =-sin π2-α·-cos α·-tan α-cos α·sin α =-cos 2α·tan α-cos α·sin α=cos α·sin αcos αsin α=1. 规律方法用诱导公式化简求值的方法:(1)对于三角函数式的化简求值问题,一般遵循诱导公式先行的原则,即先用诱导公式化简变形,达到角的统一,再进行切化弦,以保证三角函数名最少.(2)对于kπ±α和π2±α这两套诱导公式,切记运用前一套公式不变名,而后一套公式必须变名. 变式训练 化简:sin θ-5πcos -π2-θcos 8π-θsin θ-3π2sin -θ-4π. 【解】 原式=sin[-6π+π+θ]cos[-π2+θ]cos -θsin[-2π+π2+θ]sin -θ =sin π+θcos π2+θcos θsin π2+θ-sin θ =-sin θ-sin θcos θcos θ-sin θ=-sin θ.证明三角恒等式例3 求证:2sin θ-32πcos θ+π2-11-2sin 2θ= tan 9π+θ+1tan π+θ-1.【思路探究】 考虑到等式左、右两边形式都很复杂,可以使用左右归一法证明,即证明等式的左、右两边都等于同一个式子.【自主解答】 左边=2sin[-32π-θ]cos π2+θ-11-2sin 2θ =-2cos θ·sin θ-11-2sin 2θ=1+2sin θcos θ2sin 2θ-sin 2θ+cos 2θ =sin θ+cos θ2sin 2θ-cos 2θ=sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1.右边=tan 8π+π+θ+1tan θ-1=tan π+θ+1tan θ-1=tan θ+1tan θ-1. ∴左边=右边,原式成立. 规律方法三角恒等式的证明策略:(1)遵循的原则:在证明时一般从左边到右边,或从右边到左边,或左右归一,总之,应遵循化繁为简的原则.(2)常用的方法:定义法、化弦法、拆项拆角法、公式变形法、“1”的代换法.变式训练求证:tan 2π-αcos 3π2-αcos 6π-αsin α+3π2cos α+3π2=-tan α. 【证明】 左边=tan -α·cos[π+π2-α]cos -αsin[π+π2+α]cos[π+π2+α] =-tan α·[-cos π2-α]·cos α-sin π2+α·[-cos π2+α] =tan αsin αcos α-cos α·sin α=-tan α=右边. ∴原等式成立. 思想方法技巧三角函数问题中的方程思想典例 (14分)是否存在角α,β,α∈(-π2,π2),β∈(0,π),使⎩⎨⎧ sin 3π-α=2cosπ2-β,3cos -α=-2cos π+β同时成立?若存在,求出角α,β;若不存在,请说明理由.【思路点拨】 先利用三角函数的诱导公式化简已知条件,再利用方程思想和同角三角函数的基本关系式求解.【规范解答】 将已知方程组化 为{ sin α=2sin β, ①3cos α=2cos β, ②2分①2+②2得sin 2α+3cos 2α=2,∴cos 2α=12. 4分∵α∈(-π2,π2),∴cos α=22,∴α=π4或-π4, 6分将α=π4代入②得cos β=32,8分 ∵β∈(0,π),∴β=π6.将α=π4,β=π6代入①,符合条件.10分 将α=-π4代入②得cos β=32, ∵β∈(0,π),∴β=π6.12分将α=-π4,β=π6代入①,不符合条件,舍去. 综上可知存在满足条件的角α,β,α=π4,β=π6. 14分首先利用已知条件得出关于cos α的方程,再利用平方关系式sin 2α+cos 2α=1,求出cos α的值,进而求出相应的角.建立方程是解题的关键.1.π2±α的正弦(余弦)函数值,等于α的余弦(正弦)函数值,前面加上把α看成锐角时原函数值的符号.记忆口诀为“函数名改变,符号看象限”.2.利用公式五或公式六,可以实现正弦函数与余弦函数的相互转化.3.k ·π2+α(k ∈Z )的三角函数值,当k 为偶数时,得α的同名函数值;当k 为奇数时,得α的异名函数值,然后在前面加上把α看成锐角时原函数值的符号.概括为“奇变偶不变,符号看象限”,这里的奇偶是指k 的取值是奇数还是偶数. 当堂双基达标1.sin 95°+cos 175°=________.【解析】 ∵sin 95°=sin (90°+5°)=cos 5°,cos 175°=cos (180°-5°)=-cos 5°, ∴sin 95°+cos 175°=0. 【答案】 02.化简sin (π+α)cos (3π2+α)+sin (π2+α)cos (π+α)=________. 【解析】 原式=-sin αsin α+cos α(-cos α) =-sin 2α-cos 2α=-1. 【答案】 -13.已知tan θ=2,则sin π2+θ-cos π-θsin π2-θ-sin π-θ=________. 【解析】 原式=cos θ--cos θcos θ-sin θ=2cos θcos θ-sin θ=21-tan θ=21-2=-2. 【答案】 -24.求证:cos α-π2sin 5π2+αsin (α-π)cos (2π-α)=-sin 2α. 【证明】 ∵左边=-cos π2-αsin π2+αsin αcos (-α)=-sin αcos αsin αc os α=-sin 2α=右边,∴原等式成立. 课后知能检测 一、填空题1.sin 480°的值为________.【解析】 sin 480°=sin (360°+120°)=sin 120°=sin (90°+30°)=cos 30°=32.【答案】 322.如果cos α=15,且α是第四象限角,那么cos (α+π2)=________. 【解析】 由已知得,sin α=-1-152=-265.所以cos (α+π2)=-sin α=-(-265)=265. 【答案】 2653.若sin (θ+3π2)>0,cos (π2-θ)>0,则角θ的终边位于第________象限.【解析】 sin (θ+3π2)=-cos θ>0,∴cos θ<0,cos (π2-θ)=sin θ>0,∴θ为第二象限角. 【答案】 二4.若f (sin x )=3-cos 2x ,则f (cos 30°)=________.【解析】 f (cos 30°)=f (sin 60°)=3-cos 120°=3+cos 60°=72或f (cos 30°)=f (sin 120°)=3-cos 240°=3-cos 120°=72. 【答案】 725.(2013·宁波高一检测)已知sin (α-π4)=13,则cos (π4+α)=________. 【解析】 ∵(π4+α)-(α-π4)=π2,∴cos (π4+α)=cos [π2+(α-π4)]=-sin (α-π4)=-13. 【答案】 -136.若角A ,B ,C 是△ABC 的三个内角,则下列等式中一定成立的是________. ①cos (A +B)=cos C ;②sin (A +B)=-sin C ; ③cos (A 2+C)=cos B ;④sin B +C 2=cos A2.【解析】 ∵A +B +C =π,∴A +B =π-C ,∴cos (A +B)=-cos C ,sin (A +B)=sin C ,所以①②都不正确;同理B +C =π-A ,所以sin B +C 2=sin (π2-A 2)=cos A2,所以④是正确的. 【答案】 ④7.(2013·徐州高一检测)已知cos (π2+φ)=32,且|φ|<π2,则tan φ=________.【解析】 cos (π2+φ)=-sin φ=32,sin φ=-32, 又∵|φ|<π2,∴cos φ=12,故tan φ=- 3. 【答案】 - 38.已知cos α=13,且-π2<α<0, 则cos -α-πsin 2π+αtan 2π-αsin 3π2-αcosπ2+α=________.【解析】 原式=-cos α·sin α·-tan α-cos α·-sin α=tan α,∵cos α=13 ,-π2<α<0, ∴sin α=-1-cos 2α=-223,∴tan α=sin αcos α=-2 2.【答案】 -2 2 二、解答题9.已知cos (75°+x )=13,其中x 为第三象限角,求cos (105°-x )-2cos (x -15°)的值. 【解】 由条件,得cos (105°-x )=cos (180°-75°-x )=-cos (75°+x )=-13, cos (x -15°)=cos (-90°+75°+x )=sin (75°+x ). 又x 为第三象限角,cos (75°+x )>0, 所以x +75°为第四象限角. 所以sin (75°+x )=-223. 于是原式=-13-2×(-223)=1. 10.已知sinα是方程5x 2-7x -6=0的根,求sin α+3π2sin 3π2-αtan 22π-αtan π-αcos π2-αcos π2+α的值. 【解】 由于方程5x 2-7x -6=0的两根为2和-35,所以sin α=-35,再由sin 2α+cos 2α=1,得cos α=±1-sin 2α=±45,所以tan α=±34,所以原式=-cos α-cos α·tan 2α-tan αsin α·-sin α=tan α=±34.11.已知角α的终边经过点P (45,-35). (1)求sin α的值;(2)求sin π2-αtan α-πsin α+πcos 3π-α的值. 【解】 (1)∵P (45,-35),|OP |=1, ∴sin α=-35.(2)sin π2-αtan α-πsin α+πcos 3π-α=cos αtan α-sin α-cos α=1cos α,由三角函数定义知cos α=45,故所求式子的值为54. 教师备课资源备选例题 已知f (α)=sinα-3πcos 2π-αsin -α+3π2cos -π-αsin -π-α. (1)化简f (α);(2)若α是第三象限角,且cos (α-3π2)=15,求f (α)的值; (3)若α=-31π3,求f (α)的值.【思路探究】 利用诱导公式化简,根据题中所给条件求值. 【自主解答】 (1)f (α)=-sin αcos α-cos α-cos αsin α=-cos α. (2)∵cos (α-3π2)=-sin α=15,∴sin α=-15, 又α是第三象限角,∴cos α=-52-15=-256, ∴f (α)=25 6.(3)∵-31π3=-5×2π-π3,∴f (-31π3)=-cos (-31π3)=-cos (-5×2π-π3)=-cos (-π3)=-cos π3=-12. 规律方法此类题目是关于三角函数式的化简与求值.解决此类问题时,可先用诱导公式化简变形,将三角函数的角度统一后再用同角三角函数关系式变形求解. 备选变式 已知f (θ)=cos θ-3π2·sin 7π2+θsin -θ-π. (1)化简f (θ);(2)若f (θ)=13,求tan θ的值;(3)若f (π6-θ)=13,求f (5π6+θ)的值.【解】 (1)f (θ)=cos 3π2-θ·sin 3π2+θ-sin π+θ=-sin θ·-cos θsin θ=cos θ. (2)由题意得f (θ)=cos θ=13>0,故θ为第一或第四象限角.当θ为第一象限角时,sin θ=1-cos 2θ=223,tan θ=sin θcos θ=22; 当θ为第四象限角时,sin θ=-1-cos 2θ=-223,tan θ=sin θcos θ=-2 2. (3)由题意得f (π6-θ)=cos (π6-θ)=13,∴f (5π6+θ)=cos (5π6+θ)=cos [π-(π6-θ)]=-cos (π6-θ)=-13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课 题:1.2.3三角函数的诱导公式(二)教学目的:能熟练掌握诱导公式一至五,并运用求任意角的三角函数值,并能应用,进行简单的三角函数式的化简及论证。
教学重点:诱导公式教学难点:诱导公式的灵活应用授课类型:新授课课时安排:2课时教 具:多媒体、实物投影仪教学过程:一、复习引入:诱导公式一(其中Z ∈k ): 用弧度制可写成ααsin )360sin(=︒⋅+k απαsin )2sin(=+kααcos )360cos(=︒⋅+k απαcos )2cos(=+kααtan )360tan(=︒⋅+k απαtan )2tan(=+k公式二: 用弧度制可表示如下:αα-sin 180sin(=+︒) ααπ-sin sin(=+)αα-cos 180cos(=+︒) ααπ-cos cos(=+)ααtan 180tan(=+︒) ααπtan tan(=+)公式三: αα-sin sin(=-)ααcos cos(=-)ααtan tan(-=-)公式四: 用弧度制可表示如下:ααsin 180sin(=-︒) ααπsin sin(=-)αα-cos 180cos(=-︒) ααπ-cos cos(=-)ααtan 180tan(-=-︒) ααπtan tan(-=-)公式五: 用弧度制可表示如下:αα-sin 360sin(=-︒) ααπ-sin 2sin(=-)ααcos 360cos(=-︒) ααπcos 2cos(=-)ααtan 360tan(-=-︒) ααπtan 2tan(-=-)二、讲解范例:例1.求下列三角函数的值(1) sin240º; (2)45cos π;(3) cos(-252º);(4) sin (-67π) 解:(1)sin240º=sin(180º+60º)=-sin60º=23-(2) 45cos π=cos ⎪⎭⎫ ⎝⎛+4ππ=4cos π-=22-; (3) cos(-252º)=cos252º= cos(180º+72º)=-cos72º=-0.3090;(4) sin (-67π)=-sin 67π=-sin ⎪⎭⎫ ⎝⎛+6ππ=sin 6π=21 说明:本题是诱导公式二、三的直接应用.通过本题的求解,使学生在利用公式二、三求三角函数的值方面得到基本的、初步的训练.本例中的(3)可使用计算器或查三角函数表.例2.求下列三角函数的值(1)sin(-119º45′);(2)cos 35π;(3)cos(-150º);(4)sin 47π. 解:(1)sin(-119º45′)=-sin119º45′=-sin(180º-60º15′)= -sin60º15′=-0.8682 (2)cos 35π=cos(32ππ-)=cos 3π=21 (3)cos(-150º)=cos150º=cos(180º-30º) =-cos30º=23-; (4)sin 47π=sin(42ππ-)=-sin 4π=22-. 说明:本题是公式四、五的直接应用,通过本题的求解,使学生在利用公式四、五求三角函数的值方面得到基本的、初步的训练.本题中的(1)可使用计算器或查三角函数表.例3.求值:sin ⎪⎭⎫ ⎝⎛-631π-cos ⎪⎭⎫ ⎝⎛-310π-sin 1011π 略解:原式=-sin ⎪⎭⎫ ⎝⎛+674ππ-cos ⎪⎭⎫ ⎝⎛+342ππ-sin 1011π =-sin ⎪⎭⎫ ⎝⎛+6ππ-cos ⎪⎭⎫ ⎝⎛+3ππ+sin 10π =sin 6π+cos 3π+sin 10π =21+21+0.3090=1.3090 . 说明:本题考查了诱导公式一、二、三的应用,弧度制与角度制的换算,是一道比例1略难的小综合题.利用公式求解时,应注意符号.例4.求值:sin(-1200º)·cos1290º+cos(-1020º)·sin(-1050º)+tan855º.解:原式=-sin(120º+3·360º)cos(210º+3·360º)+cos(300º+2·360º)[-sin(330º+2·360º)]+tan(135º+2·360º)=-sin120º·cos210º-cos300º·sin330º+tan135º=-sin(180º-60º)·cos(180º+30º)- cos(360º-60º)·sin(360º-30º)+)45180cos()45180sin(︒-︒︒-︒ =sin60º·cos30º+cos60º·sin30º-tan45º=23·23+21·21-1=0 说明:本题的求解涉及了诱导公式一、二、三、四、五以及同角三角函数的关系.与前面各例比较,更具有综合性.通过本题的求解训练,可使学生进一步熟练诱导公式在求值中的应用.例5.化简:)sin()5cos()4cos()3sin(αππαπααπ--⋅---⋅+. 略解:原式=)]sin([)cos(cos )sin(απαπααπ+-⋅+⋅+=ααcos cos =1. 说明:化简三角函数式是诱导公式的又一应用,应当熟悉这种题型.例6.化简:)()2cos()2sin(])12([sin 2])12([sin Z n n n n n ∈--+-⋅+++⋅αππαπαπα 解:原式=)2cos()2sin(]2)sin[(2]2)sin[(αππαππαπαπ----+++n n n n =ααπααπcos sin )sin(2)sin(-++ =ααααcos sin sin 2sin -- =αcos 3-. 说明:本题可视为例5的姐妹题,相比之下,难度略大于例5.求解时应注意从所涉及的角中分离出2π的整数倍才能利用诱导公式一.例7.求证:)sin()cos()2cos()4sin()tan()sin()cos()4cos()3sin(πααπαπαππαπαπαπαπα++---=-----+- 证明:左边=)cos()sin()sin()cos(cos ]4)sin[(απαπαπαπαπαπ-------+-+ =ααααααπcos sin sin cos cos )sin(-++ =ααααααcos sin sin cos sin cos 22⋅--=()()ααααααααsin cos sin cos cos sin )sin (cos -+⋅- =ααααcos sin cos sin +⋅, 右边=ααααsin cos cos sin --⋅-=ααααcos sin cos sin +⋅, 所以,原式成立.例8.求证ααααα3tan )360sin()540sin(1)180cos()cos(1=-︒+-︒+︒+- 证明:左边=ααααααααsin sin 1cos cos 1sin )180sin(1cos cos 1--=--︒- =αααααααα2222cos cos sin sin sin sin 1cos cos 1=--=tan 3α=右边, 所以,原式成立.说明:例7和例8是诱导公式及同角三角函数的基本关系式在证明三角恒等式中的又一应用,具有一定的综合性.尽管问题是以证明的形式出现的,但其本质是等号左、右两边三角式的化简.例9.已知παπαπ22321)cos(<<-=+,.求:)2sin(απ-的值. 解:已知条件即21cos =α, 又παπ223<<, 所以:)cos 1(sin )2sin(2αααπ---=-=-=23)21(12=- 说明:本题是在约束条件下三角函数式的求值问题.由于给出了角α的范围,因此,α的三角函数的符号是一定的,求解时既要注意诱导公式本身所涉及的符号,又要注意根据α的范围确定三角函数的符号.例10.已知223)360tan(1)720tan(1+=︒--︒++θθ,求: )2(cos 1)](sin 2)cos()sin()([cos 222πθπθθπθπθπ--⋅-+-⋅++-的值. 解:由223)360tan(1)720tan(1+=︒--︒++θθ,得 222tan )224+=+θ(, 所以22224222tan =++=θ故 )2(cos 1)](sin 2)cos()sin()([cos 222πθπθθπθπθπ--⋅-+-⋅++- =θθθθθ222cos 1]sin 2cos sin [cos ⋅++ =1+tan θ+2tan 2θ =1+2)22(222⋅+222+=. 说明:本题也是有约束条件的三角函数式的求值问题,但比例9要复杂一些.它对于学生熟练诱导公式及同角三角函数关系式的应用.提高运算能力等都能起到较好的作用.例11.已知)32tan()0()3cos(326αππαπαπ-≠=+<<,求,m m 的值. 解:因为)(332παπαπ+-=-, 所以:)]3(cos[)32cos(παπαπ+-=-=)3cos(πα+-=-m 由于,326παπ<<所以,2320παπ<-< 于是:)32(cos 1)32sin(2απαπ--=-=21m -, 所以:tan()32cos()32sin()32(απαπαπ--=-=m m 21-- . 说明:通过观察,获得角3πα+与角απ-32之间的关系式απ-32=π-(3πα+),为顺利利用诱导公式求cos(απ-32)的值奠定了基础,这是求解本题的关键,我们应当善于引导学生观察,充分挖掘的隐含条件,努力为解决问题寻找突破口,本题求解中一个鲜明的特点是诱导公式中角的结构要由我们通过对已知式和欲求之式中角的观察分析后自己构造出来,在思维和技能上显然都有较高的要求,给我们全新的感觉,它对于培养学生思维能力、创新意识,训练学生素质有着很好的作用.例12.已知cos 32=β,角βα-的终边在y 轴的非负半轴上,求cos ()βα32-的值. 解:因为角βα-的终边在y 轴的非负半轴上,所以:βα-=)(22Z k k ∈+ππ,于是 2(βα-)=)(4πππ∈+k k从而 ,)(432Z k k ∈++-=-ππββα所以 ]4)cos[()32cos(πβπβαk +-=-=)cos(βπ-=βcos -=32- 说明:本题求解中,通过对角βα-的终边在y 轴的非负半轴上的分析而得的βα-=)(22Z k k ∈+ππ,还不能马上将未知与已知沟通起来.然而,当我们通过观察,分析角βα32-的结构特征,并将它表示为2(βα-)β-后,再将βα-=ππk 22+代入,那么未知和已知之间随即架起了一座桥梁,它为利用诱导公式迅速求值扫清了障碍.通过本题的求解训练,对于培养学生的观察分析能力以及思维的灵活性和创造性必将大有裨益.三、课堂练习:1.已知sin(α+π)= -21,则)7cos(1πα+-的值是( ) (A )332 (B) -2 (C)-332 (D)±332 2.式子)690sin(630sin )585cos(︒-+︒︒-的值是 ( ) (A )22 (B)2 (C)32 (D)- 32 3.α,β,γ是一个三角形的三个内角,则下列各式中始终表示常数的是( )(A )sin(α+β)+sin γ (B)cos(β+γ)- cos α(C)sin(α+γ)-cos(-β)tan β(D)cos(2β+γ)+ cos2α 4.已知:集合⎭⎬⎫⎩⎨⎧∈-==Z k k x x P ,3)3(sin |π,集合 ⎭⎬⎫⎩⎨⎧∈--==Z k k y y Q ,3)21(sin |π,则P 与Q 的关系是 ( ). (A )P ⊂Q(B)P ⊃Q (C)P=Q (D)P ∩Q=φ 5.已知ααπααπsin )2cos(,cos )2sin(=-=-对任意角α均成立.若f (sin x )=cos2x ,则f (cos x )等于( ).(A )-cos2x (B)cos2x (C) -sin2x (D)sin2x6.已知923)cos()cos(31=----θθπ,则)5sin()3cos(πθθπ+--的值等于 . 7.54cos 53cos 52cos 5cos ππππ+++= . 8.化简:)360cos()180cos()360tan()900sin()sin(︒---+︒-︒--︒--ααααα所得的结果是 . 9.求证ααααα3cot )360cos()540cos(1)180sin()sin(1=-︒+-︒+︒--. 10.设f(x )=)(])12[(cos )(sin )(cos 222Z n x n x n x n ∈-+-⋅+πππ, 求f (6π)的值. 答案与提示1.D 2.B 3.C 4.C 5.A 6.±43 7.0 8.-2cos α 9.提示:左边利用诱导公式及平方关系,得αα33sin cos ,右边利用倒数关系和商数关系,得αα33sin cos ,所以左边=右边.10.41.提示:分n=2k ,n=2k+1(k ∈z)两种情况讨论,均求得f (x )=sin 2x .故f (6π)=41. 四、小结应用诱导公式化简三角函数的一般步骤:1︒用“- α”公式化为正角的三角函数;2︒用“2k π + α”公式化为[0,2π]角的三角函数;3︒用“π±α”或“2π - α”公式化为锐角的三角函数五、课后作业:六、板书设计(略)七、、课后记:。